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We study a nonequilibrium equation of states of an ideal quantum gas confined in the cavity under a moving
piston with a small but finite velocity in the case in which the cavity wall suddenly begins to move at the time origin.
Confining ourselves to the thermally isolated process, the quantum nonadiabatic (QNA) contribution to Poisson’s
adiabatic equations and to Bernoulli’s formula which bridges the pressure and internal energy is elucidated. We
carry out a statistical mean of the nonadiabatic (time-reversal-symmetric) force operator found in our preceding
paper [Nakamura et al., Phys. Rev. E 83, 041133 (2011)] in both the low-temperature quantum-mechanical
and high-temperature quasiclassical regimes. The QNA contribution, which is proportional to the square of the
piston’s velocity and to the inverse of the longitudinal size of the cavity, has a coefficient that is dependent on
the temperature, gas density, and dimensionality of the cavity. The investigation is done for a unidirectionally
expanding three-dimensional (3D) rectangular parallelepiped cavity as well as its 1D version. Its relevance in a
realistic nanoscale heat engine is discussed.
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I. INTRODUCTION

The equation of states plays an important role in thermo-
dynamics and statistical mechanics. Let us consider Carnot’s
thermodynamic cycle proposed almost two centuries ago [1].
It is the most efficient cycle for converting a given heat into
work. In this cycle, the system is assumed to undergo a series
of different thermodynamic states and performs work on its
surroundings, thereby acting as a Carnot heat engine. However,
such a perfect engine is only a theoretical limit, and practical
engines must incorporate the effect of nonzero velocity of the
moving piston.

In the Carnot cycle, the pressure (P ) and volume (V ) of
an ideal classical gas (Boltzmann gas) confined in the cavity
are assumed to obey the equilibrium equation of states, i.e.,
Boyle-Charles’ law (BCL), and a set of Poisson’s adiabatic
equations in the isothermal and thermally adiabatic processes,
respectively. Poisson’s adiabatic equations are derived from the
first law of thermodynamics together with BCL. BCL itself is a
special limit of the Bernoulli’s formula (BF) bridging between
the pressure (P ) and internal energy (U ) for quantum and
classical gas in the cavity in d dimensions. BF is available
from the relation PV = −� with use of the density of
states in calculating the thermodynamic potential � for both
classical and quantum gas. To be specific, PV = 2

3U , U ,
and 2U for d = 3, 2, and 1, respectively. The last case may
be better rewritten as FL = 2U with use of the force (F )
and the length (L) of the one-dimensional (1D) cavity. For
a classical gas, U = 3

2NkT , NkT , and 1
2NkT for d = 3,

2, and 1, respectively, with use of the number of particles
N , the Boltzmann constant k, and the temperature T . Then
Bernoulli’s formula reduces to BCL, PV = NkT , irrespective
of dimensionality. For a quantum gas, Bernoulli’s formula
works as well, where U = E0[1 + 0.0713(mT/h̄2)2(V/N )4/3]

with E0 = (3/10)(6π2)2/3(h̄2/m)(N/V )2/3N for d = 3 Fermi
gas in the low-temperature and high-density regime (see
Landau-Lifshitz [2]). In the thermally adiabatic process, a set
of Poisson’s adiabatic equations also works, which are given
by PV (d+2)/d = const, P

T (d+2)/2 = const, and V T d/2 = const,
irrespective of classical and quantal systems [3].

In constructing Bernoulli’s formula, the velocity of the wall
of a gas container (cylinder, cavity, billiard, etc.) is assumed
to be negligibly small. To make the theory of heat engines
more realistic, one must evaluate the effect of the nonzero
velocity of the piston, i.e., the wall motion of the gas container.
Since the kinetic theory of Boltzmann gas tells that a moving
piston does not play a role in the equation of states, we shall
investigate the nonadiabatic dynamics in the quantum heat
engine. While in recent years there appeared papers which
treated the quantum engine, they were either concerned with
a quantum analog of Carnot’s engine [4–7] or with a quantum
analog of a nonequilibrium work relation (i.e., a fluctuation
theorem) [8,9], and they touched on neither the nonadiabatic
pressure due to a moving piston nor the statistical treatment of
an ideal quantum gas.

In this paper, confining ourselves to the thermally isolated
process, we shall investigate the nonequilibrium equation
of states for an ideal quantum gas (Fermi gas) confined
into an expanding cavity in the case in which the cavity
wall suddenly begins to move at the time origin. Quantum
nonadiabatic (QNA) contributions to Bernoulli’s formula and
to Poisson’s adiabatic equations due to the nonzero velocity
of the moving piston are elucidated. In Sec. II, with use of the
nonadiabatic force operator in our preceding paper [10], the
adiabatic and nonadiabatic pressures are defined. In Sec. III,
expectation of nonequilibrium pressure is expressed in terms
of the density of states, which will enable the calculation
of thermodynamic and statistical averages of nonadiabatic
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FIG. 1. 3D rectangular parallelepiped cavity confining the quan-
tal gas, with the size Lx(t) × Ly × Lz. One of its walls is moving
in the x direction. Px(t) and Fx(t) stand for the x components of
pressure and force.

pressure. In Secs. IV and V, the unidirectionally expanding
cavities in d = 1 and 3 dimensions are studied, and explicit
forms for QNA contributions to the pressure, internal energy,
and equation of states will be given in the low-temperature
and high-density regime as well as in the high-temperature
and low-density regime. In Sec. VI, the physical implications
of QNA contributions will given. Section VII is devoted to a
summary and discussions. In Appendixes A and B, using the
Fermi-Dirac distribution, we summarize several formulas for
thermodynamic averages in the cases of 1D and 3D rectangular
cavities. The isothermal process which requires a contact with
the heat reservoir is beyond the scope of the paper and will be
investigated in due course.

