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Critical dynamics of an isothermal compressible nonideal fluid
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A pure fluid at its critical point shows a dramatic slow-down in its dynamics, due to a divergence of the
order-parameter susceptibility and the coefficient of heat transport. Under isothermal conditions, however, sound
waves provide the only possible relaxation mechanism for order-parameter fluctuations. Here we study the
critical dynamics of an isothermal, compressible nonideal fluid via scaling arguments and computer simulations
of the corresponding fluctuating hydrodynamics equations. We show that, below a critical dimension of 4, the
order-parameter dynamics of an isothermal fluid effectively reduces to “model A,” characterized by overdamped
sound waves and a divergent bulk viscosity. In contrast, the shear viscosity remains finite above two dimensions.
Possible applications of the model are discussed.
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I. INTRODUCTION

The presence of long-range static correlations can induce
drastic slowing down of the dynamics of a fluid at the critical
point [1,2]. This can be understood by noting that the order-
parameter relaxation rate is typically given as a ratio between
a transport coefficient and a susceptibility: The susceptibility
diverges critical point, while the transport coefficient remains
roughly constant (or has a much weaker divergence). The
characteristic dependence of the relaxation rate � on the
wave number, � ∝ kz, or, by virtue of the dynamic scaling
assumption, equivalently on the correlation length, � ∝ ξ−z,
defines the dynamic critical exponent of the order parameter,
z. In addition to the order-parameter relaxation time, other
transport coefficients of a fluid, such as the viscosity, are
often divergent as well and entail their own critical exponents.
Similarly to statics, many properties of dynamic critical
fluctuations, such as dynamic critical exponents or amplitude
ratios, are universal and, thus, not specific to a particular
substance. For instance, an energy-conserving pure (i.e.,
single-component) fluid at the liquid-vapor critical point and
a binary fluid at the demixing point both belong to the same
dynamic universality class of model H and, thus, share the
same set of dynamic critical exponents [2].

While the conventional pure and binary fluid have been
extensively investigated both by theory and experiments (see,
e.g., Refs. [2–6] for reviews), the critical dynamics of an
isothermal compressible, single-component fluid seems not
to have received much attention so far. Two-dimensional
isothermal fluids are often employed, for instance, as
simple models for monolayer films that are confined to liquid
interfaces [7–9]. Indeed, many of these films are also known to
undergo liquid-vapor-like phase transitions [10–18]. Recently,
there has been growing interest in understanding the critical
properties of these and related lipid bilayer systems [19–28],
especially, since they constitute the building blocks that form
the membranes of biological cells [29]. Isothermal nonideal
fluid models have also been used to study phase separation
[30–36], capillary waves [37–39], and supercooled liquids
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close to the glass transition [40–44]. All these works, however,
did not address the critical dynamics of an isothermal fluid.

In this work we analyze the fluctuating hydrodynamic
equations of an isothermal, compressible nonideal fluid, whose
static properties are governed by a Ginzburg-Landau free
energy functional. It is demonstrated that the isothermal con-
dition leads to decisively different dynamic critical properties
than in the standard model H universality class. A scaling
analysis of the leading self-energy contributions emerging
from the nonlinear Langevin equations shows that the order-
parameter dynamics effectively reduces, in the long-time
limit, to a time-dependent Ginzburg-Landau model for a
nonconserved order parameter, known as model A [2]. The
upper critical dimension, dc = 4, is the same in statics and
dynamics. The bulk viscosity diverges at the critical point
with an exponent larger than in the mean-field limit, leading
to overdamped sound modes at criticality. The shear viscosity,
in contrast, remains finite in three dimensions, but is predicted
to diverge by a power-law in two dimensions. The theoretical
analysis is complemented by lattice Boltzmann simulations of
the fluctuating hydrodynamics equations in two dimensions.
We find that, even in this low dimensionality, the values of the
critical exponents for the order parameter and bulk viscosity
agree well with the analytical predictions that are obtained
close to dc based on pure model A behavior.

In order to appreciate the difference of the isothermal
critical dynamics from that of a nonisothermal fluid, it is useful
to recapitulate the basic results of the model H universality
class. The original, incompressible model H consists of an
advection-diffusion equation for the order parameter φ, which
is coupled to a transverse velocity field u [2,6,45–47],

∂tφ = −∇ · (φu) + λ∇2 δ

δφ
F + π, (1)

ρ0∂tu = −
(

φ∇ δ

δφ
F

)
⊥

+ ζs∇2u + π̄⊥, (2)

where the label ⊥ indicates that the transverse projection
should be taken, i.e., the projection orthogonal to the wave
vector in Fourier space (cf. Sec. II). In the above equations,
ρ0 is the mass density of the fluid, F is a Ginzburg-Landau
free-energy functional, λ is a bare kinetic coefficient (e.g.,
thermal conductivity), ζs is the shear viscosity, and π and π̄
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are appropriate noise sources. Importantly, in the case of a pure
fluid at the liquid-vapor critical point, the relevant dynamical
order parameter φ is the entropy density, whereas for a binary
fluid at the demixing point, φ represents the concentration
[2,45–47]. The longitudinal part of the momentum density is
neglected in the original model H, as the fluid is assumed to
be incompressible, ∇ · u = 0. This is a valid approximation
at criticality, since thermal conduction (or, correspondingly,
concentration diffusion in a binary fluid) proceeds on a much
longer time scale than the propagation of sound waves. The
latter process is, therefore, irrelevant to the dynamics of the
order parameter [46,48]. In model H, the order-parameter
relaxation rate is given in Fourier space by

� ∼ λk2

χ (k)
∝ kz, (3)

with χ (k) being the susceptibility (isothermal compressibility)
[2,6]. This relation can be derived from Eqs. (1) and (2) by
linearizing and neglecting the advection term. Since χ (k) ∝
k−2+η, the “classical” (van Hove [49]) theory predicts a
dynamic critical exponent of z = 4 − η for model H. The
classical result, however, turns out to be violated in a real
fluid, since the kinetic or transport coefficients are, due to the
presence of reversible mode-couplings, affected by the critical
order-parameter fluctuations as well [2,50–52]. Specifically,
in model H, the kinetic coefficient λ is renormalized by the
advective coupling between φ and u, changing the dynamical
exponent to z = 4 − η − zλ = d + y, where zλ and y are
the exponents characterizing the divergence of λ and the
shear viscosity ζs , respectively [45,47,50,53–55]. The effect
of critical fluctuations on the shear viscosity, ζs ∝ ξy , is
weak, leading only to a small exponent of y � 0.07 in 3D
[45,50,55,56], as confirmed by experiments [57,58].

