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Role of conviction in nonequilibrium models of opinion formation
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We analyze the critical behavior of a class of discrete opinion models in the presence of disorder. Within
this class, each agent opinion takes a discrete value (±1 or 0) and its time evolution is ruled by two terms, one
representing agent-agent interactions and the other the degree of conviction or persuasion (a self-interaction). The
mean-field limit, where each agent can interact evenly with any other, is considered. Disorder is introduced in the
strength of both interactions, with either quenched or annealed random variables. With probability p (1 − p), a
pairwise interaction reflects a negative (positive) coupling, while the degree of conviction also follows a binary
probability distribution (two different discrete probability distributions are considered). Numerical simulations
show that a nonequilibrium continuous phase transition, from a disordered state to a state with a prevailing
opinion, occurs at a critical point pc that depends on the distribution of the convictions, with the transition being
spoiled in some cases. We also show how the critical line, for each model, is affected by the update scheme
(either parallel or sequential) as well as by the kind of disorder (either quenched or annealed).
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I. INTRODUCTION

In the last decades, diverse questions of social dynamics
have been studied through statistical physics techniques. In
fact, simple models allow us to simulate and understand real
problems such as elections, spread of information, vehicle
traffic or pedestrian evacuation, among many others [1]. As
a feedback, these issues are attractive to physicists because
of the occurrence of order-disorder transitions, scaling, and
universality, among other typical features of physical systems.

Concerning the particular subject of opinion dynamics,
several models have been proposed in order to study the
emergence of consensus (for a recent review, see Ref. [1]).
As concrete examples, let us mention opinion models based
on outflow dynamics [2–5], majority rules [6–9], and bounded
confidence [10], as well as kinetic exchange [11–14]. Recently,
the effects of negative interactions [12,15] and network dynam-
ics [16–18] in opinion formation have also been considered.

In this work, we introduce heterogeneity in the degree of
persuasion or conviction of the agents. It is mimicked by a
parameter that gauges the tendency of an agent to hold its
opinion or (if negative) change its mind spontaneously. Then,
we study the impact of persuasion in the critical behavior
of a nonequilibrium model of opinion formation with a finite
fraction of random negative agent-agent interactions. We study
two classes of disorder (either quenched or annealed), both for
the strength of convictions and for agent-agent couplings. We
also consider two different kinds of update, either sequential
or parallel. Numerical Monte Carlo simulations show that
a continuous order-disorder phase transition, where order is
characterized by a dominating opinion, can occur in all the
variants of the model considered. However, the critical line is
strongly affected by the distribution of convictions. Moreover,
it is also affected both by the update scheme and by the nature
of the random variables, as occurs in other models [19–24].
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This work is organized as follows. In Sec. II we present
the opinion model and define its microscopic rules. Nu-
merical results are discussed in Sec. III in connection with
the analytical considerations presented in the Appendix.
Section IV contains the conclusions and final remarks.

II. THE MODEL

We consider an opinion model based on kinetic exchange
[11–14]. At a given time step t , each agent i has a discrete
opinion oi(t) = −1,0 or 1, that evolves according to

oi(t + 1) = Ci oi(t) + μij oj (t),
(1)

oj (t + 1) = Cj oj (t) + μji oi(t),

where Ci is the conviction of agent i and μij is the strength
of the influence it suffers from a randomly chosen agent j in
a fully connected graph. If the value of the opinion exceeds
(falls below) the value 1 (−1), then it adopts the extreme value
1 (−1). Pairwise interaction strengths are random variables
distributed according to the binary probability density function
(PDF):

F (μij ) = p δ(μij + 1) + (1 − p) δ(μij − 1). (2)