II. ADIABATIC AND NONADIABATIC PRESSURES

Before embarking upon the adiabatic and nonadiabatic
pressures, we shall briefly summarize the derivation of the
adiabatic and nonadiabatic force operators in our preceding
paper [10], but here in the context of the parallel-piped rectan-
gular 3D cavity. Let us consider a Fermi gas (noninteracting
Fermi particles) confined in a cavity with a moving wall (i.e.,
piston). The wall receives the force from the Fermi gas in the
cavity. Under the condition that the whole system consisting
of Fermi particles and a moving wall maintains the energy
conservation, the work done on the wall by the force is supplied
by the excess energy due to the energy loss of Fermi particles
showing the nonadiabatic transition. In this way, one can
conceive both the adiabatic and nonadiabatic forces. In the
adiabatic limit, the adiabatic force due to the quantal gas on
the cavity wall is proportional to the derivative of the confining
energy with respect to the cavity size. What is a characteristic
feature of the nonadiabatic force coming from the nonadiabatic
transition?

We choose a 3D rectangular parallelepiped cavity with the
size Lx × Ly × Lz, one of whose walls is moving in the x

direction (see Fig. 1).
The original Hamiltonian for the cavity with a time-

dependent longitudinal size Lx(t) is given by

Htot = H + H⊥ (1)

with

H = − h̄2

2m

∂2

∂x2
, H⊥ = − h̄2

2m

(
∂2

∂y2
+ ∂2

∂z2

)
. (2)

The wave function is a product of the longitudinal and
perpendicular parts:

ψtot(x,y,z,t) = ψ(x,t)ψ⊥(y,z,t), (3)

which satisfies the moving and static Dirichlet boundary
conditions for ψ and ψ⊥, respectively, as

ψ(x = 0,t) = ψ(x = Lx(t),t) = 0, (4)

ψ⊥(y = 0,z,t) = ψ⊥(y = Ly,z,t) = 0, (5)

ψ⊥(y,z = 0,t) = ψ⊥(y,z = Lz,t) = 0. (6)

Throughout the time evolution, the instantaneous (adiabatic)
eigenstate is characterized by a set of quantum numbers
(nx,ny,nz). The longitudinal perturbation in H commutes with
the perpendicular part H⊥ in the total Hamiltonian in Eq. (1),
and thereby the quantum numbers ny and nz are conserved
against an expansion along x. Therefore, if a confined particle
is initially in a manifold with the fixed ny and nz and the
cavity expands only in the x direction, there occurs no mixing
among manifolds with different ny and nz. Consequently, the
dynamics of ψtot(x,y,z,t) is determined by the time-dependent
Schrödinger equation for the longitudinal part ψ(x,t) as

ih̄
∂

∂t
ψ(x,t) = Hψ(x,t). (7)

The expectation of the normal component of the force acting
on the wall is obtained by

F̄x = − ∂

∂Lx(t)
〈ψ |H |ψ〉 = −〈ψ | ∂H

∂Lx(t)
|ψ〉, (8)

where, in obtaining the last expression, we used ∂
∂Lx

|ψ〉 =
1
L̇x

∂
∂t

|ψ〉 = 1
ih̄L̇x

H |ψ〉 and its Hermitian conjugate. Hence the
force operator is defined by

F̂x = − ∂H

∂Lx(t)
. (9)

Since the original Hamiltonian H for the cavity with its time-
dependent longitudinal size Lx(t) does not formally include
Lx(t) explicitly, however, there is no way to define the force
operator directly by using Eq. (9).

To overcome this difficulty, we shall make the time-
dependent canonical transformation of H related to the scale
transformation of both the coordinate x and amplitude of the
wave function ψ . This transformation is defined by [11]

H̃ = e−iU

(
H − ih̄

∂

∂t

)
eiU , (10)

with U = − 1
2h̄ (x̂p̂ + p̂x̂) ln Lx(t) = i(x ∂

∂x
+ 1

2 ) ln Lx(t). This
canonical transformation leads to the scaled coordinate x̃

defined by e−iUxeiU = x̃Lx(t) and the scaled wave function
φ̃(x̃,t) = e−iUψ(x,t) = √

Lxψ(x̃Lx,t). The range of x̃ is
0 � x̃ � 1, which is time-independent. Also the normalization
factor of φ̃(x̃,t) becomes Lx-independent and satisfies the fixed
Dirichlet boundary condition φ̃(0,t) = φ̃(1,t) = 0.

Finally the Schrödinger equation is transformed to

ih̄
∂φ̃

∂t
= H̃ φ̃ (11)
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with the Hamiltonian

H̃ = − h̄2

2mL2
x

∂2

∂x̃2
+ ih̄

L̇x

Lx

x̃
∂

∂x̃
+ ih̄

2

L̇x

Lx

, (12)

which is Hermitian. φ̃(x,t) now satisfies the fixed Dirichlet
boundary condition φ̃(0,t) = φ̃(1,t) = 0.

Taking the Lx derivative of H̃ , we can rigorously define
the force operator in the transformed space, whose inverse
canonical transformation gives the force operator expressed in
the original space as

F̂ = p̂2

mL
− L̇

2L2
(x̂p̂ + p̂x̂)

= −h̄2

m

1

L
∂2
x + i

h̄

2

L̇

L2
(x∂x + ∂xx), (13)

where we suppressed the suffix x in both the force operator
and the longitudinal length. The issue in Eq. (13) is universal,
irrespective of the kind of canonical transformations. In fact,
one may choose another canonical transformation such as a
combination of U in Eqs. (10) and the gauge transformation
(see [10]), which also guarantees the wave function to satisfy
the fixed Dirichlet boundary condition and the transformed
Hamiltonian, say H̃ ′, to be Hermitian. The derivative of H̃ ′
with respect to Lx defines the force operator F̂ ′, and the inverse
of a combination of the gauge and scale transformations results
in the identical expression for F̂ .