Critical fluctuations in a pure fluid have an effect on sound
waves as well, which, however, is one-sided since the latter
are decoupled from the order-parameter dynamics. Acoustic
effects can be studied with an extended, compressible version
of model H that includes the full set of equations for the mass,
momentum, and energy density [59–68] (see also Ref. [69] and
references therein). In an energy-conserving pure fluid, sound
waves propagate with the adiabatic speed of sound [70–72],

c2
s,ad = ∂p

∂ρ

∣∣∣∣
S

= cp

cV

1

ρχ
, (4)

where p is the pressure and cp, cV are the specific heats
at constant pressure and volume. These are related by cp =
cV + T χβ2

V /ρ, where βV = (∂p/∂T )|ρ is the thermal pressure
coefficient (slope of the p-T curve). Since βV is not critical,
we have cp ∼ χ and, hence, the critical behavior of the speed
of sound (at zero frequency) is given by [6,59,65,69]

c2
s,ad ∼ c−1

V ∝ ξ−α/ν. (5)

For comparison, in a binary fluid, the critical sound speed
is governed by the constant-pressure specific heat, whose
divergence is—due to a larger background contribution—
much less pronounced than for the pure fluid. The critical
sound damping is given by the bulk viscosity, which can
be determined from a Green-Kubo relation involving the
nonlinear pressure fluctuations [59–62]. The extended model

H predicts a strongly diverging bulk viscosity, ζb ∝ ξx (at zero
frequency), with x = z − α/ν being �2.9 in 3D.

While theoretical and experimental investigations of critical
dynamics in pure or binary fluids have a long history,
simulations seem to be scarce and have been performed only
quite recently [73–78]. However, most of these studies are in
3D, and values of the dynamic critical exponents for model
H in 2D seem so far not to have been obtained either by
experiment or simulations (cf. Refs. [27,79–84]). The values
given in Table I for model H in 2D therefore represent extrap-
olations of theoretical ε-expansion results [2,45] (throughout
this paper ε = 4 − d). The shear-viscosity exponent y in
Table I has been obtained using the ε-expansion result for
zλ [zλ = (18/19)ε(1 − 0.003ε) + O(ε3)] in conjunction with
the relation y = 4 − d − η − zλ, giving the lower bound, as
well as the direct ε-expansion result for y [y = (1/19)ε(1 +
0.238ε) + O(ε3)], giving the upper bound. Since the O(ε2)
term in the ε expansion of zλ is quite small relative to the
leading term, one might suspect that the extrapolated value
will not be grossly unrealistic. Of course, one has to keep
in mind that transport coefficients in a two-dimensional fluid
generally acquire logarithmic divergences in the long-time or
-wavelength limit [85–88], which might interfere with possible
critical divergences.

From relation (4) we see that a description in terms of the
isothermal speed of sound,

c2
s,iso = ∂p

∂ρ

∣∣∣∣
T

= 1

ρχ
, (6)

would become applicable if the specific heat ratio cp/cV would
be close to 1. Dynamically, adiabatic conditions are achieved
if the thermal relaxation rate [Eq. (3)] is much smaller than the
characteristic frequency of a sound wave, i.e.,

� � csk. (7)

Since cs,adk ∝ ξ−α/2ν−1 for k ∼ ξ−1, the above relation is
clearly fulfilled in a ordinary fluid close to the critical point.
Relation (7) provides a posteriori also a justification for
neglecting the “faster” acoustic processes in the usual model
H calculations. Far from criticality, violations of condition
(7) can occur at finite wave numbers in the hydrodynamic
regime [89]. For small wave numbers, isothermal conditions
can be achieved by coupling the fluid to some kind of
heat bath, so that temperature fluctuations are removed
at a sufficiently fast rate. At the same time, the friction
between fluid and substrate must be kept sufficiently small
in order not to break momentum conservation and violate the
characteristic sound mode behavior of the compressible fluid
in the relevant wave-number regime [90].

After these introductory remarks on the critical dynamics
of ordinary nonideal fluids, we now turn to the analysis of the
isothermal nonideal fluid.

II. THEORY

An isothermal compressible fluid is governed by a continu-
ity equation for the mass density ρ and a conservation equation
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TABLE I. Comparison of characteristic properties and critical indices of an isothermal compressible fluid and an energy-conserving pure
fluid (or a binary fluid at the demixing point) described by model H. The cited numerical values are rounded, see the original works for more
detailed predictions.

Isothermal Model H

Order parameter Mass density Entropy density (concentration)
Order-parameter relaxation mechanism Sound waves Thermal diffusion

(concentration diffusion)
Relevant nonlinearity for nonclassicala behavior Thermodynamic pressure Advection term
Sound speed Isothermal, c2

s ∼ ξ−γ /ν Adiabatic, c2
s ∼ ξ−α/ν

Critical indices 2D 3D 2D 3D
Order-parameter relaxation rate, � ∝ ξ−z z = 2 − η + x z = d + y

2.2 ± 0.1 2.08b 1.98 . . . 2.16c 3.07d

Bulk viscositye, ζb ∝ ξx x ∼ 1.7η x = z − α/ν

0.45 ± 0.1 0.12b 1.98 . . . 2.16c 2.9f

Shear viscosity, ζs ∝ ξy y = z − d

0.2 ± 0.1g finite −0.02 . . . 0.16c 0.07d

Note: Static critical exponents have Ising values [1,102] and are identical for the isothermal and conventional (model H) fluid. ξ is the
correlation length, ν is the correlation length exponent, γ = (2 − η)ν the susceptibility exponent, η the anomalous dimension exponent and α

the specific heat exponent.
a“Nonclassical” refers to deviations from predictions of van Hove theory, which assumes constant kinetic coefficients (see text).
bTheoretical predictions based on model A [112,113].
cExtrapolation of the ε-expansion results [2,45] to 2D.
dSee Refs. [53,54,56–58].
eIn the isothermal fluid, x characterizes the divergence of the longitudinal [Eq. (26)] rather than the bulk viscosity [see Eq. (60)]. Asymptotically,
however, ζl ∼ ζb, since the divergence of the shear viscosity is expected to be weak.
fSee Ref. [59].
gPrediction of the scaling theory. Present simulations could only reveal a finite critical contribution to the shear viscosity. See text for further
discussion.

for the momentum density j ≡ ρu [6,30,37,70],

∂tρ = −∇ · j, (8)

∂t j = −ρ∇ δF
δρ

+ ζs∇2 j
ρ

+ (ζb + ζs[1 − 2/d])∇∇ · j
ρ

+∇ · R. (9)

Here, ζs and ζb are the bare shear and bulk viscosity and R is
a random stress tensor with correlations [70,91]

