
PHYSICAL REVIEW E 86, 061129 (2012)

Aging and crossovers in phase-separating fluid mixtures
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(Received 1 September 2012; revised manuscript received 22 November 2012; published 21 December 2012)

We use state-of-the-art molecular dynamics simulations to study hydrodynamic effects on aging during kinetics
of phase separation in a fluid mixture. The domain growth law shows a crossover from a diffusive regime to
a viscous hydrodynamic regime. There is a corresponding crossover in the autocorrelation function from a
power-law behavior to an exponential decay. While the former is consistent with theories for diffusive domain
growth, the latter results as a consequence of faster advective transport in fluids for which an analytical justification
has been provided.
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I. INTRODUCTION

There has been intense recent interest in understanding the
coarsening dynamics of phase-separating mixtures [1–13]. For
fluid systems, attention has focused on single-time quantities,
e.g., the correlation function and structure factor, or the
growth law of the domain scale �(t) [2,10,14,15]. An equally
important and deeply related aspect of coarsening systems is
the nature of the aging properties [16] which are encoded in
two-time quantities. This issue has been intensively studied
in the context of disordered systems and structural glasses,
in phase-separating systems without hydrodynamic modes,
such as solid mixtures, but not in segregating fluids. In part,
this is due to the scarcity of reliable numerical results for
these systems. In this paper, we present the first molecular
dynamics (MD) results for aging in coarsening binary fluid.
Before discussing our model and results, it is useful to give a
brief overview of the main concepts.

Following a quench inside the miscibility gap, a homoge-
neous binary mixture (A + B) separates into A-rich and B-rich
phases. The evolution of the system from the randomly mixed
phase to the segregated state is a complex process. Domains
rich in A and B particles form and grow nonlinearly with
time [14,15,17,18]. This coarsening is a self-similar process
which is reflected in the scaling behavior of various physical
quantities, as the two-point equal-time correlation function
G(r,t) = 〈φ(�r1,t)φ(�r2,t)〉 − 〈φ(�r1,t)〉〈φ(�r2,t)〉, where the or-
der parameter φ is the difference between the A and B concen-
trations and r = |�r1 − �r2|. This quantity can be expressed in the
scaling form G(r,t) = G̃(r/�), G̃(z) being a time-independent
master function. Typically, �(t) grows in a power-law manner
as �(t) ∼ tα , where the growth exponent α depends upon
the transport mechanism. For diffusive domain growth [19]
α = 1/3, which is referred to as the Lifshitz-Slyozov law. This
behavior characterizes segregating solid mixtures. However,
in fluids, hydrodynamic transport mechanisms, important at
large length scales, lead to much faster growth. In spatial
dimension d = 3, for a percolating domain morphology,
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advective transport results in three growth regimes [20]:

α =
⎧⎨
⎩

1/3, �(t) � �dv = (Dη)1/2,

1, �dv � �(t) � �in = η2/(ργ ),
2/3, �(t) � �in.

(1)

In Eq. (1), D is the diffusion constant, η is the viscosity, ρ is
the density, γ is the surface tension, �dv is the crossover length
from the diffusive to the viscous regime, and �in is the length
for the viscous to the inertial hydrodynamic crossover [15].

For diffusive phase separation, also the order-parameter
autocorrelation function C(t,tw) = 〈φ(�r,t)φ(�r,tw)〉 −
〈φ(�r,t)〉〈φ(�r,tw)〉 (where t and the waiting time tw < t are
two generic instants) takes a scaling form C(t,tw) = C̃(�/�w),
where hereafter � = �(t) and �w = �(tw). The scaling function
behaves as C̃(x) = x−λ for large x = �/�w, λ being the
Fisher-Huse (FH) exponent [21] whose value in d = 3,
according to the results in Ref. [22], is in the range [1.5,1.6].
Despite this good understanding of the aging properties in
diffusive systems, the behavior in segregating fluids remains
largely unknown. In this paper we start filling the gap by
studying the properties of the autocorrelation function in a
range of times encompassing the first two regimes of Eq. (1) in
a model of binary fluid. In doing that we uncover an interesting
structure with a crossover which corresponds to the switch
from the early diffusive to the intermediate hydrodynamic
regime in Eq. (1) for the growth law. Specifically, we find the
two-parameter scaling form