In the final expression of Eq. (13), the first and the second
parts define the adiabatic and nonadiabatic forces, respectively.
The latter part, which gives an essential contribution when
the system is not in the instantaneous eigenstates, is invariant
under the time-reversal operation since both L̇ and p̂ change
their signs. The expression in Eq. (13) is the force normal to
the wall, and, when divided by an area of the wall, it gives the
adiabatic and nonadiabatic pressures (P̂ ) acting on the moving
wall of the 3D rectangular parallelepiped cavity:

P̂ = F̂

LyLz

. (14)

III. EXPECTATION OF NONEQUILIBRIUM PRESSURE
IN TERMS OF DENSITY OF STATES

Let us consider the system to be thermally isolated and
the wall of the cavity to begin to move at t = 0 suddenly
(see Fig. 2). The Fermi gas in the cavity is assumed to
satisfy the equilibrium Fermi-Dirac distribution until t = 0.

FIG. 2. Time dependence of Lx(t). The wall is assumed to begin
to move at the time origin.

The expectation of the force operator is evaluated in terms of
the density operator ρ:

F̄ = Tr(ρF̂). (15)

The density operator ρ for a thermally isolated nonequi-
librium state of the Fermi gas obeys the von Neumann
equation

ih̄
∂ρ

∂t
= [H,ρ], (16)

where the original Hamiltonian H and coordinate x are used.
Using adiabatic bases (instantaneous eigenstates) {|n〉}, the

matrix elements of ρ satisfy

ρ̇nm = 1

ih̄
(En − Em)ρnm − L̇

L

(∑
� �=n

γ�nρ�m +
∑
� �=m

γ�mρn�

)

(17)

with γmn = (−1)m+n+1 2mn
m2−n2 (1 − δmn).

Then F̄ becomes

F̄ =
∑
m,n

ρnmFmn, (18)

where

Fmn = h̄2

m

(nπ )2

L3
δmn + ih̄L̇

L2
γmn. (19)

To make the problem tractable, we assume L̇ � vF , that is,
the wall velocity L̇ is much less than the Fermi velocity vF ,
which guarantees a confined particle to collide with the cavity
wall many times during the wall displacement of O(L). The
above inequality is scaled by L and is written as

L̇

L
� 1

τF

, (20)

where τF (= L
vF

) is a characteristic time for a particle to travel

through the cavity. With use of the smallness parameter L̇
L

, we
substitute the expansion

ρ = f (H ) + L̇

L
g1 +

(
L̇

L

)2

g2 (21)

into the von Neumann equation. Then, for orders of ( L̇
L

)0, ( L̇
L

)1,

and ( L̇
L

)2, we have ḟ (H ) = 0, ġ1nm = En−Em

ih̄
g1nm − (γmnfm +

γnmfn), and ġ2nn = −∑
� γ�n(g1�n + g1n�), respectively.

The condition Eq. (20) guarantees L̇t � L in a wide time
range. Then a set of the above equations can be solved as

fnm = 1

eβ(En−μ) + 1
δnm ≡ fnδnm, (22)

g1nm = ih̄γmn

En − Em

(1 − e
En−Em

ih̄ t)(fn − fm), (23)

g2nn = −2
∑
� �=n

γ 2
n�(fn − f�)

(
h̄

En − E�

)2

×
[

1 − cos

(
En − E�

h̄
t

)]
. (24)
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Equation (22) denotes the initial Fermi-Dirac distribution with
inverse temperature β = 1

kT
.

Expectation value F̄ is given by

F̄ = F̄1 + F̄2 + F̄3, (25)

where

F̄1 =
∑

n

fnFnn = h̄2

m

∑
n

(nπ )2

L3
fn = 2

L

∑
n

Enfn, (26)

F̄2 = L̇

L

∑
n�=m

g1nmFmn

= −4h̄2 L̇2

L3

∑
m�=n

EnEm

(En − Em)2

fn − fm

En − Em

2 sin2

(
En − Em

2h̄
t

)

= −8π2h̄2 L̇2

L3

∑
m�=n

EnEm

fn − fm

En − Em

δ(En − Em), (27)

F̄3 = h̄2

m

(
L̇

L

)2 ∑
n

g2nnFnn

= −16
L̇2

L3

∑
n>m

EnEm

fn − fm

En − Em

×
(

h̄

En − Em

)2

2 sin2

(
En − Em

2h̄
t

)

= −32π2h̄2 L̇2

L3

∑
n>m

EnEm

fn − fm

En − Em

δ(En − Em). (28)

It should be noted that both F̄2 and F̄3 are quadratic in L̇. The
absence of L̇-linear terms is caused by a subtle cancellation
of the linear cross-coupling terms among the matrix elements
of the force operator and those of the density matrix both
expressed as a series expansion with respect to L̇.