〈Rαβ(r,t)Rγδ(r′,t ′)〉

= 2kBT

[
ζs

(
δαγ δβδ + δαδδβγ − 2

d
δαβδγ δ

)
+ ζb δαβδγ δ

]

× δ(r − r′)δ(t − t ′), (10)

imparting Gaussian thermal noise on the fluid. The static
probability distribution of the density fluctuations are governed
by the Ginzburg-Landau free-energy functional

F =
∫

dr
[

1

2
κ(∇φ)2 + f0(φ)

]
, (11)

where κ is a constant and

φ ≡ (ρ − ρ0)/ρ0 = δρ/ρ0 (12)

is the order parameter. ρ0 is a constant background density.
The Landau free-energy density f0 is taken to be a quartic
polynomial in φ,

f0(φ) = 1
2 rφ2 + 1

4uφ4, (13)

where r and u are free parameters. The “streaming term”
involving F in Eq. (9) can be written as a divergence of a
pressure tensor P [37,92–96],

ρ∇ δF
δρ

= ∇ · P = ∇p0 − κ ′ρ∇∇2ρ, (14)

where κ ′ ≡ κ/ρ2
0 ,

Pαβ =
(

p0 − κ ′ρ∇2ρ − κ ′

2
|∇ρ|2

)
δαβ + κ ′(∂αρ)(∂βρ),

(15)

and p0 is a scalar pressure given by

p0 = ρ∂ρf0 − f0 = rφ + 1
2 rφ2 + uφ3 + 3

4uφ4. (16)

An essential complication in the analysis of the com-
pressible Navier-Stokes equations is the presence of the
nonlinearity j/ρ in the viscous stress [41,44,97]. Here, we
treat this term perturbatively by expanding 1/ρ around the
background density ρ0, i.e., 1/ρ = 1/ρ0 − (1/ρ2

0 )δρ + · · ·
[98]. We will show below that this term is irrelevant for
the critical behavior of the fluid above two dimensions.
Furthermore, the convection term ∇(jj/ρ) has been omitted in
the above Navier-Stokes equations. The effect of this term has
been studied extensively in the incompressible case [85–88]
and is known to renormalize the shear and bulk viscosity by a
finite amount above two dimensions and by a logarithmically
divergent contribution in 2D. In principle, this term requires
careful treatment also in the case of a compressible fluid (cf.
Ref. [99]), taking into account a possible interplay with critical
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fluctuations. This, however, is out of the scope of the present
work, and in the subsequent analysis, it is therefore assumed
that the ensuing renormalizations have already been performed
on the bare quantities or can be considered separately from
critical fluctuations.

To proceed, Eqs. (8) and (9) are written in Fourier space,

ωδρ = k · j , (17)

−iωj = −ikc2
s (k)δρ − ikpnl − iN − νsk

2 [j + Y]

− (νb + νs[1 − 2/d])kk · [j + Y] + ik · R + ik · h,

(18)

where νs = ζs/ρ0 and νb = ζb/ρ0 are the kinematic shear and
bulk viscosities. The generalized isothermal speed of sound1

c2
s (k) = c2

s + κ ′ρ0k
2 = (r + κk2)/ρ0, (19)

contains the linear part of the thermodynamic pressure, while
pnl and N are the Fourier-transforms of the remaining nonlinear
parts:

pnl(k,ω)

= 1

2
r

∫
q̃

φ(k̃ − q̃)φ(q̃) + u

∫
q̃,q̃ ′

φ(k̃ − q̃ − q̃ ′)φ(q̃)φ(q̃ ′)

+ 3

4
u

∫
q̃,q̃ ′,q̃ ′′

φ(k̃ − q̃ − q̃ ′ − q̃ ′′)φ(q̃)φ(q̃ ′)φ(q̃ ′′), (20)

N(k,ω) = κ

∫
q̃

φ(k̃ − q̃)qq2φ(q̃). (21)

Here, the shorthand notation k̃ ≡ (k,ω), q̃ ≡ (q,σ ), etc., and∫
q̃

≡ ∫
dq

(2π)d
dσ

(2π) is introduced. The quantity

Y(k,ω) =
∫

q̃

j(q̃)φ(k̃ − q̃) (22)

represents the leading correction term of the expansion of j/ρ
in the viscous stress around j/ρ0.

The nonlinear Navier-Stokes equations (17) and (18) can
be split into longitudinal and transverse parts with respect to
the wave vector k. The corresponding longitudinal (l) and
transverse (t) projections of a vectorial quantity v = vl k̂ + vt

are defined as vl = k̂ · v and vt = Tkv, where k̂ ≡ k/k and
Tk ≡ (I − k̂k̂). Analogously, for a tensorial quantity like R,
we have k̂ · R = Rl k̂ + Rt , with Rl ≡ k̂ · R · k̂ and Rt ≡ k̂ ·
R · Tk. We thus arrive at

ωδρ = kjl , (23)

ωjl = kc2
s (k)δρ + kpnl + Nl − iνlk

2(jl + Yl) − kRl − khl,

(24)

ωjt = Nt − iνt k
2(jt + Yt ) − kRt − kht , (25)

where

νl = νb + νs(2 − 2/d) (26)

1This expression for the speed of sound holds only in the
supercritical regime. Below the critical point (r < 0), the nonlinear
terms provide an additional contribution so that c2

s is positive in each
bulk phase.

denotes the longitudinal and νt = νs the transverse viscos-
ity. The longitudinal and transverse parts of the random
stress tensor are correlated as 〈|Rl(k,ω)|2〉 = 2ρ0νlkBT and
〈|Rt,α(k,ω)|2〉 = 2ρ0νtkBT . Combining Eqs. (23) and (24),
the longitudinal current jl can be eliminated completely,
leaving only Eq. (25) for the transverse current and a single,
nonlinear sound-wave equation for the order parameter (setting
henceforth ρ0 = 1),

−ω2φ + k2c2
s (k)φ − iωνlk

2φ

= −k2pnl − kNl + iνlk
3Yl + k2Rl + k2hl. (27)

Obviously, the term Y, which can be written as

Y =
∫

q̃

[
φ(q̃)

σ

q
q̂ + jt (q̃)

]
φ(k̃ − q̃), (28)

provides a bidirectional coupling between the order parameter
and the transverse current. Additionally, the transverse current
is affected by the order-parameter fluctuations through the term
Nt . We remark that, due to the way the free-energy functional
enters the Navier-Stokes equations, there appear to be more
nonlinearities in Eq. (27) than in the corresponding static
critical theory or in nonlinear sound-wave equations studied
in isotropic elastic phase transitions [100,101]. In particular,
in the latter, the restoring force is given by a term of the form
δF/δρ rather than by a pressure gradient.