In other words, the agents can exchange opinions with positive
(+1) or negative (−1) influences, and p quantifies the mean
fraction of negative ones [12]. In magnetic systems, analogous
positive (negative) interactions would correspond to ferro
(antiferro) couplings. Notice certain similarities with what
is known as the (mean-field) Blume-Capel model [25]: each
opinion has three different states (spin-1 Ising); agents interact
through ferromagnetic and antiferromagnetic couplings; in the
Hamiltonian defining the model, there are quadratic terms
representing the interaction of the spins with the crystal
field and that can be related to the agents self-interaction;
finally, the Blume-Capel model may include the interaction
with an external field, that, although neglected here, may
be opportune in opinion models as well, representing, for
instance, propaganda or other external conditioning features
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[26]. Since in the present model couplings are random: positive
(or negative) with probability 1 − p (or p), it remits to the
random-bond version of the Blume-Capel model, with random
local competing fields. Moreover, here there is absence of
thermal fluctuations, corresponding to the zero temperature
limit of thermal spin models. Zero temperature random Ising-
like models, for instance, containing either local or global
random fields, have already been considered to model group
decision making [27,28]. Notice, however, that differently
from those magnetic models, the interactions occur by pairs
and there is not an energy-like function to optimize. As a
consequence of the different dynamical rules, the critical
behavior is not related to that of usual equilibrium models, as
we will see in the results presented in Sec. III. For instance, no
frozen or spin-glass phase is observed. The phenomenological
differences were explained before as being due to the lack
of frustration, despite the competitive random interactions, as
soon as interactions do not occur simultaneously [12].

The influence of an individual over another one needs
not be reciprocal (i.e., not necessarily μij = μji); however,
whether interactions are symmetric or not, does not affect the
results. If Ci = 1 for all i (i.e., q = 1), one recovers the model
of Ref. [12], for which there is an order-disorder transition
at a critical value pc = 1/4. As discussed in Ref. [12], the
effect of negative interactions is similar to that produced by
Galam’s contrarians in opinion models [29]. We will discuss
this relation in more details in the following.

However, more realistically, the degree of conviction needs
not be unitary nor homogeneous [14]. Then we considered
two discrete alternatives for the PDFs of the convictions Ci ,
namely,

G1(Ci) = q δ(Ci − 1) + (1 − q) δ(Ci − 0) , (3)

G2(Ci) = q δ(Ci − 1) + (1 − q) δ(Ci + 1) . (4)

They model the cases where a mean fraction 1 − q of the
individuals have either no convictions or completely change
their mind, respectively. In comparison to magnetic models,
G1 and G2 are related to random diluted field and random
antiferromagnetic impurities, respectively [30].

In both cases, the model of Ref. [12] is recovered for q = 1.
Notice that, differently from the Sznajd dynamics [2], where
each agent interacts with a group of individuals at a time, in
the present exchange model, interactions are pairwise.

We will show how the heterogeneity of convictions favors
disorder or even provokes the destruction of the order-disorder
phase transition. Moreover, we will analyze two distinct kinds
of the random variables Ci and μij : they can be either quenched
or annealed. The former are drawn from the PDFs given by
Eqs. (2) and (3) [or Eqs. (2) and (4)] at the beginning of
each simulation and remain fixed during the evolution of the
system, whereas the latter are renewed at each Monte Carlo
step (MCS), where one MCS corresponds to N iterations of
Eq. (1), N being the population size.

In addition, we have studied two kinds of upgrades:
synchronous (parallel) and asynchronous (random sequential).
In the former case, we randomly choose N pairs of agents that
interact by means of Eq. (1). Only after the N interactions took
place, the states of the N agents are simultaneously renewed,
increasing time by one MCS. In the asynchronous case, also, N

pairs of agents that interact by means of Eq. (1) are randomly
chosen at each MCS, but the opinions are assigned a new
value at each interaction. A more realistic dynamics probably
proceeds in between both schemes.

All simulations start with a random initial distribution of
opinions, and all interacting pairs of agents are randomly
chosen among the N individuals in the population (which
corresponds to a mean-field approach).

III. RESULTS

We analyze the critical behavior of the system, in analogy
to Ising spin systems, by computing the order parameter

O =
〈

1

N

∣∣∣∣∣
N∑

i=1

oi

∣∣∣∣∣
〉

, (5)

where 〈· · ·〉 denotes disorder or configurational average.
Notice that O plays the role of the “magnetization per
spin” in magnetic systems. In addition, we also consider the
fluctuations χ of the order parameter (or “susceptibility”),

χ = N (〈O2〉 − 〈O〉2), (6)

and the Binder cumulant U , defined as

U = 1 − 〈O4〉
3 〈O2〉2

. (7)

In the following subsections, we will analyze separately the
distributions given by Eqs. (3) and (4).