In obtaining the final expression for F̄1, F̄2, and F̄3, we used
En ≡ π2h̄2n2

2mL2 and the asymptotic form

sin
(

E t

h̄

)

E

≈ πδ(
E), (29)

which is valid in the time domain much larger than the
minimum resolution of time (t � h̄


E
). Thanks to Eq. (29),

the explicit time dependence of F̄2 and F̄3 is suppressed.
The discrete summations can now be reduced to continuum

integrations with use of 1D density of states as

∞∑
n=1

=
∑

kn(≡ πn
L

)

=
∫ ∞

E0

D1(E)dE. (30)

Noting E = h̄2k2

2m
, D1(E) is given by

D1(E) = dk/(π/L)

dE
=

√
mL√
2πh̄

E−1/2. (31)

Using the above facts, we shall write the final results for F̄1,
F̄2, and F̄3:

F̄1 = 2

L

∫ ∞

0
ED1(E)f (E), (32)

F̄2 = −8π2h̄2 L̇2

L3

∫ ∞

0
dE

∫ ∞

0
dE′EE′ df

dE

∣∣∣∣
E=E′

×D1(E)D1(E′)δ(E − E′), (33)

F̄3 = −32π2h̄2 L̇2

L3

∫ ∞

0
dE

∫ ∞

0
dE′EE′ df

dE

∣∣∣∣
E=E′

×D1(E)D1(E′)δ(E − E′). (34)

The purpose of the present paper is to generalize Bernoulli’s
formula bridging pressure and internal energy to the case of the
expanding cavity. Therefore, one should also provide general
formulas for the internal energy in the case of a moving piston.
With use of the expansion in Eq. (21) and the matrix elements

(Ĥ )nm = h̄2π2n2

2mL2
δnm ≡ Enδnm, (35)

we have the internal energy Ū ,

Ū = Tr(ρĤ ) = Ū1 + Ū2 + Ū3. (36)

Here

Ū1 = Tr(f Ĥ ) =
∞∑

n=1

Enfn =
∫ ∞

0
ED1(E)f (E)dE (37)

and

Ū3 =
(

L̇

L

)2

Tr(g2Ĥ )

= −8π2h̄2

(
L̇

L

)2 ∑
n>m

EnEm

En − Em

(fn − fm)

= −8π2h̄2

(
L̇

L

)2 ∫ ∞

0
dE

∫ E

0
dE′EE′ df

dE

∣∣∣∣
E=E′

×D1(E)D1(E′)δ(E − E′). (38)

Noting the absence of the diagonal elements of g1,

Ū2 = L̇

L
Tr(g1Ĥ ) = 0, (39)

namely, always vanishing.

IV. CASE OF THE EXPANDING 1D CAVITY

First, concentrating on the expanding 1D cavity, we shall
evaluate the final expressions in the previous section in two
limiting cases, i.e., in the low-temperature and high-density re-
gion for a degenerate quantum gas and in the high-temperature
and low-density region for a quasiclassical gas.

A. Low-temperature and high-density region

Having recourse to formulas in Eqs. (A1) and
(A2), the expectation of force terms in Eqs. (32)–(34)
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becomes

F̄1 = 2
√

m√
2πh̄

∫ ∞

0

√
Ef (E)dE

= 2
√

2m

3πh̄
μ3/2

[
1 + π2

8
(kT )2μ−2 + 7π4

640
(kT )4μ−4 + · · ·

]
,

(40)

F̄2 = −4m
L̇2

L

∫ ∞

0
dE E

df

dE
= 4m

L̇2

L
μ, (41)

F̄3 = −8m
L̇2

L

∫ ∞

0
dE E

df

dE
= 8m

L̇2

L
μ, (42)

where μ is the chemical potential. Thereby,

F̄ = F̄1 + F̄2 + F̄3

= 2
√

2m

3πh̄
μ3/2

[
1 + π2

8
(kT )2μ−2 + · · ·

]
+ 12m

L̇2

L
μ.

(43)

Noting the low-temperature and high-density expansion of μ

with use of particle number N in Eq. (A4), we have

F̄ = π2h̄2

3m

(
N

L

)3[
1 + 1

π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]

+ 6π2h̄2 L̇2

L

(
N

L

)2[
1 + 1

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]
.

(44)

Equation (44) can be rewritten as

F̄L3 − π2h̄2

3m
N3

[
1 + π2

4

(
kT

μ

)2

+ · · ·
]

= 6π2h̄2L̇2N2

[
1 + π2

12

(
kT

μ

)2

+ · · ·
]
. (45)

Noting kT
μ

= const in the unperturbed adiabatic state, Eq. (45)
is merely a generalization of Poisson’s adiabatic equation
(PAE) in one dimension in the case in which a piston has
a small but nonzero velocity. The right-hand side is quadratic
in both the velocity of a piston and the particle number, giving
a nonadiabatic correction to the equilibrium equation of states.

The internal energy for the expanding 1D cavity is calcu-
lated in a similar way: Noting

Ū1 =
√

2mL

3πh̄
μ3/2

(
1 + π2

8
(kT )2μ−2 + · · ·

)
(46)

and

Ū3 = 2mL̇2μ, (47)

we have

Ū = Ū1 + Ū3

=
√

2mL

3πh̄
μ3/2

(
1 + π2

8
(kT )2μ−2 + · · ·

)
+ 2mL̇2μ.

(48)

Using the expansion for μ in Eq. (A4), we have

Ū = π2h̄2

6m

(
N

L

)2

N

[
1 + 1

π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]

+π2h̄2L̇2

(
N

L

)2[
1 + 1

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]
.

(49)

The first term corresponds to the 1D version of the existing
result (Landau-Lifshitz [2]), and the second one is a nonequi-
librium correction. Combining Eqs. (44) and (49), we have

F̄L − 2Ū = 4π2h̄2L̇2

(
N

L

)2

×
[

1 + 1

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]
, (50)

which generalize Bernoulli’s formula in one dimension.
The right-hand side gives a nonadiabatic contribution. This
equation stands for the nonequilibrium equation of states for
a quantal gas confined in the expanding cavity with the finite
velocity (L̇) of a piston.