C(t,tw,�dv) = C̃(x,y), (2)

where x = �/�w, y = �dv/�w, and C̃(x,y) obeys the limiting
behaviors

C̃(x,y) =
{

x−λ (with λ � 1.5), y � 1,

e−(x−1)/τ , y � 1.
(3)

Thus, in the diffusive regime (�w � �dv or y � 1), we obtain
a power-law decay of the scaling function as for spin systems.
To the best of our knowledge, this has not been observed in
previous studies of fluid phase separation. Furthermore, and
more importantly, in the hydrodynamic regime (�w � �dv or
y � 1), we find a crossover to an exponential decay. The
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latter finding is the central result of this paper. Here y � 1
and y � 1 should be read as nearly pure diffusive and pure
hydrodynamic regimes, respectively.

The rest of the paper is organized as follows: We describe
the model and methodology in Sec. II. Results are presented
in Sec. III. Finally, Sec. IV concludes the paper with a brief
summary.

II. MODEL AND METHOD

We consider a periodic box of linear dimension L contain-
ing A and B particles of equal mass m. Particles i and j , at
distance r apart, interact via the potential{

u(r) = U (r) − U (rc) − (r − rc)
(

dU
dr

)
r=rc

, r < rc,

u(r) = 0, r > rc.
(4)

Here, the Lennard-Jones pair potential U (r) has the form
U (r) = 4εαβ[(σ/r)12 − (σ/r)6], where σ is the interaction
diameter and εαβ is the interaction strength between particles
of species α and β [α,β ∈ (A,B)]. The potential in Eq. (4)
is cut off at r = rc to ensure faster computation [23,24]. For
convenience, we set rc = 2.5σ . The third term on the right-
hand side of Eq. (4), after a shifting of the potential by its value
at r = rc (see the second term), was introduced to make both
the potential and the force continuous at r = rc. The overall
density ρ is set to unity so that the fluid is incompressible.
For the choice εAA = εBB = 2εAB = ε, we have an Ising-like
fully symmetric model. The phase behavior and equilibrium
properties of this system, which exhibits a liquid-liquid phase
transition at a critical temperature kBTc � 1.423ε, are well
studied [25]. For convenience, we set ε, kB , m, and σ to unity
below. Our choice of a high density ensures that the gas-liquid
transition is well separated from the liquid-liquid one.

We employ this model to study the kinetics of phase separa-
tion via MD simulations [23,24] by quenching homogeneous
critical (50% A and 50% B particles) configurations, prepared
at a very high temperature (T = 10), to temperatures below
Tc. We have used the Verlet velocity algorithm with integration
time step t = 0.01τ , where the time unit t0 = (mσ 2/ε)1/2 =
1. The temperature was controlled via application of a Nosé-
Hoover thermostat [24], which is well-known to preserve
hydrodynamics.

While unambiguous confirmation of expected hydrody-
namic effects, via MD simulation, in binary fluid phase
separation was done only recently, by using this model
[2,26], signature of such a fast hydrodynamic mechanism was
observed in a number of earlier MD simulations [27–29].

For analysis of our results, we mapped the continuum fluid
configurations onto a simple cubic lattice of size L3 [2]. There
each site i is occupied by a particle and we assign a spin value
Si = +1 if it is an A particle and Si = −1 elsewhere. This
mapping ensures that the pattern dynamics can be studied
in a manner analogous to the spin-1/2 Ising model. The
two-point equal-time correlation function was calculated as
G(r,t) = 〈Si(t)Sj (t)〉 − 〈Si(t)〉〈Sj (t)〉, with r = |i − j | and
the angular brackets denote an averaging over independent
runs. For a conserved order-parameter system, G(r,t) exhibits
damped oscillations around zero. The average domain size
�(t) is obtained from the first zero crossing of G(r,t).
The autocorrelation function was calculated as C(t,tw) =

FIG. 1. Evolution snapshots obtained after a quench to a temper-
ature T = 1.1. The A particles are represented in black, and the B
particles are shown in gray.