A. Model with distribution G1

For the distribution G1(Ci) of Eq. (3), the mean fraction
of null convictions is 1 − q. Such agents with no convictions
evolve influenced only by the interaction with other randomly
chosen agents.

In Fig. 1 we exhibit results for the order parameter as a
function of p for typical values of q, allowing us to compare
the cases with quenched (top) and annealed (bottom) disorder.
One can see that the curves for synchronous and asynchronous
updates in the quenched case are almost identical, indicating
that the critical behavior is not modified by the update scheme
when we consider frozen disorder. On the other hand, if
we allow the disorder to fluctuate in time, the results for
synchronous and asynchronous updates are different.

We have verified numerically that, in all the analyzed
cases of disorder and update scheme, the system undergoes
a nonequilibrium phase transition for all values of q > 0. The
transition separates an ordered phase, where one of the extreme
opinions (+1 or −1) dominates, from a disordered one, where
the three opinions coexist equally. A condition that was also
obtained analytically for the synchronous annealed case (see
the Appendix).

In order to locate the critical points pc(q) numerically, we
have performed simulations for different population sizes N .
Thus, the transition points pc(q) are estimated, for each value
of q, from the crossing of the Binder cumulant curves for
the different sizes. In addition, a finite-size scaling analysis
was performed, in order to obtain an estimate of the critical
exponents β, γ , and ν. As an illustration, we exhibit in
Fig. 2 the behavior of the quantities of interest as well as the
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FIG. 1. (Color online) Order parameter versus p for quenched
(top) and annealed (bottom) random variables of Eq. (3), with
typical values of q indicated on the figure. The full (open) symbols
are results of simulations with synchronous (asynchronous) update.
The population size is N = 1000, and data are averaged over 100
realizations.

scaling plots for q = 0.5, quenched random couplings, and
synchronous updates. Our estimates for the critical exponents
coincide with those for the original model (q = 1); i.e., we
obtained β ∼ 0.5, γ ∼ 1.0, and 1/ν ∼ 0.5. These exponents
are robust: they are the same for all values of q, independent
of the update scheme considered and of the kind of random
variables (quenched or annealed).

Taking into account the critical values pc(q) obtained from
the simulations, we exhibit in Fig. 3 the phase diagram of the
model in the plane p versus q. As discussed before, in the case
of quenched variables the frontier is independent of the update
scheme. On the other hand, for annealed variables the results
are different. This is possibly due to the time fluctuation of
the annealed variables, which does not occur in the quenched
case. The analytical prediction for the synchronous annealed
case is presented in the Appendix.

B. Model with distribution G2

For the distribution G2(Ci) of Eq. (4), a fraction 1 − q

of the convictions Ci are −1 (instead of being null as in
Sec. III A). Now, some agents i present negative convictions
that contribute to a spontaneous change in their opinions,
together with the influence of a randomly chosen agent j .

Differently from the case where the PDF of convictions is
given by Eq. (3), analyzed in Sec. III A, now we can observe
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FIG. 2. (Color online) Order parameter, Binder cumulant, and
susceptibility for the PDF of Eq. (3) with q = 0.5 and different
population sizes N , indicated on the figure (main plots). The
corresponding scaling plots are shown in the respective insets.
Data are for quenched random variables and synchronous update
scheme. The best data collapse was obtained for pc ∼ 0.167, β ∼ 0.5,
γ ∼ 1.0, and 1/ν ∼ 0.5.

that there is a threshold qc below which the system is always
in a disordered state, for all values of p.

The time evolution of the order parameter is illustrated
in Fig. 4 for the quenched asynchronous and annealed
synchronous cases. Similar evolution is observed for the other
two combinations, too. For sufficiently low q, none of the
two extreme opinions dominates. Moreover, we verified that
in such cases the fraction of each one of the three possible
opinions is again 1/3 in average, indicating complete disorder.
This result was also found theoretically for the annealed
synchronous case (see Appendix).
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FIG. 3. (Color online) Phase diagram of the model defined by
Eqs. (1)–(3) in the plane p versus q, separating the ordered (O) and
disordered (D) phases. The symbols are the finite-size estimates of the
critical points pc(q) obtained from the simulations, dashed lines are
guides to the eye, and the solid line is the analytical result predicted
by Eq. (A2).