A. Linear hydrodynamics

At this point it is useful to collect some basic results of
the linearized model. Neglecting the nonlinear terms in Eq.
(27), the bare response and correlation function (labeled by
the index 0) for the order parameter are given by

G0(k,ω) ≡ δ〈φ(k,ω)〉
δhl(k,ω)

= k2

−ω2 + k2c2
s (k) − iωνlk2

, (29)

C0(k,ω) ≡ 〈φ(k,ω)φ(k′,ω′)〉
(2π )d+1δ(k + k′)δ(ω + ω′)

= 2νlkBT k4

[
ω2 − k2c2

s (k)
]2 + (ωνlk2)2

. (30)

The response and correlation functions are related by a
fluctuation-dissipation theorem,

C0(k,ω) = 2kBT

ω
ImG0(k,ω), (31)

which, in the zero-frequency limit, becomes the fluctuation-
response relation

C0(k) = kBT G0(k,ω = 0), (32)

where C0(k) is the static structure factor,

C0(k) =
∫

dω

2π
C0(k,ω) = kBT

c2
s (k)

. (33)

In the mean-field limit, the susceptibility is given by χ0 = 1/r

for r > 0 and χ0 = −1/2r for r < 0 and is related to the
speed of sound by c2

s = 1/ρ0χ0. The correlation length for
purely Gaussian fluctuations is given by ξ0 = √

κχ0.
In the linearized case, Eq. (27) represents a damped har-

monic oscillator driven by random noise [102]. The dispersion
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relation of the associated sound waves is given by

ω = ± [
c2
s (k)k2 − ν2

l k
4
/

4
]1/2 − iνlk

2/2. (34)

In the weakly damped case, where 4c2
s (k) > ν2

l k
2,

sound waves are oscillating with frequencies ωa =
±k

[
c2
s (k) − ν2

l k
2/4

]1/2 ≈ cs(k)k and are exponentially
damped with a rate of νlk

2/2. In the opposite, overdamped
case, the solution (34) becomes purely imaginary and sound
waves decay, in the limit of long times, with a rate of

�(k) = c2
s (k)

νl

. (35)

At short times, another decay regime characterized by a rate
∼νlk

2 is present. This regime is negligible for strong damping,
that is, for c2

s � ν2
l k

2. The response and correlation functions
in the overdamped, long-time limit can be simply obtained by
neglecting the “inertial” term ω2 in Eqs. (29) and (30), yielding

G0(k,ω) = 1

−iωνl + c2
s (k)

, (36)

C0(k,ω) = 1

νl

2kBT

ω2 + �2(k)
. (37)

In the time domain, this corresponds to a pure exponential
decay:

G0(k,t) = 1

νl

exp [−�(k)t] θ (t), (38)

C0(k,t) = C0(k) exp[−�(k)|t |]. (39)

Figures 1(a) and 1(b) show the typical shape of the linear
dynamic structure factor of the isothermal fluid in the weak and
strong damping case. We will see that, close to criticality, long-
wavelength order-parameter fluctuations in the isothermal
fluid are always overdamped, causing the two sound-mode
peaks in Fig. 1(a) to merge to a single peak located at zero
frequency [Fig. 1(b)]. For comparison, the dynamic structure
factor of an ordinary fluid [Fig. 1(c)] is characterized by two
sound-mode peaks at finite frequencies and a central peak
originating from thermal diffusion, which dominates the total
intensity close to the critical point.

Similarly, for the transverse current, we obtain from
Eq. (25) the bare response and correlation functions

Gt,0(k,ω) = k

ω + iνt k2
, (40)

Ct,0(k,ω) = 2νtkBT k2

ω2 + (νtk2)2
, (41)

where 〈jt,α(k,ω)jt,β (k′,ω′)〉 = Ct,0(k,ω)(2π )d+1δ(k +
k′)δ(ω + ω′)δαβ . The static correlations of the transverse
current are independent of the wave number,

Ct,0(k) = kBT . (42)

The linear hydrodynamics expressions (29) and (30) can be
cast into standard dynamical scaling forms [2,102,103],

G0(k,ω) = ξ 2−ηG(kξ,ωξz), C0(k,ω) = ξ 2−η+zC(kξ,ωξz),

(43)

with G and C being scaling functions, η = 0, and z = 2
a dynamic scaling exponent. This value of z can also be
directly inferred from the damping rate in the overdamped
case, Eq. (35). Analogously, for the transverse current we have,
from Eqs. (40) and (41),

Gt,0(k,ω)=ξzt−1Gt (kξ,ωξzt ), Ct,0(k,ω) = ξztCt (kξ,ωξzt ),

(44)

with a dynamic exponent of zt = 2.

B. Critical order-parameter dynamics

The critical dynamics of the order parameter, governed by
Eq. (27), is discussed here within a mode-coupling approach
[6,46,50,52,104,105]. To this end, we construct a perturbative
solution of the nonlinear order-parameter equation using the
response function formalism [51,103,106,107] and identify the
leading contributions via a scaling analysis. With the help of
the bare response function G0, Eq. (27) can be rearranged as

φ = φ0 − G0pnl − G0Nl/k + iνlkG0Yl + G0hl, (45)

with φ0 = G0Rl being the zeroth-order solution. Due to the
coupling between the order parameter and the transverse
current, we also need to consider Eq. (25), which can be written
as

jt = −jt,0 + Gt,0Nt /k − iνt kYt − Gt,0ht , (46)

with jt,0 = Gt,0Rt .
The nonlinearities on the right-hand side of Eqs. (45) and

(46) can be translated into the diagrammatic representation
given by Fig. 2. There, a solid (wavy) line with an arrow
represents G0 (Gt,0), a thick solid (wavy) line represents
the order parameter φ (the transverse current jt,0), and a
solid circle denotes a coupling constant and an integration
over internal wave vectors and frequencies respecting space-
and time-translational invariance. The vertices involving the
couplings r , κ , νl , and νt have no counterparts in the static
theory or in standard Ginzburg-Landau models [2]. They are
specific to the compressible fluid and are, for instance, known
to be important in the case of a supercooled liquid [41,44].