B. High-temperature and low-density region

In this subsection, we shall investigate the opposite
limit, i.e., the high-temperature and low-density quasiclassical
regime. Here we shall have recourse to a high-temperature
expansion of a Fermi-Dirac distribution expansion with a
negative value μ,

f (E) ≡ 1

eβ(E−μ) + 1
=

∞∑
n=1

(−1)n−1e−nβ(E−μ). (51)

Substituting Eq. (51) into the middle terms in each of
Eqs. (40)–(42), one can evaluate the force:

F̄1 = 2
√

m√
2πh̄

∞∑
n=1

(−1)n−1
∫ ∞

0
E1/2e−nβ(E−μ)dE

=
(√

m

2πh̄2

)
(kT )3/2eβμ

(
1 − eβμ

2
√

2
+ O(e2βμ)

)
, (52)

F̄2 + F̄3 = −12m
L̇2

L

∞∑
n=1

(−1)nnβ
∫ ∞

0
dE Ee−nβ(E−μ)

= 12m
L̇2

L
kT eβμ

(
1 − 1

2
eβμ + O(e2βμ)

)
. (53)

Therefore,

F̄ = F̄1 + F̄2 + F̄3

=
(√

m

2πh̄2

)
(kT )3/2eβμ

(
1 − eβμ

2
√

2
+ O(e2βμ)

)

+ 12m
L̇2

L
kT eβμ

(
1 − 1

2
eβμ + O(e2βμ)

)
. (54)
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Equation (54) can be rewritten as

F̄

(kT )3/2
−

(√
m

2πh̄2

)
eβμ(1 − · · ·)

= 12m
L̇2

L
(kT )−1/2eβμ(1 − · · ·). (55)

Since βμ = const in the unperturbed adiabatic state (see
Landau-Lifshitz [2]), Eq. (55) is a generalization of the Poisson
equation in one dimension expressed in terms of pressure and
temperature.

Using in Eq. (54) a high-temperature and low-density
expansion of eβμ in Eq. (B3), we have

F̄ = N

L
kT

[
1 − 3

√
π

2

N
L
h̄√

mkT
+ O

((
N
L
h̄
)2

mkT

)]

+ 12
√

2πh̄
L̇2

L

N

L

√
mkT

[
1 −

(
1 + 1√

2

)√
π

N
L
h̄√

mkT

]
.

(56)

Similarly, the internal energy is now given by

Ū = Ū1 + Ū3

= N

2
kT

[
1 − 3

√
π

2

N
L
h̄√

mkT
+ O

((
N
L
h̄
)2

mkT

)]

+ 2
√

2πh̄L̇2 N

L

√
mkT

[
1 −

(
1 + 1√

2

)√
π

N
L
h̄√

mkT

]
.

(57)

Therefore, a generalized Bernoulli’s formula in the quasi-
classical region is given by

F̄L − 2Ū = 8
√

2πh̄L̇2 N

L

√
mkT

×
[

1 −
(

1 + 1√
2

)√
π

N
L
h̄√

mkT

]
. (58)

The right-hand side is a nonequilibrium contribution due to
the finite velocity of a piston. We find that a deviation from
Bernoulli’s formula appears only when the quantum effect
will be incorporated. In fact, in the limit h̄ → 0, we see Ū =
N
2 kT and Eq. (58) becomes the 1D version of Boyle-Charles’
law, F̄L = NkT , which includes no contribution due to the
kinematics of the piston.

V. CASE OF A 3D RECTANGULAR PARALLELEPIPED
CAVITY SHOWING A UNIDIRECTIONAL EXPANSION

The realistic heat engine is composed of a 3D cavity with
a piston moving in a fixed (x) direction. The force F̄ in the
previous sections is taken as x component of the force vector
for the case of 1D motion of the piston in the 3D rectangular
parallelepiped cavity with size Lx × Ly × Lz under the fixed
perpendicular (or transverse) modes (ny,nz).

We shall denote F̄x as the x component of the force vector
averaged over both longitudinal and perpendicular modes.
Noting Eq. (14), the expectation of pressure on the wall of
a piston is given by

P̄ = F̄x

LyLz

, (59)

where LyLz is an area of the wall.
F̄x can be evaluated in a similar way as F̄ , but Fermi-Dirac

distribution should include a contribution of the energy due to
the perpendicular modes. Namely, the eigenenergy of a particle
is now

E(nx,ny,nz) = E‖(nx) + E⊥(ny,nz) (60)

with

E‖(nx) = h̄2

2m

(
nxπ

Lx

)2

, (61)

E⊥(ny,nz) = h̄2

2m

[(
nyπ

Ly

)2

+
(

nzπ

Lz

)2]
, (62)

and the Fermi-Dirac distribution is given by

f (E) = 1

eβ[(E‖+E⊥)−μ] + 1
. (63)

The statistical average is the one over the longitudinal mode
(nx), followed by another one over the perpendicular modes
(ny,nz). The expectation value F̄x is given by

F̄x = F̄x1 + F̄x2 + F̄x3. (64)

In the low-temperature and high-density regime, we have
the following results:

F̄x1 = 2

Lx

∫ ∞

0
dE

∫ E

0
dE‖E‖D1(E‖)D2(E − E‖)f (E)

= 8
√

2

15π2

(
m

h̄2

)3/2

LyLzμ
5/2

(
1 + 5π2

8
(kT )2μ−2

)
(65)

and

F̄x2 = −8π2h̄2 L̇2
x

L3
x

∫ ∞

0
dE

∫ E

0
dE‖

×
∫ E

0
dE′

‖E‖E′
‖
df

dE

∣∣∣∣
E=E′

‖+E⊥

×D1(E‖)D1(E′
‖)D2(E − E‖)δ(E′

‖ − E‖)