In the cases where a transition occurs, a finite-size scaling
analysis was performed as in Sec. III A. The same mean-
field exponents were obtained, independent of the update
scheme considered and of the kind of random variables. The
phase diagram for the different types of update and random
variables is shown in Fig. 5. The analytical prediction for the
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FIG. 4. (Color online) Time evolution of the order parameter for
N = 1000, p = 0.1, and typical values of q, labeling the curves from
top to bottom. The curves are for: quenched asynchronous (top) and
annealed synchronous (bottom). We can observe that a disordered
state is reached when the value of q is decreased below a threshold.
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FIG. 5. (Color online) Phase diagram of the model defined by
Eqs. (1), (2), and (4) in the plane p versus q, separating the ordered (O)
and disordered (D) phases. The symbols are the finite-size estimates
of the critical points pc(q) obtained from the simulations, the dashed
lines are guides to the eye, and the solid line is the analytical result
given by Eq. (A3). Notice that the transition is destroyed for values
of q below a threshold, indicated schematically by arrows.

synchronous annealed case, derived in the Appendix, is also
included. In such a case, Eq. (A3) predicts that for q < 3/4 no
transition occurs, and the system is always in a disordered state.

IV. FINAL REMARKS

In this work we have studied opinion dynamics through
a model where agents interact by pairs in a fully connected
graph. The opinions have three different states (spin-1) and the
agents interact through random couplings that can be positive,
i.e., ferromagnetic (or negative, i.e., antiferromagnetic), with
probability 1 − p (or p). Differently from other related
models, where the ordered state is marked by consensus, the
ordered state is characterized by the upraise of a dominating
extreme opinion, which becomes consensual only in the limit
in which interactions are all positive (p = 0). Moreover, there
is also a self-interaction term, the conviction, which we consid-
ered to assume random values, according to the PDFs G1 or G2,
given by Eqs. (3) and (4), respectively. Then, we aimed to study
the impact of the heterogeneity of convictions on the critical
behavior of opinion formation. Although states and couplings
can take only a few values, a wider spectrum of possibilities is
expected to be somehow mapped on the present simpler case.

First, we have considered the PDF G1 that aims to model
populations where there is a fraction 1 − q of agents without
self-convictions about their opinions, and thus they can be
easily persuaded to change their opinions. Our results show
that the critical fraction of negative interactions, pc, below
which the population reaches partial agreement, decreases
smoothly for decreasing values of q, collapsing with pc = 0
only at q = 0. This order-disorder transition is continuous
and the critical exponents are universal and mean-field like,
presenting the values β = 0.5, γ = 1.0, and 1/ν = 0.5 for all
values of q.

We have also considered the PDF G2 for the convictions in
societies where some agents have a tendency to spontaneously
change their opinions. In this case, disordered states are
favored, and the order-disorder boundary falls off rapidly to
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pc = 0 for decreasing values of q. Thus, in opposition to the
previous case, there are threshold values of q below which
the system is always in the disordered state. Despite this
difference, the order-disorder transition is also continuous and
the critical exponents are universal and mean-field like, as in
the previous case.

Notice that the introduction of negative interactions, pon-
dered by the probability p, produces a similar effect of the
so-called Galam’s contrarians [29,31]. In fact, in the absence
of negative couplings (p = 0) the system presents consensus
states with one of the extreme opinions (+1 or −1) dominating
the population. On the other hand, the inclusion of a fraction of
negative interactions leads the system to a disordered state with
the coexistence of the three possible opinions +1, −1, and 0,
analogous to the stalemate state produced by the introduction
of contrarians in opinion models, where the two possible
opinions, namely +1 and −1, coexist [29,31]. Observe also
that the introduction of the conviction parameter q makes this
effect more pronounced. In fact, the critical values pc decrease
for increasing values of q, and in the case of the bimodal
distribution G2, the effect of the convictions is so strong that
it destroys the order-disorder transition.

