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Spatial log-periodic oscillations of first-passage observables in fractals
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For transport processes in geometrically restricted domains, the mean first-passage time (MFPT) admits a
general scaling dependence on space parameters for diffusion, anomalous diffusion, and diffusion in disordered
or fractal media. For transport in self-similar fractal structures, we obtain an expression for the source-target
distance dependence of the MFPT that exhibits both the leading power-law behavior, depending on the Hausdorff
and spectral dimension of the fractal, as well as small log-periodic oscillations that are a clear and definitive
signal of the underlying fractal structure. We also present refined numerical results for the Sierpinski gasket that
confirm this oscillatory behavior.
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I. INTRODUCTION

The time taken for a random walker to reach for the first time
a given target site from a given source site, is a particularly in-
teresting physical observable that encodes information about a
wide variety of physical and mathematical transport processes,
ranging from chemical transport to propagation through
networks [1]. Recent progress has led to precise quantitative
expressions that show how the mean first-passage time (MFPT)
is affected by the geometry (e.g., volume, shape, dimension)
of the region in which the random walk occurs, even for
fractals [2,3]. These results have been confirmed by numerical
simulations and have motivated various experimental studies
[4]. Here we argue that for such processes there are observable
finer details encoded in the MFPT when the transport occurs
on highly symmetric fractals: those possessing exact self-
similar scaling, such as the Sierpinksi gasket. Technically,
this result requires information concerning the off-diagonal
Green’s function G(rT |rS) between the source and target
points, and we show that for highly symmetric fractals, simple
nearest-neighbor random walks generically lead to spatial
log-periodic oscillations in first-passage observables such as
the MFPT.

We recall briefly the essential results from [2,3]. Consider a
random walker moving in a bounded region of N sites. In [2,3]
it has been shown that the MFPT to a target site rT starting
from rS satisfies in the large N limit

〈T〉/N ∼ G(rT |rT ) − G(rT |rS). (1)

Note that the right-hand side is independent of the confinement
and involves the infinite space Green’s function G(r|r′) defined
by

G(r|r′) =
∫ ∞

0
P (r,t |r′) dt, (2)

where the propagator P (r,t |r′) gives the probability density
that a random walker evolving in infinite space is at site r at
time t , starting from site r′ at time 0. This probability density
satisfies the diffusion equation ∂tP (r,t |r′) = �rP (r,t |r′).

We show in this paper that for certain highly symmetric
fractal structures, the Green’s function when averaged (· · ·)

over source and target points, has the general scaling form

G(rT |rS) = 1

rdf −dw
G

(
2π

ln r

ln l

)
. (3)

where r = |rT − rS | is the source-target distance, and l is
a decimation constant specific to the fractal (see Table 1 in
Ref. [5] for some examples). The function G(x + 1) = G(x)
is a periodic function of period unity. The fractal (Hausdorff)
dimension df and the walk dimension dw [6,7] are related to the
spectral dimension as ds = 2df /dw. The walk dimension dw

accounts for the anomalous space-time dispersion on fractals,
〈r2(t)〉 ∼ t2/dw , generalizing the usual expression, 〈r2(t)〉 ∼ t ,
for Euclidean manifolds.1The scaling behavior of G(rT |rS)
in (3) has interesting consequences for a number of relevant
physical quantities. Adapting the arguments of [2,3], we
deduce

〈T〉/N ∼
⎧⎨
⎩

A − rdw−df G
(
2π ln r

ln l

)
, dw < df

A + ln r G
(
2π ln r

ln l

)
, dw = df

rdw−df G
(
2π ln r

ln l

)
, dw > df ,

(4)

where A is independent of both N and r . Previous work [2,3]
took G = c, a constant, and found excellent agreement with
numerical results for a wide variety of diffusion processes:
subdiffusive (dw > df ), superdiffusive (dw < df ), and critical
(dw = df ).

However, closer inspection of the numerical results in [2,3]
indicates that for certain highly symmetric fractals there are
small oscillatory deviations from the leading forms from (4)
with G = c. We argue here that these oscillatory deviations are
not numerical artifacts, but are in fact real physical results
that are strong indications of the underlying scaling and
fractal structure of the diffusion process. We find an explicit
approximate form for the function G, which quantitatively
explains these small oscillatory effects for the Sierpinski
gasket.