= 4h̄2

π

(
m

h̄2

)2
L̇2

x

Lx

LyLzμ
2

(
1 + π2

3
(kT )2μ−2

)
, (66)

where we employed the 2D density of states,

D2(E) = 2LyLz

π

m

h̄2 , (67)

together with D1(E) in Eq. (31). F̄x3 can be obtained in a
similar way, but 8π2h̄2

∫ E

0 dE′
‖ in the integral of F̄x2 is to

be replaced by 32π2h̄2
∫ E‖

0 dE′
‖, which eventually leads to

F̄x3 = 2F̄x2.
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Then the pressure on the wall is

P̄ = F̄x1 + F̄x2 + F̄x3

LyLz

= 8
√

2

15π2

(
m

h̄2

)3/2

μ5/2

(
1 + 5π2

8
(kT )2μ−2

)

+ 12h̄2

π

(
m

h̄2

)2
L̇2

x

Lx

μ2

(
1 + π2

3
(kT )2μ−2

)
. (68)

With use of the low-temperature expansion of μ in Eq. (A6),
Eq. (68) can be written as

P̄ V 5/3 − 32/3π4/3

5 × 22/3

h̄2

m
N5/3

[
1 + 5π2

12

(
kT

μ

)2]

= 37/3π5/3h̄2

24/3
N4/3V 1/3 L̇2

x

Lx

[
1 + π2

6

(
kT

μ

)2]
. (69)

This is a 3D version of Poisson’s adiabatic equation which now
incorporates the nonadiabatic contribution. As in the case of
the 1D cavity, the nonadiabatic contribution is proportional
to the square of the wall velocity and to inverse of the
longitudinal size of the cavity, but the coefficient shows a
different dependence on particle number.

The internal energy for the 3D rectangular cavity with a
moving piston is straightforward:

Ū 3D = Ū 3D
1 + Ū 3D

3 (70)

with

Ū 3D
1 =

∫ ∞

0
dE

∫ E

0
dE‖ED1(E‖)D2(E − E‖)f (E), (71)

Ū 3D
3 = −8π2h̄2

(
L̇x

Lx

)2 ∫ ∞

0
dE

×
∫ E

0
dE‖

∫ E‖

0
dE′

‖E‖E′
‖
df

dE

∣∣∣∣
E=E′

‖+E⊥

×D1(E‖)D1(E′
‖)D2(E − E‖)δ(E′

‖ − E‖). (72)

It should be noted that, in the calculation of Ū 3D
1 , the

bulk energy E (=E‖ + E⊥) is averaged, which is a 3D
generalization of the 1D energy. The final result for the internal
energy is

Ū 3D = 4
√

2

5π2

(
m

h̄2

)3/2

LxLyLzμ
5/2

(
1 + 5π2

8
(kT )2μ−2

)

+ 2h̄2

π

(
m

h̄2

)2
L̇2

x

Lx

LxLyLzμ
2

(
1 + π2

3
(kT )2μ−2

)
.

(73)

[With use of the expansion for μ in Eq. (A6), the first term
on the right-hand side of Eq. (73) proves to agree with the
result by Landau-Lifshitz reproduced in the Introduction. The
minor discrepancy of a numerical prefactor of O(1) is due to
our choice of anisotropic density of states in Eq. (71) for the
3D rectangular parallelepiped cavity.]

Bernoulli’s formula in the present case becomes:

P̄ V − 2

3
Ū 3D = 32h̄2

3π

(
m

h̄2

)2
L̇2

x

Lx

V μ2

(
1 + π2

3
(kT )2μ−2

)
(74)

with V = LxLyLz. With use of the low-temperature expansion
of μ in Eq. (A6), Eq. (74) can be rewritten as

P̄ V − 2

3
Ū 3D

= c0h̄
2

(
N

V

)4/3
L̇2

x

Lx

V

[
1 + c1

(
V

N

)4/3(
mkT

h̄2

)2]
(75)

with c0 = 2(3
√

2)4/3π5/3

3 and c1 = 4
3(3

√
2)4/3π2/3 . The right-hand

side is a nonadiabatic contribution to the equilibrium equation
of states in three dimensions due to a moving piston. In the
quantum adiabatic limit, L̇x = 0, the above equation reduces
to the standard Bernoulli’s formula for the 3D quantum gas.

We shall proceed to the high-temperature and low-density
regime. The values of F̄x1, F̄x2, F̄x3, Ū 3D

1 , and Ū 3D
3 for the 3D

cavity are evaluated by substituting into the second expressions
in each of Eqs. (65), (66), (71), and (72) the expansion of
Fermi-Dirac distribution in Eq. (51). The results are

F̄x1 =
√

2π−3/2

(
m

h̄2

)3/2

(kT )5/2LyLze
βμ(1 − 2−5/2eβμ),

(76)

F̄x2 + F̄x3 = 24h̄2

π

L̇2
x

Lx

(
m

h̄2

)2

(kT )2LyLze
βμ

(
1 − 1

4
eβμ

)
.