A solution of Eq. (45) for φ can be iteratively constructed,
following standard rules [46,51,103,106], and leads to a Dyson
relation for the full response function G ≡ δ〈φ〉/δhl :

G(k,ω) = 1

G−1
0 (k,ω) − �(k,ω)

= k2

−ω2 + k2c2
s (k) − iωνlk2 − k2�(k,ω)

. (47)

Here, � is a self-energy, which encapsulates the effect of the
nonlinear interactions between the order-parameter fluctua-
tions. These can be understood to lead to a renormalization of
the transport coefficients of the fluid of the form

c2
sR(k) = c2

s (k) − Re�(k,0), (48)

νlR(k) = νl + �(k,ω → 0), (49)

where �(k,ω) ≡ ∂Im�(k,ω)/∂ω. We shall focus here only
on the small-frequency limit and neglect any frequency
dependence of the renormalized quantities csR and νlR . Thus,
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FIG. 1. (Color online) Typical shape of the dynamic structure factor C(k,ω) of an isothermal fluid in the weak-damping (a) and strong-
damping (b) regime. The latter case is realized at the critical point (see text). For comparison, (c) shows the structure factor of an ordinary,
energy-conserving fluid close to the critical point.

we assume that the response function keeps the same principle
form as in linear hydrodynamics but with appropriately
renormalized, wave-number-dependent transport coefficients.
Also, a possible renormalization of the background density is
neglected here.

The nonlinearities in the model give rise to a large
number of diagrams contributing to the static and dynamic
(i.e., frequency-independent and -dependent) parts of the
self-energy. The dominant contribution can, in principle, be
determined through a straightforward scaling analysis (cf.
Refs. [50,105]), making use of the dynamic scaling forms of
the response and correlation functions stated above. Regarding
the static parts, however, we can also directly invoke the fact
that the nonlinear Langevin equations of the model preserve the
equilibrium probability distribution of the Ginzburg-Landau
free-energy functional [6,91]. Thus, in the hydrodynamic limit,
the renormalization of the isothermal speed of sound must be
consistent with the static theory, implying that

c2
sR = 1/ρχ ∝ ξ−γ /ν, (50)

where χ is the isothermal compressibility, ξ the correlation
length, and γ and ν are the usual static critical exponents [note
γ = (2 − η)ν] [1,3,6].2 As is well known, the upper critical
dimension for the present static model is 4. For comparison,
in a conventional fluid (model H), sound waves propagate
with the adiabatic speed of sound, which vanishes much more
weakly at the critical point, c2

sR ∝ ξ−α/ν , with α being the
specific heat exponent [1,6,59,60,65].

Turning to the dynamics, the leading irreducible, frequency-
dependent diagrams contributing to � are shown in Fig. 3. For
a given diagram �(i), we have �(i) ∼ �(i)ξ

z as far as the scaling
behavior is concerned. We do not consider here an expansion
in the number of loops, but rather focus only on the leading
diagrams arising from each vertex. The analytic expressions
of the individual diagrams are given by

2More generally, one would expect that c2
sR(k) = kBT /C(k) for

arbitrary k, as a consequence of a fluctuation-response relation
like Eq. (32). Due to the presence of the 1/ρ nonlinearity in the
equations of motion, however, there is no simple FDT analogous to
Eq. (31) connecting the full correlation and response function in the
compressible fluid, except in the small-k limit [41,44]. An FDT can
be proven for the nonlinear oscillator Eq. (27) if the 1/ρ nonlinearity
is neglected; see Ref. [100].

�u(k,ω) = 18u2
∫

q̃,q̃ ′
G0(k̃ − q̃ − q̃ ′)C0(q̃)C0(q̃ ′), (51)

�u′(k,ω)

= 54u2
∫

q̃,q̃ ′,q̃ ′′
G0(k̃ − q̃ − q̃ ′ − q̃ ′′)C0(q̃)C0(q̃ ′)C0(q̃ ′′)

+ 81u2
∫

q̃

G0(k̃ − q̃)C0(q̃)

[∫
q̃

C0(q̃)

]2

, (52)

�r (k,ω) = r2
∫

q̃

G0(k̃ − q̃)C0(q̃), (53)

�κ (k,ω) = κ2
∫

q̃

G0(k̃ − q̃)C0(q̃)[(k · q)2 + O(k4)], (54)

�νl
(k,ω) = −ν2

l

∫
q̃

G0(k̃ − q̃)C0(q̃)[ωσ (k̂ · q̂)2 + O(ω2)],

(55)

�j (k,ω) = νlνt

∫
q̃

Gt,0(q̃)C0(k̃ − q̃)[ωq(k̂ · Tq · k̂)+O(ωk)]

− ν2
l

∫
q̃

G0(q̃)Ct,0(k̃ − q̃)[k · q + O(k2)] + · · · .

(56)

In Eqs. (54) to (56), only the principle form of the kernels is
indicated, which is sufficient to derive scaling properties. Also,
expressions for the remaining one-loop diagrams of Fig. 3 that
involve two different couplings or a transverse current response
or correlation function are not stated explicitly but can be easily
obtained. In fact, it will not be necessary to compute them
explicitly, since all vertices involving r , κ , νl , or νt scale in
the same way up to differences of O(η). To see this, note
that jt scales like φξ−1, as can be inferred from the form of
the corresponding correlation functions [Eqs. (43) and (44)].
Some of the additional diagrams at two-loop order are briefly
discussed in Appendix; they will give rise to subdominant
contributions and, thus, can be safely neglected.

First, we consider the mean-field approximation, where the
values of the dynamic scaling exponents are given by z = zt =
2. Taking into account the strong temperature-dependence of
the Landau parameter, r ∼ 1/χ0 ∼ ξ−2, we find, in the limit
k → ξ−1, ω → ξ−z,

�u ∝ ξ 8−2d , �u′ ∝ ξ 10−3d , �r,κ,νl ,j ∝ ξ 2−d . (57)
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FIG. 2. Fundamental vertices of the model arising from Eqs. (20)–(22). Here, k is an external wave vector, while q and σ denote an
internal wave vector and frequency. A solid circle represents a coupling constant and an integration over internal wave vectors and frequencies
respecting space- and time-translational invariance.

The identical scaling of all one-loop diagrams of Fig. 3 is a
consequence of the identical scaling behavior of the three-point
vertices in the model. We can also obtain scaling predictions
beyond the mean-field case by making use of our knowledge
of the proper critical behavior of the static couplings, r , κ ,
and u. These are renormalized by fluctuations as rR ∼ ξ−2+η,
κR ∼ ξη, uR ∼ ξd−4+2η [6,103], implying that

�u ∝ ξz−2+η, �u′,r,κ,νl
∝ ξz−d . (58)

The contributions due to �j all scale ∝ξz−d±O(η), or
ξzt−d±O(η), respectively, up to differences in the exponent of
O(η) accounting for possible divergences of νl or νt . Thus,
all diagrams except �u are irrelevant for d > 2, provided that
z and zt are still close to 2, which will indeed be the case.
Note that the contributions from the uφ4 vertex, which were
found to diverge below a critical dimension of d = 10/3 in
the mean-field limit, now remain finite at least down to three
dimensions, due to the renormalization of u. We also see that
the j/ρ nonlinearity in Eq. (9), responsible for the coupling
between longitudinal and transverse current, is not relevant for
d > 2 and it is safe to approximate ρ by ρ0, as far as asymptotic
critical properties are concerned.