It is important to notice that the results depend quantita-
tively (but no qualitatively) on the kind of update scheme used
(synchronous or asynchronous) and on the nature (quenched
or annealed) of the random variables considered, for the two
studied PDFs.
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APPENDIX

Following the lines of Ref. [12], we computed critical values
for the synchronous annealed case. We first obtained the matrix
of transition probabilities whose elements mi,j furnish the
probability that a state suffers the shift or change i → j . Let
us also define f1, f0, and f−1, the stationary probabilities of
each possible state.

In the steady state, the fluxes into and out from a given
state must balance. In particular, for the null state, one has
m1,0 + m−1,0 = m0,1 + m0,−1.

Moreover, when the order parameter vanishes, it must be
f1 = f−1. In both cases considered below for the distribution
of convictions, those two equalities imply f1 = f−1 = f0 =
1/3 (disorder condition). This holds in particular at the critical
point.

Finally, let us define r(k), with −2 � k � 2, the probability
that the state shift per unit time is k, that is, r(k) = ∑

i mi,i+k .
In the steady state, the average shift must vanish, namely,

2[r(2) − r(−2)] + r(1) − r(−1) = 0 . (A1)

1. PDF G1

The elements of the transition matrix are

m1,1 = f 2
1 (1 − p) + f1f0q + f1f−1p

m1,0 = f 2
1 qp + f1f0(1 − q) + f1f−1q(1 − p)

m1,−1 = f 2
1 (1 − q)p + f−1f1(1 − q)(1 − p)

m0,1 = f0f1(1 − p) + f0f−1p

m0,0 = f 2
0

m0,−1 = f0f1p + f0f−1(1 − p)

m−1,1 = f1f−1(1 − q)(1 − p) + f 2
−1p(1 − q)

m−1,0 = f1f−1q(1 − p) + f0f−1(1 − q) + f 2
−1qp

m−1,−1 = f1f−1p + f0f−1q + f 2
−1(1 − p).

The null average shift condition, Eq. (A1), together with
the disorder condition, leads to

pc = q

2(3 − q)
. (A2)

2. PDF G2

For this PDF, the transition matrix is

m1,1 =f 2
1 q(1 − p) + f1f0q + f1f−1qp

m1,0 =f 2
1 (qp + (1 − q)(1 − p)) + f1f−1(p + q − 2pq)

m1,−1 =f 2
1 (1 − q)p + f1f0(1 − q) + f−1f1(1 − q)(1 − p)

m0,1 =f0f1(1 − p) + f0f−1p

m0,0 =f 2
0

m0,−1 =f0f1p + f0f−1(1 − p)

m−1,1 =f1f−1(1 − q)(1 − p) + f−1f0(1 − q) + f 2
−1p(1 − q)

m−1,0 =f1f−1(p + q − 2pq) + f 2
−1((1 − p)(1 − q) + qp)

m−1,−1 =f1f−1pq + f0f−1q + f 2
−1q(1 − p).

In this case, Eq. (A1), together with the disorder condition,
gives

pc = q − 3/4 . (A3)

In contrast to the frontier defined by Eq. (A2), which implies
a critical value of p below which the system has a predominant
opinion, Eq. (A3) implies that for q < 3/4 the system cannot
order.

[1] C. Castellano, S. Fortunato, and V. Loreto, Rev. Mod. Phys. 81,
591 (2009).

[2] K. Sznajd-Weron and J. Sznajd, Int. J. Mod. Phys. C 11, 1157
(2000).

[3] N. Crokidakis and F. L. Forgerini, Braz. J. Phys. 42, 125
(2012).

[4] N. Crokidakis and P. M. C. de Oliveira, J. Stat. Mech. (2011)
P11004.

061127-5

http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1103/RevModPhys.81.591
http://dx.doi.org/10.1142/S0129183100000936
http://dx.doi.org/10.1142/S0129183100000936
http://dx.doi.org/10.1007/s13538-011-0055-9
http://dx.doi.org/10.1007/s13538-011-0055-9
http://dx.doi.org/10.1088/1742-5468/2011/11/P11004
http://dx.doi.org/10.1088/1742-5468/2011/11/P11004


NUNO CROKIDAKIS AND CELIA ANTENEODO PHYSICAL REVIEW E 86, 061127 (2012)

[5] M. F. Laguna, S. Risau Gusman, G. Abramson, S. Gonçalves,
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