(77)

Then the pressure defined by

P̄ = F̄x1 + F̄x2 + F̄x3

LyLz

(78)

satisfies

P̄

T 5/2
−

√
2π−3/2

(
m

h̄2

)3/2

eβμ(1 − 2−5/2eβμ)

= 24h̄2

π

L̇2
x

Lx

(
m

h̄2

)2 1√
kT

eβμ

(
1 − 1

4
eβμ

)
. (79)

Similarly, we see

Ū 3D
1 = 3

√
2

2
π−3/2

(
m

h̄2

)3/2

(kT )5/2V eβμ(1 − 2−5/2eβμ),

(80)

Ū 3D
3 = 4h̄2

π

L̇2
x

Lx

(
m

h̄2

)2

(kT )2V eβμ

(
1 − 1

4
eβμ

)
(81)

leading to the internal energy, Ū 3D = Ū 3D
1 + Ū 3D

3 . Bernoulli’s
formula is now given by

P̄ V − 2

3
Ū 3D = 64h̄2

3π

L̇2
x

Lx

(
mkT

h̄2

)2

V eβμ

(
1 − 1

4
eβμ

)
.

(82)
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TABLE I. Nonadiabatic contributions to the equation of states in the thermally isolated process in three dimensions.

Equation of states Low-temperature quantal region High-temperature quasiclassical region

Poisson’s adiabatic equations P̄ V 5/3 − 32/3π4/3

5×22/3
h̄2

m
N 5/3[1 + 5π2

12 ( kT

μ
)2 + · · ·] P̄

T 5/2 − √
2π−3/2( m

h̄2 )3/2eβμ(1 − 2−5/2eβμ)

= 37/3π5/3h̄2

24/3 N 4/3V 1/3 L̇2
x

Lx
[1 + π2

6 ( kT

μ
)2 + · · ·] = 24h̄2

π

L̇2
x

Lx
( m

h̄2 )2 1√
kT

eβμ(1 − 1
4 eβμ + · · ·)

Bernoulli’s formula P̄ V − 2
3 Ū 3D P̄ V − 2

3 Ū 3D

= 25/331/3π 5/3h̄2( N

V
)4/3 L̇2

x

Lx
V = 32

√
2πh̄2

3π

L̇2
x

Lx
( mkT

h̄2 )1/2N

×[1 + 24/3

37/3π2/3 ( V

N
)4/3( mkT

h̄2 )2 + · · ·] ×[1 +
√

2−1
4
√

2
π 3/2 N

V
( h̄2

mkT
)3/2 + · · ·]

Noting the high-temperature and low-density expansion of eβμ

in Eq. (B5), we see

P̄ V − 2

3
Ū 3D = 32

√
2πh̄2

3π

L̇2
x

Lx

(
mkT

h̄2

)1/2

N

×
[

1 +
√

2 − 1

4
√

2
π3/2 N

V

(
h̄2

mkT

)3/2]
. (83)

We can confirm that the nonadiabatic contribution (NC)
appears as a quantum effect and plays a role with decreasing the
system’s size (Lx). In other words, NC vanishes in the classical
limit (h̄ → 0), which is consistent with the kinetic theory of
Boltzmann gas which incorporates the effect of moving piston.
The essential results obtained in this section are summarized
in Table I.

VI. PHYSICAL IMPLICATIONS OF QUANTUM
NONADIABATIC CONTRIBUTIONS

So far we have obtained the completely analytical nonadi-
abatic contribution to the nonequilibrium equation of states in
the cases of 3D rectangular parallelepiped cavity and its 1D
version separately. To physically interpret the obtained results,
however, it is more convenient to see the nonequilibrium equa-
tions of states for the general d-dimensional hyper-rectangular
cavity which has the volume V = Ld−1Lx and the moving wall
(surface) with area S = Ld−1. Such general derivation is also
possible by using the density of states in d dimensions. After
tedious and lengthy calculation (to be published elsewhere),
Bernoulli’s formulas for the d-dimensional cavity are given by

P̄ V − 2

d
U ∼ h̄2V

(
N

V

)1+ 1
d L̇2

x

Lx

(84)

and

P̄ V − 2

d
U ∼ h̄(mkT )

1
2

(
N

V

)
V

L̇2
x

Lx

, (85)

respectively, for the low-temperature high-density and high-
temperature low-density regions. In a similar way, the corre-
sponding Poisson’s adiabatic equations are

P̄ V
d+2
d

const
− 1 ∼ m

(
N

V

)− 1
d L̇2

x

Lx

(86)

and

P̄ /(kT )
d+2

2

const
− 1 ∼ h̄

(
m

kT

) 1
2 L̇2

x

Lx

, (87)

respectively, for the low-temperature high-density and high-
temperature low-density regions. The apparently extra dimen-
sionality of energy ([ML2 T−2]) on the right-hand sides in all
of the four equations above is traced back to our simplified
replacement in Eq. (29) and therefore can be suppressed.
Equations (84)–(87) recover all the results for d = 1 and
3 cavities in the previous sections. We find the following
important features:

(i) Quantum nonadiabatic (QNA) contributions are
quadratic in the wall velocity and therefore time-reversal
symmetric, in marked contrast to the conventional belief [12]
that the nonadiabatic force is linear in the wall velocity and
breaks the time-reversal symmetry.

(ii) QNA contributions are positive, which means that the
moving wall gives rise to the apparently repulsive interaction
among noninteracting Fermi particles, irrespective of the
direction of the wall motion, namely for both expansion and
contraction of the cavity.

(iii) QNA contributions are inversely proportional to the
longitudinal size of the cavity and become more and more
important when the cavity size is decreased. In particular, they
will play a nontrivial role in nanoscale heat engines based on
quantum dots.

(iv) QNA contributions play an essential role in Bernoulli’s
formula rather than in Poisson’s equation. In fact, the coef-

ficients prior to L̇2
x

Lx
are increased in Eq. (84) and decreased

in Eq. (86) as particle density N
V

is increased. Similarly, the
coefficients are increased in Eq. (85) and decreased in Eq. (87)
as temperature is increased.