1〈· · ·〉 denotes the average over the probability distribution Pt (r,r′).
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II. GREEN’S FUNCTION ON FRACTALS

A. Generalities

It is clear from (1) that we need information about the
spatially off-diagonal propagator. The approximation of taking
G = c coincides with assuming a scaling form P (r,t |r′) =
�( |r−r′|

t1/dw
)/tdf /dw [8]. But we can improve on this estimate.

Upper and lower bounds for the propagator P (r,t |r′) have
been proven by Barlow and Perkins [9] for a wide class of
diffusion processes

Ft (c1,c2,r,r′) � P (r,t |r′) � Ft (c3,c4,r,r′) (5)

with

Ft (ci,cj ,r,r′) ≡ ci

tds/2
exp

[
−cj

( |r − r′|dw

t

) 1
dw−1

]
(6)

for real and positive constants c1, . . . ,c4. The bounds (5)
translate into corresponding upper and lower bounds for the
Green’s function (here for df �= dw) 2

c5

|r − r′|df −dw
� G(r|r′) � c6

|r − r′|df −dw
. (7)

Unfortunately, little is known rigorously about the constants
c1, . . . ,c6, or about how P (r,t |r′) or G(r|r′) behave between
the respective bounds (5) and (7).

In contrast to these spatially off-diagonal quantities
P (r,t |r′) and G(r|r′), much more is known about the spa-
tially diagonal propagator, P (r,t |r) = 〈r|et �|r〉, (which when
integrated over space gives the heat kernel trace),

P (r,t |r) = 1

tdf /dw
F

(
2π ln t

dw ln l

)

∼ c7

tdf /dw

[
1 + c8 cos

(
2π ln t

dw ln l
+ φ

)
+ · · ·

]
. (8)

The function F (x) = F (x + 1) is periodic of period unity,
which often is well approximated by its first harmonic [5],
and l is the same decimation constant appearing in (3). The
log-periodic oscillations in the time variable t are ubiquitous
and already well recognized not only for diffusion on fractals,
but also in other complex systems having a discrete (lacunar)
scaling symmetry [10]. The origin of these log-periodic
oscillations in t can be traced directly to spectral properties
of the Laplacian �. To see this, write P (r,t |r) in terms
of the associated ζ function ζ�(s) defined by the inverse
Mellin-Laplace transform3

trr(et �) = 1

2πi

∫
C

t−s �(s) ζ�(s) ds. (9)

For symmetric fractals [5], ζ�(s) has a tower of poles at sn =
df /dw + 2πin/(dw ln l) in the complex s plane, which lead

2The notion of distance between any two points r and r′ on a fractal,
needs to (and can) be properly defined; here we use the more standard
Euclidean notation |r − r′| throughout the paper, in order to avoid the
proliferation of notation. We can define the chemical distance for
numerical purposes.

3The Mellin-Laplace transform of the heat kernel is defined as
ζ�(s) = 1

�(s)

∫ ∞
0 dt t s−1trr(et �).

to the log-periodic oscillatory form in (8). Physically, these
complex poles are a consequence of the exponential growth
of the degeneracies and eigenvalues for the Laplacian on a
fractal [11]. To have a better understanding of how this works,
it is interesting to go back to the familiar case of a regular d-
dimensional Euclidean manifold [12,13] where the Laplacian
eigenvalues have instead a polynomial growth, λn ∼ n2, while
the degeneracy factor scales like degn ∼ nd−1, for a symmetric
manifold, such as a d-dimensional hypersphere [14]. Thus the
ζ function goes like ζ�(s) ∼ ∑

n nd−1/n2s ∼ ζR(2s − d + 1),
(ζR is the Riemann ζ function), which has the familiar real
pole at s = d/2. This leads, via the Mellin transform, to the
well known behavior of the diagonal propagator, P (r,t |r) ∼∑

n nd−1 e−n2 t ∼ 1/td/2, at short times.
On the other hand, for a symmetric fractal, with exponen-

tially growing degeneracies and eigenvalues,

degn ∼ an, λn ∼ bn (10)