From the dominance of �u, which arises from the φ3 vertex
of pnl, we conclude that the upper critical dimension of the
present isothermal nonideal fluid model is dc = 4 both in
statics and dynamics. The present analysis also reveals that
the relevant nonlinearities responsible for the deviations from
the classical (van Hove) predictions differ for the isothermal
fluid and model H: In the latter case, the deviation is caused
by the reversible advection term [see Eq. (1)], whereas in the
isothermal fluid, it is caused by the dissipative φ4 nonlinearity
of the Ginzburg-Landau free-energy functional. Hence, in the
isothermal fluid, the dominant dynamic critical effects are
induced by quantities of purely thermodynamic origin.

The scaling result for �u of Eq. (58) is not sufficient to
determine the precise value of z. This can be done via a
renormalization group (RG) calculation slightly below four
dimensions. To this end, the wave-number integrations in �u

of Eq. (51) are performed incrementally in a shell �0e
−s <

q,q ′ < �0, where �0 is a cutoff and s denotes the RG flow
parameter. The contribution linear in s, which we shall write as
A(νl) νl , has been calculated in Ref. [100], with the essential
result that A(νl → ∞) = 6 ln(4/3)η and A(νl) > A(∞) for

any finite νl . These estimates have been obtained at O(ε2) in
an ε expansion. The RG equation for the longitudinal viscosity
then reads

∂sνl(s) = A(νl)νl(s) , (59)

from which one concludes that, for any positive bare νl(0),
νl(s) will grow along the RG flow and asymptotically scale
as eA(∞)s . Thus, in the hydrodynamic limit, which is reached
for es ∼ �0ξ [6,108], the renormalized longitudinal viscosity
behaves as

νlR ∝ νlξ
x, (60)

with the critical index being

x = 6 ln(4/3)η � 1.7η. (61)

In the critical regime (k � ξ−1), we have accordingly, νlR ∝
νlk

−x .
With this result we can show that sound waves must

be overdamped in the critical isothermal fluid: Using the
fact that c2

sR ∝ ξ−2+η, the linear hydrodynamical condition
for strong damping, csR(k) � kνlR , becomes ξ−1+η/2/k +
const × k−η/2 � ξx . Thus, for wave numbers of order k ∼
ξ−1, we have ξη � ξ 2x , which is always fulfilled in the
asymptotic critical regime since 2x > η. Of course, we could
also have kept, for d close to dc, only the dominant uφ3

nonlinearity in Eq. (27) and thereby recover the type of sound-
wave equation studied in the context of isotropic elastic phase
transitions [100]. The associated RG analysis in Ref. [100]
then leads to the same predictions as above.

Concluding, in the critical regime, Eq. (27) reduces in the
long-time limit to model A in the classification of Refs. [2,
109–111], that is, a time-dependent Ginzburg-Landau model
for a nonconserved order parameter of the form

−iωδρ = 1

νl

δF
δρ

+ R + hl, (62)
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FIG. 3. Leading frequency-dependent diagrams contributing to the self-energy of the order parameter, �(k,ω). A solid (wavy) line with an
arrow represents G0 (Gt,0) and a solid (wavy) line with an open circle C0 (Ct,0). Dashed lines indicate amputated external “legs” for clarity.
Note that only certain combinations of couplings are admissible in the diagrams of �j (cf. Fig. 2).

where R ≡ Rl/νl is a noise source of variance ∼1/νl .3 Since
overdamped sound waves relax with a rate

� = c2
sR

νlR

, (63)

the dynamic critical index z, defined via the relation � ∝ ξ−z,
of the fully nonlinear fluid model follows as

z = 2 − η + x. (64)

In contrast, in the linear hydrodynamic (mean-field) case, we
have z = 2 and x = 0. If we assume that the pure model A
behavior of the critical isothermal fluid persists also in low
dimensions, we expect, in the interesting two-dimensional
case, a value of

z � 2.08 · · · 2.17 (2D), (65)

based on recent theoretical calculations and Monte Carlo
simulations of model A [112–114]. In the wider literature,
varying estimates for z, ranging between 2.0 and 2.3, have been
reported [115,116]. Above value for z translates to x � 0.4
and agrees surprisingly well with the O(ε2) renormalization-
group prediction of Eq. (61) in 2D. For comparison, for a
conventional fluid (model H), we have z � d and x = z − α/ν

[2,6,59].
Returning to the scaling estimates of Eq. (58), a value of

z > 2 would imply the weak divergence of various diagrams in
2D, which could provide corrections to the critical exponents.
To address this issue, explicit calculations of the corresponding
contributions will be required. Our simulations (see Sec. III)
yield a value of z ≈ 2.2 ± 0.1, suggesting that possible
corrections to the model A behavior are small at least.

C. Critical shear viscosity

The shear viscosity is computed in the following based on
a Green-Kubo approach. We consider the x component of the
nonlinear NSE (9) and choose the wave vector to lie along the
y direction, i.e., k = (0,k) in 2D. Applying the approximation
j/ρ � j/ρ0 − (j/ρ2

0 )δρ to the viscous stress tensor, whose xy

component becomes

Sxy = νs[∂x(jy − jyφ) + ∂y(jx − jxφ)], (66)

3The conserved nature of the fluid order parameter (density)
becomes noticeable at early times, where the correlation function
decays nonexponentially and the dynamics deviates from pure model
A behavior.

the equation for the transverse current can be written as

∂t jx = −νsk
2jx − ikPxy(k) − ikSnlin

xy (k) + ikRxy, (67)

where Pxy(k,t) = −κ
∫

q qxqy φ(q)φ(k − q) is the Fourier
transform of the off-diagonal term of the thermodynamic pres-
sure tensor [Eq. (15)], while Snlin

xy (k,t) = iνsk
∫

q jx(q,t)φ(k −
q,t) contains the nonlinear terms of Sxy [Eq. (66)] involving
the order parameter.