〈Si(t)Si(tw)〉 − 〈Si(t)〉〈Si(tw)〉. All results presented subse-
quently for T = 1.1 = 0.77 Tc correspond to L = 64, whereas
those for T = 1.25 = 0.88 Tc were obtained for L = 48. For
statistical quantities, we average over 10 independent runs.

III. RESULTS

Figure 1 shows snapshots from the evolution of the binary
fluid. The snapshot at t = 0 corresponds to the homogeneously
mixed phase immediately after the quench to the temperature
T = 1.1. The other snapshots show the growth of bicontinuous
A-rich and B-rich domains; this continues until the system
reaches equilibrium.

To obtain a quantitative understanding of the evolution, in
Fig. 2 we plot �(t) for two different temperatures [2]. The
inset shows the collapse of data for C(r,t) from different times

FIG. 2. Growth �(t) as a function of time for temperatures T =
1.1 and T = 1.25, on a log-log scale. The solid and dashed lines
correspond to diffusive (α = 1/3) and viscous hydrodynamic (α = 1)
growth laws, respectively. Inset: Scaling plot of G(r,t) from three
different times for T = 1.1.
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FIG. 3. Plot of C(t,tw) vs x = �(t)/�(tw) for T = 1.1 and differ-
ent values of tw (main: tw = 10,500; inset: tw = 10,20,30,40,50), on
a log-log scale. The solid lines denote the power-law behavior x−3/2.

upon scaling the abscissa by �(t). The behavior of �(t) is
consistent with the expected diffusive behavior (with α = 1/3)
at early times, with a crossover to a faster growth later on.
As discussed in Ref. [26], the second regime is consistent
with linear hydrodynamic growth at later times. Indeed the
slightly off-parallel nature (on a log-log plot) of the late-time
data from the linear behavior is due to nonzero offsets at the
crossovers that can be conveniently subtracted off to obtain a
genuine linear behavior [26]. We observe that the crossover
between the two growth regimes is seen to occur earlier for
lower temperatures, since diffusion is enhanced by thermal
fluctuations.

As stated earlier, our primary objective is to study aging
phenomena, essentially the behavior of C(t,tw). In Fig. 3, we
plot C(t,tw) as a function of x = �(t)/�(tw) for different tw. It
is observed that for the smaller values of tw, presented in the
inset, there is a reasonable collapse of data (not perfect though),
and the master curve obeys the form C̃(x) ∼ x−λ, with λ �
1.5. This is the expected behavior for phase separation in the
diffusive stage. We must add here the reason for the imperfect
collapse of data, which will also explain the logic behind the
choice of a narrow range of tw to demonstrate this power-law
scaling behavior. The height at the beginning of the power-law
regime changes with tw, the increase of which takes the domain
order parameter closer to the equilibrium value. Further, with
the increase of tw, faster decay due to hydrodynamics (see
below) shows up earlier in x. Due to this latter fact, the data
sets as a whole give the impression of an exponent steeper than
the expected value. However, from the results for tw = 10 in
the main frame, consistency with the FH exponent should be
appreciated.

On the other hand, for larger values of tw, e.g., tw = 500
in the main frame, a crossover from the FH behavior is
observed where in the postcrossover regime the decay of
C(t,tw) is much faster than a power law. In order to check
for a possible exponential decay at large tw, a semilog plot is
presented in Fig. 4(a). In this figure, the values of tw were
judicially chosen such that for time beyond this, diffusive
mechanism is practically negligible compared to the influence
of hydrodynamics. The smallest value of tw in this figure,
viz., tw = 1000, was chosen motivated by a finite-size scaling

FIG. 4. (a) Same as Fig. 3 but on a semilog plot and for tw =
1000,1500, and 3000. (b) As in (a) but at T = 1.25.