we find ζ (s) ∼ ∑
n an/bn s ∼ 1/(1 − a/bs), which has a

tower of complex poles with real part s = ln a/ ln b, and
vertical spacing 2π/ ln b, which identifies ln b = dw ln l, and
ln a = df ln l, so that ln a/ ln b = df /dw. The complex poles
produce the log-periodic oscillations in (8). For such a fractal,
P (r,t |r) ∼ ∑

n an e−bn t ∼ F ( 2π
ln b

ln t)/t ln a/ ln b, where F is a
periodic function of ln t , as in (8). For mathematical discus-
sions of oscillations in heat kernel estimates see Refs. [15,16].
In particular, there is a class of fractals where oscillations are
related not to the high degeneracies of eigenvalues but rather
to large gaps in the spectrum. This topic is a subject of active
current research [17,18], and references therein].

B. Off-diagonal Green’s function

Since space and time are coupled scaling variables related
through the walk dimension dw, we might expect to observe an
analogous type of log-periodic oscillations for the stationary
Green’s function G(r|r′), as a function of the spatial distance
between the points. To see this, consider an eigenfunction
expansion

G(r|r′) =
∑

n

degn

φ∗
n(r′)φn(r)

λn

. (11)

On a regular Euclidean manifold, when averaged (· · ·) over
the points r and r′ we find φ∗

n(r′) φn(r) ∼ f̃ (r/Ln), where
r denotes the distance |r − r′|, and Ln depends on n.
Consistency with scaling and conservation of probability
determine Ln ∼ 1/n, using the polynomial growth of degen-
eracies and eigenvalues, as discussed above for the diagonal
propagator. We recognize 1/Ln = √

λn as the momentum,
reflecting the usual quadratic dispersion relation, kn ∼ √

λn.
On a fully symmetric (or unbounded) manifold such as
a d-dimensional hypersphere, this behavior holds without
averaging. If F̃ (s) is the Mellin-Laplace transform of f̃ (r),
then f̃ (r) = 1

2iπ

∫
C

ds F̃ (s)/rs , and

G(r,r′) ∼
∑

n

nd−3 1

2πi

∫
C

ds
F̃ (s)

(n r)s

=
∫

C

ds

2πi

F̃ (s)

rs
ζR(s − d + 3) ∼ 1

rd−2
, (12)
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which is the familiar form of the Green’s function, for d �= 2,
and is seen to result from the pole of the Riemann ζ function
at s = d − 2.

To generalize this result to fractals, we note the empirical
numerical result that averaging over target and source points on
fractals also leads to an averaged form φ∗

n(r) φn(r′) ∼ f (r/Ln),
for some Ln. Consistency with scaling and the conservation
of probability determines Ln = b−n/dw = a−n/df = 1/ln, now
using the exponential growth of degeneracies and eigenvalues,
as discussed above for the diagonal propagator. Thus we find
a scaling relation that involves the anomalous walk dimension
dw, and (for the noncritical case, df �= dw, i.e. ds �= 2)

G(rT |rS) ∼
∑

n

an

bn

1

2πi

∫
ds

F̃ (s)

(bn/dw r)s

= 1

2πi

∫
ds

F̃ (s)

rs

1

1 − a
b1+s/dw

, (13)

which leads immediately to the scaling in (3).
When comparing (3) with the time dependence of the

diagonal propagator in (8), we notice that the arguments of the
periodic functions differ by a factor 1/dw, which is consistent
with the anomalous scaling of distance and time for diffusion
on a fractal. Thus, we argue that the scaling in (3), and the
associated log-periodic oscillations, have the same physical
origin as their temporal counterpart in the diagonal propagator
P (r,t |r) in (8), coming from the exponential behavior of the
degeneracies degn and eigenvalues λn.

The result (13) can be viewed as a refinement of the Green’s
function bounds in (7), in a similar sense to the refinement (8)
of the diagonal propagator bounds in the t variable in (5),
(6). The expression of G(r|r′) in (13) is consistent with (but
more explicit than) the Barlow-Perkins bounds (5). It is also
consistent with rigorous results in [19–21] for the small t

behavior of tdf /dw ln P (r,t |r′), which behaves also as some
log-periodic function of r .

The expression (3) for the averaged stationary Green’s
function constitutes the main result of this paper.