The fluctuation contribution to the shear viscosity, νs,crit, can
now be inferred by invoking a Green-Kubo relation [6,56,117].
For the contribution from the thermodynamic pressure tensor
we find

νs,crit = 1

V kBT
lim
k→0

∫ ∞

0
dt 〈Pxy(k,t)Pxy(−k,0)〉

� κ2

kBT

∫
q
q2

xq
2
y

C2(q)

�(q)
∝ ξz−d , (68)

where, as usual, the four-point correlation has been decoupled
into products of two-point correlation functions. For the
contribution due to the nonlinear part of the viscous stress
tensor, Sxy , one writes jx(q) = jl(q)q̂x + jt,x(q) and uses the
fact that the correlation function of the longitudinal current
fulfills Cl(q,t) = ∂2

t C(q,t)/q2. Also, jl and jt are independent
to leading order. This gives, analogously,

ν ′
s,crit = 1

V kBT
lim

k→ξ−1

∫ ∞

0
dt

〈
Snlin

xy (k,t)Snlin
xy (−k,0)

〉

∝ ξ 4−z−d−2η + ξzt−η−d , (69)

where the external wave vector is taken at ξ−1 and, for the
evaluation of the part involving the transverse current, it
has been assumed that zt < z. In the mean-field limit, all
contributions scale ∝ξ 2−d and, thus, are finite for d > 2, while
a potential logarithmic divergence is indicated in 2D. If, in
contrast, scaling exponents appropriate for the true critical
point are taken (where z � 2.2 and κR ∝ξη), the contribution
to νs,crit of Eq. (68) attains a weak power-law divergence in 2D,
characterized by a critical exponent y = z − 2, implying that
zt = 2 − y < 2 in 2D. As a consequence, Eq. (69) becomes
now finite in all dimensions. Note also that the order-parameter
self-energy is very sensitive to a possible divergence of the
shear viscosity, as the associated scaling analysis suggests [cf.
Eq. (58)]. Clearly, at this stage, more detailed calculations
are needed to obtain quantitative predictions for the dynamic
critical exponents in 2D. The same calculation as in Eq.
(68) applies also to model H, consistent with the well-known
RG result y = z − d [2,6,45,50] (see Table I). In model H,
the shear viscosity diverges mildly in 3D, due to a value
of z � 3.07 that is slightly larger than 3 [2,56]. In 2D, the
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uncertainty in the theoretical value for z (see Table I) and
the lack of experimental or numerical studies permits no
definite conclusion on a possible critical divergence of the
shear viscosity in an ordinary fluid.

III. SIMULATIONS

The theoretical predictions are now compared to full fluc-
tuating hydrodynamics simulations of an isothermal nonideal
fluid in 2D, using the lattice Boltzmann (LB) model introduced
in Ref. [118]. For a brief description of the simulation model,
specifically in regard to critical phenomena, we refer to
Ref. [119]. There, also the static critical behavior of the system,
which belongs to the 2D Ising universality class, is analyzed.
The two-dimensional case is interesting for several reasons:
First, the isothermal condition could probably be realized
here most easily experimentally by coupling the fluid to a
heat-absorbing substrate. Second, the scaling arguments of
Sec. II suggest that the fluctuation contributions of various non-
linearities grow around a dimension of d = 2. As such effects
are complicated to assess analytically, numerical simulations
can provide useful insights and are complementary in this case.

A. Setup

Parameters of our LB simulations are chosen as in
Ref. [119], a typical setup at the critical point being
r = −4.8 × 10−5, u = 2.8 × 10−2, and κ = 9.6 × 10−5. This
choice leads to a mean-field interface width of �2 lattice units
and is expected to ensure reliable results on the fluctuation
dynamics [119,120]. The average density in our simulations
is ρ0 = 1.0. The noise temperature is set to kBT = 10−7 and
the bare shear and bulk viscosities to νs = νb/2 = 0.04/3.
Quantitatively similar results have been obtained also for
other parameter combinations. Simulation boxes are of size
L × L = 2562, except for Figs. 5 and 6(c), where L × L =
1282. All simulation results reported in the paper are obtained
with a standard LB implementation, where the viscous stress
consists of terms of the form νρ∂αuβ , i.e., the dynamic
viscosities depend on ρ. In a few cases it has been checked,
by using an implementation where the ρ dependence of the
dynamic viscosities is eliminated, that results are not affected
by this LB specific peculiarity. Besides, due to requirements
of numerical stability, the relative density fluctuations δρ/ρ0

in our simulations are on average well below a few percent-
ages, thus warranting the approximation ρ � ρ0. Due to the
multiplicative nature of the renormalization of the relaxation
rate, the specific values of the viscosities are not important
in this regard. They do, however, influence the extension of
the overdamped acoustic regime and the crossover from mean
field to the expected model A critical behavior. While a small
longitudinal viscosity leads to a more rapid equilibration of
the order parameter, it also shifts the onset of the overdamped
regime to smaller wave numbers. As a consequence, larger
simulation boxes would be required to reduce the residual
speed of sound at the critical point sufficiently. Furthermore,
a large value of cs can significantly affect the long-time
decay of the order-parameter correlation function, which can
be misinterpreted as caused by a larger viscosity. In order
to diminish these and other undesired finite-size effects, the
lowest k modes are usually excluded from the analysis of our

results. To avoid effects of lattice anisotropy (cf. Ref. [121]),
all wave-number-dependent quantities shown in the plots are
computed as an average over the Cartesian axes of the Fourier
plane.

The logarithmic divergence of the viscosities in 2D due to
the convective nonlinearity [85–88] is difficult to observe and
requires either very long simulation times or large simulation
boxes (cf. Ref. [122]). Indeed, since the effect is proportional
to kBT log L [51], it is expected to be below the threshold of
statistical accuracy for the present setup.

B. Results

1. Order parameter

Figure 4(a) shows the dynamic structure factor C(k,t) at the
critical point for different wave numbers k as obtained from
our simulations. The exponential decay of C(k,t) is clearly
seen in the semilogarithmic representation. According to the
dynamic scaling hypothesis, C(k,t) = k−2+ηC((kξ )−1,kzt);
hence, sufficiently close to the critical point, where (kξ )−1

is small, the dynamic critical index z can be determined
by plotting C(k,t)/C(k,0) versus the rescaled time kzt ,
testing different values of z until a complete data collapse
is achieved. This is done in Fig. 4(b), from which we
infer a value of z � 2.25 ± 0.1. For comparison, the insets
demonstrate that, when rescaling the data with a significantly
larger or smaller value of z, the data collapse remains
incomplete.

Alternatively to the rescaling procedure, the dynamic
critical index can be more directly determined from the
relaxation rate �(k), which can be obtained by fitting an
exponential decay [Eq. (39)] to the dynamic structure factor.
The assumption of an exponential relaxation is well satisfied
in the overdamped regime, after neglecting the short-time,
nonexponential part of C(k,t) caused by a finite residual
speed of sound. In Fig. 4(c), the so-obtained relaxation rate
is plotted against the wave number in a double-logarithmic
representation. At small wave numbers, the expected power-
law behavior � ∝ kz is clearly seen. A numerical fit yields a
value of the exponent of z � 2.2 ± 0.2, which agrees well with
the value obtained from rescaling the structure factor data.