The above four issues constitute the most important
finding of the present paper. Poisson’s adiabatic equation
and Bernoulli’s formula, both of which are the basic laws
of thermodynamics, are now generalized so as to include the
QNA contributions.

VII. SUMMARY AND DISCUSSIONS

Confining ourselves to the thermally isolated process,
we study a nonequilibrium equation of states of an ideal
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quantum gas confined to the cavity under a moving piston
with a small but finite velocity. The cavity wall is assumed
to begin to move suddenly at the time origin. The quantum
nonadiabatic (QNA) contribution to Bernoulli’s formula which
bridges the pressure and internal energy is elucidated. The
statistical means of the nonadiabatic (time-reversal symmetric)
force and pressure operator [10] are carried out in both the
low-temperature quantum-mechanical and high-temperature
quasiclassical regimes. QNA contributions are quadratic in
the piston’s velocity and therefore time-reversal symmetric,
in marked contrast to conventional belief [12], and they are
positive, which means that the moving piston gives rise to
the apparently repulsive interaction among noninteracting
Fermi particles, for both expansion and contraction of the
cavity. QNA contributions are inversely proportional to the
longitudinal size of the cavity, and thereby play a nontrivial
role in nanoscale heat engines based on quantum dots.
The investigation is done for an expanding 3D rectangular
parallelepiped cavity as well as its 1D version. The nonequi-
librium contributions to Poisson’s adiabatic equation are also
elucidated.

In the context of a classical gas, Curzon and Ahlborn [13]
and others [14–16] investigated a finite-time Carnot heat engine
and obtained an interesting efficiency. However, they did not
consider a quantum gas, nor did they show a nonequilibrium
equation of states due to a moving piston. Therefore, one of
the directions to extend our work may be to proceed to the
same analyses as given here of the isothermal process which
requires a contact of a nanoscale engine with a heat reservoir.
Another direction may be the fast-forwarding of the adiabatic
expansion of a cavity [17,18] in the framework of the von
Neumann equation to see an accelerated quantum Carnot heat
engine. These subjects will be investigated in due course.
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APPENDIX A: THERMODYNAMIC AVERAGES
IN THE LOW-TEMPERATURE REGION AT T � T0

(DEGENERATE TEMPERATURE)

With use of the Fermi-Dirac distribution f (E) = 1
eβ(E−μ)+1 ,

we summarize several formulas for thermodynamic averages
(see Landau-Lifshitz [2]) in the cases of 1D and 3D rectangular
cavities.

In the low-temperature region at T � T0 (degenerate
temperature), we see∫ ∞

E0

g(E)f (E)dE

=
∫ μ

E0

g(E)dE + π2(kT )2

6
g′(μ) + O[(kT )4], (A1)

−
∫ ∞

E0

ϕ(E)
df

dE
dE = ϕ(μ) + π2(kT )2

6
ϕ′′(μ) + O[(kT )4],

(A2)

where g(E0) = ϕ(E0) = 0 is assumed.

Choosing the 1D density of states D1(E) as g(E), we have

N =
∫ ∞

0
D1(E)f (E)dE

=
√

2mL

πh̄
μ1/2

(
1 − π2

24
(kT )2μ−2 + · · ·

)
, (A3)

from which the chemical potential is obtained as

μ = π2h̄2

2m

(
N

L

)2[
1 + 1

3π2

(
mkT

h̄2

)2(
N

L

)−4

+ · · ·
]
.

(A4)

This expansion is justified in the low-temperature and high-
density regime.

In the case of the 3D rectangular cavity,

N =
∫ ∞

0

∫ E

0
dE‖D1(E‖)D2(E − E‖)f (E)

= 8

3
√

2π2

(
m

h̄2

)3/2

V μ3/2

(
1 + π2(kT )2

8
μ−2

)
, (A5)

which leads to the low-temperature expansion of μ as

μ = (3
√

2)2/3

4
π4/3 h̄2

m

(
N

V

)2/3

×
[

1 − 4

3
(3

√
2)−4/3π−2/3

(
mkT

h̄2

)2(
V

N

)4/3

+ · · ·
]
.

(A6)

APPENDIX B: THERMODYNAMIC AVERAGES AT THE
HIGH-TEMPERATURE REGION AT T � T0

In the case of a high-temperature region at T � T0, we
shall use a high-temperature expansion of the Fermi-Dirac
distribution with a negative value μ as given in Eq. (51). Then
we see

∫ ∞

E0

g(E)f (E)dE =
∞∑

n=1

(−1)n−1
∫ ∞

E0

g(E)e−nβ(E−μ)dE.

(B1)

Choosing the 1D density of states D1(E) as g(E), we have

N = L√
2π

√
mkT

h̄2 eβμ

(
1 − 1√

2
eβμ

)
, (B2)

from which μ is determined by

eβμ =
√

2π
N

L

h̄√
mkT

(
1 − √

π

N
L
h̄√

mkT
+ · · ·

)
. (B3)

This expansion is justified in the high-temperature and low-
density regime.
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In the case of a 3D cavity, the particle number is

N = 2
√

2

π2

(
m

h̄2

)3/2

V

∞∑
n=1

(−1)n−1enβμ

∫ ∞

0
dE E1/2e−nβE

=
√

2π−3/2

(
mkT

h̄2

)3/2

V eβμ(1 − 2−3/2eβμ), (B4)

and the chemical potential is expanded as

eβμ = π3/2

√
2

N

V

(
h̄2

mkT

)3/2

×
[

1 + π3/2

4

N

V

(
h̄2

mkT

) 3
2

+ · · ·
]
. (B5)
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