III. MEAN FIRST PASSAGE TIME (MFPT)

We now present a numerical test of its consequences for
the mean first-passage time (MFPT) 〈T〉. A number of recent
works [2,3] have derived precise expressions for the MFPT
in the limit of large domains. Motivated by the case of the
diagonal propagator (or heat kernel) studied in Ref. [5], we
propose to approximate the log-periodic function G in (3) by
its first harmonic

G ∼
[

1 + b2 cos

(
2π ln r

ln l
+ φ

)
+ · · ·

]
. (14)

Inserting this expression for G into (4) we obtain new
expressions for the MFPT 〈T〉, which generalize those found
in [2,3]. In Figures 1 and 2, we compare this new expression for
the MFPT with numerical data, for the Sierpinksi gasket, which
has df > dw. First, in Figure 1 we use the numerical results of
Refs. [2,3], and compare with the leading power-law behavior
with G = 1, as well as with our refined log-periodic oscillation
form in (14). We have used a simple fit with a single periodic
function, with period ln l in the variable ln r . The agreement
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FIG. 1. (Color online) Plot of the spatial dependence of the MFPT
observable 〈T〉/N , as a function of the source-target distance r , for
the Sierpinski gasket. The dotted points are numerical data (gaskets
of generation 3, 4, 5, 6, respectively in yellow, blue, green, red),
the dashed black line is the leading behavior rdw−dh , as studied in
Refs. [2,3]. The blue solid line is a more refined fit from (14) with
b2 = 0.05, and φ = π/2.

with this refined form is very good. In Figure 2, we present
the result of a new and more detailed numerical analysis
for the corrections to the leading behavior, plotted as a
function of the logarithmic separation distance ln r . This plot
exhibits clear log-periodic oscillations of corresponding period
ln l = ln 2 for the Sierpinski gasket.

As a further test of our analysis, one can note the absence
of oscillations in the case of fractal trees (e.g., the T graph
studied in Ref. [3]). This is related to the fact, proven in
the mathematics literature, that on trees the Green’s function
is essentially linear with respect to the effective resistance
distance, in which case no spatial log-periodic oscillations are
expected. The Green’s function and effective resistance on
trees were studied in Ref. [22], and on more general fractals
in Ref. [23]. The absence of oscillations was also checked
numerically in the case of disordered fractals on the example
of critical percolation clusters (see Figure 3 of Ref. [3]),
which strongly suggests that their existence requires an exact

1 10

0

0.05

FIG. 2. (Color online) Plot of the corrections to the leading rdw−dh

behavior of the spatial dependence of the MFPT 〈T〉/N , as a function
of the source-target distance r , for the Sierpinski gasket. Circles
stand for numerical simulations (gaskets of generation 3, 4, 5, 6,
respectively in black, red, green, blue), and the blue solid line is a
fit from (14). This figure clearly shows the log-periodic oscillations
with the variable 2π ln r/ ln l.
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decimation symmetry, found in deterministic fractals such as
the the Sierpinski gasket.

IV. CONCLUSION

In conclusion, we have argued that a refinement of pre-
viously obtained bounds for the stationary Green’s function
G(r|r′) associated to the Laplacian on symmetric fractals can
be found that is given by expression (13). In addition to a
leading power-law dependence already found in Refs. [2,3],
we have shown that G(r|r′) exhibits also small log-periodic
oscillations in the spatial variable. Our argument traces
the physical origin of this refined functional form to the
exponential growth of degeneracies and eigenvalues for the
Laplacian on a symmetric fractal, and is consistent with
the anomalous dispersion for diffusion on a fractal. The
resulting spatial form parallels the temporal behavior of the
diagonal heat kernel, which is well studied both physically

and mathematically. While much less is known rigorously
for the spatial dependence, our conjectured form has an
immediate consequence for the mean first-passage time 〈T〉,
which is accessible to numerical and even experimental
investigation. We have shown that our refined expression
provides a good quantitative fit, which also demonstrates
unambiguously the existence of log-periodic oscillations. It
would be very interesting to investigate the existence of similar
behaviors for diffusion on other classes of complex scale-free
networks, beyond the leading-order results in Refs. [2,3].
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