study [26] that showed a pure viscous hydrodynamic behavior
for time beyond this. Interestingly, in this postcrossover regime
a scaling form is recovered, as proven by the excellent data
collapse. Moreover, the behavior of the scaling function C̃(x)
is very nicely consistent with an exponential decay. A similar
behavior, with scaling and exponential decay of C̃(x), is also
observed for T = 1.25 [Fig. 4(b)], showing that the whole
pattern is rather general. Here we note that the rate of decay,
defined by τ , in this hydrodynamic regime should depend upon
the interfacial tension and the advection field (influenced by
transport properties like shear viscosity). This will be justified
toward the end of this paper. As is clear from parts (a) and (b)
of Fig. 4, this decay rate is a temperature-dependent quantity.

The deviation from a linear look, observed for T = 1.1 at
very large values of x, occur in a range of time where finite-size
effects have been observed [26]. Indeed, as it can be recognized
in Fig. 1, for such times the size of domains is comparable to
the system size, the liquid is close to equilibrium, and thus
the configurations change very slowly. For this reason, we are
unable to access the inertial hydrodynamic regime [α = 2/3
in Eq. (1)], which would require significantly larger system
sizes and is beyond our present computational resources.

We attribute this exponential decay of the autocorrelation
function to a fast advective field in the hydrodynamic regime,
which is explained below. The continuum dynamical equation
(Cahn-Hilliard), used to study kinetics of diffusive phase
separation in binary alloys, can be modified to [15]

∂φ

∂t
+ �v · �∇φ = D∇2μ (5)
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to investigate hydrodynamic effects in fluid phase separation.
Here �v is the time- and space-dependent velocity field that
also has dependence upon shear viscosity as well as other
transport properties, and μ is the chemical potential. In the
regime where hydrodynamics is the dominant mechanism, the
right-hand side of Eq. (5) (which takes care of diffusion) can
be neglected to write

∂φ

∂t
+ �v · �∇φ = 0. (6)

Assuming �v to be a constant and representing φ in the k space,
one obtains the solution

φ(�k,t) = φ(�k,tw) ei�v·�k(t−tw). (7)

Hence for the k-space autocorrelation C(�k,t)
[= 〈φ(�k,t)φ(−�k,tw)〉], one has

C(�k,t,tw) = G(�k,tw) ei�v·�k(t−tw), (8)

where G(�k,tw) = C(�k,tw,tw) is the equal-time structure factor
for time tw. The autocorrelation function is then

C(t,tw) =
∫

d�k C(�k,t,tw) =
∫

d�k G(�k,tw) ei�v·�k(t−tw)

= G(�r = �v(t − tw),tw), (9)

where G(�r,tw) is the (real space) correlation function at time
tw. Recalling the scaling property G(�r,t) = G̃( r

�(t) ), one arrives
at

C(t,tw) = G̃

(
v(t − tw)

�(tw)

)
. (10)

For small values of x, Porod’s law [15] states that G̃(x) �
1 − ax, where a is a constant. This is consistent with an

exponential decay for small x. The question then is what
happens for large values of x. Here, note that an analytical form
of G̃(x), for conserved order-parameter dynamics, still remains
a challenging task. However, our analysis of the numerical data
(see the inset of Fig. 2) is suggestive of an exponential decay of
the two-point equal-time correlation function for sufficiently
large values of x.

IV. CONCLUSION

We have undertaken the first study of aging dynamics
during phase separation in a binary Lennard-Jones fluid. The
average domain size grows in a power-law fashion, with an
exponent α = 1/3 (diffusive) at early times and α = 1 (viscous
hydrodynamic) at later times. This crossover has a remarkable
consequence for the scaling form of the autocorrelation
function C(t,tw). In the diffusive regime, C(t,tw) shows a
power-law decay with the Fisher-Huse exponent. However, in
the hydrodynamic regime, we observe an exponential decay.
This is due to the fact that advective hydrodynamic flows
wash out the memory very rapidly by displacing the domains.
We believe that the results presented here will arouse fresh
experimental and theoretical interest in this problem.
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