These results show that the dynamic critical index is
significantly increased over its mean-field (z = 2) or van Hove
(z = 1.75) value. In particular, the extracted value of z is
consistent with the presence of pure model A–type critical
behavior [Eq. (65)] in two dimensions.

We remark that the value of z depends, in principle, also
on the range of wave numbers considered. The deviation
from a pure power law at larger wave numbers might be
caused by the general wave-number dependence of the LB
transport coefficients [123,124] and the influence of other
nonlinearities in the model that overwhelm the leading-order
critical divergences. For k � 1 also the discrete nature of
the lattice becomes noticeable (see, e.g., Refs. [118,119]).
More precise values for z could be obtained by using larger
simulation boxes, thereby extending the low-k regime and
decreasing the influence of the nonexponential decay of C(k,t)
at short times.
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FIG. 4. (Color online) [(a) and (b)] Dynamic structure factor at the critical point: (a) Raw data for the lowest wave numbers k (increasing
from top to bottom). The time is given in lattice units and the lines are drawn as a guide to the eye. (b) Test of the dynamic scaling form of
C(k,t). The value of the dynamic critical index z is determined by varying z until all points fall onto a master curve. The inset shows that the
collapse is incomplete for z significantly differing from 2.25. (c) Relaxation rate � at the critical point obtained from exponential fits to the
dynamic structure factor for different wave numbers. The solid line is ∝k2.2.

In Fig. 5, the behavior of the order-parameter relaxation rate
(obtained from exponential fits to the dynamic structure factor)
is investigated in greater detail for different wave numbers k

and reduced temperatures θ , where θ = (rc − r)/rc. As seen in
Fig. 5(a), the relaxation rate at fixed k first markedly decreases
on approaching the critical point (θ = 0) but eventually levels
off at a finite value due to a nonzero speed of sound. Also,
the expected temperature dependence � ∝ θzν with zν � 2.2
is not observed but instead a less steep decrease. These
effects are well-known consequences of the finite system size
and are observed also for static quantities (see Ref. [119]).
Analogously to statics, finite-size effects can be expected
to be much less pronounced when looking directly at the
wave-number dependence of a critical quantity. Indeed, in
Fig. 5(b), it is clearly seen that, when approaching the critical
point, � smoothly assumes its expected power law ∝kz.
Sufficiently far above the critical point, order-parameter modes
at low k cross over to the propagating regime and a relaxation
rate can no longer be defined.

In Fig. 5(c), the effective longitudinal viscosity, νlR(k) =
c2
sR(k)/�(k) = kBT /[�(k)C(k)], computed from the data of

the relaxation rate and static structure factor, is shown. Far
above the critical temperature, νlR assumes its bare value νl and
is practically independent of wave number, while at criticality
(θ = 0), the expected power-law divergence νlR ∝ k−x is

reproduced with reasonable accuracy. Note that the critical
enhancement is multiplicative and independent of the bare
viscosity. Deviations at the lowest k can be attributed to the
relatively strong finite-size effects that occur in the static
structure factor of the present model [119]: at low k, C(k)
appears slightly steeper than the expected k−2+η power law at
the critical point, which is reflected in a weaker-than-expected
divergence of the longitudinal viscosity.

2. Shear viscosity

Turning to the critical behavior of the shear viscosity, we
study here only the contribution from the thermodynamic pres-
sure tensor, Pxy = κ(∂xρ)(∂yρ), via the Green-Kubo relation

νs,crit(k) =
∫ ∞

0
dt 〈Pxy(k,t)Pxy(−k,0)〉/(V kBT ) (70)

[cf. Eq. (68)].4 Figure 6(a) shows the so obtained temperature
dependence of νs,crit at k = 0 close to the critical point, whereas
Fig. 6(b) shows the wave-number dependence of νs,crit at the
critical temperature (θ = 0) on a double-logarithmic (main

4See also Refs. [125,126] for an application of the Green-Kubo
formalism to determine viscosities in the lattice Boltzmann method.
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FIG. 5. (Color online) (a) Dependence of the relaxation rate on the reduced temperature θ = (rc − r)/rc (r is the Landau parameter and rc

its value at the critical point) for different wave numbers. The expected power-law decrease of � (dashed line) is rounded off when approaching
the critical temperature due to the finite system size. (b) Wave-number dependence of the relaxation rate for different reduced temperatures
approaching the critical point from above. Data points in the transition region between the overdamped and propagating acoustic regime are
omitted. The power law ∼k2−η ∼ k1.75 corresponds to the van Hove prediction for �, where a wave-number-independent νlR is assumed.
(c) Effective longitudinal viscosity νlR (normalized to its bare value νl) in dependence of temperature and wave number, approaching the
critical point from above. Finite-size effects, leading to a weaker-than-expected divergence of νlR , are noticeable at low k (see text). The lines
are drawn as a guide to the eye.

plot) and logarithmic-linear (inset) scale. While there appears
some logarithmic growth of νs,crit(k) at larger k, the plateau
at low k suggests that the shear viscosity stays finite in 2D,
in disagreement with the scaling predictions of Eq. (68). Note
that, although the shear viscosity at k = 0 when plotted against
reduced temperature [Fig. 6(a)] exhibits an extended plateau
towards θ → 0 as well, this effect cannot be unambiguously
attributed to the nondivergent nature of νs,crit, as finite-size
effects are expected to contribute significantly here [cf.
Fig. 5(a), where a similar effect is seen for the relaxation
rate]. The correlation function of the thermodynamic shear
stress, 〈Pxy(t),Pxy(0)〉, is found to decay in a nonexponential
manner over a characteristic time scale that is much shorter
than the relaxation of the order parameter [Fig. 6(c)]. The
finiteness of the critical shear viscosity can also be inferred
from its scaling behavior with the system size L [inset to
Fig. 6(c)]. Interestingly, νs,crit is found to even decrease with
larger L by a power law with a small exponent of roughly
−0.15. From the system-size dependence of the shear-stress
correlation function, it is concluded that this behavior arises
from both a decrease of the shear-stress relaxation time and a
decrease of the equal-time autocorrelation of Pxy with L [main
plot of Fig. 6(c)]. We find a similar behavior also slightly away

from the critical point, although the effect is less pronounced
there.

A possible reason for the disagreement with the critical
scaling predictions of Eq. (68) might be that, by computing the
correlation function of the stress tensor Pxy in our simulations,
the renormalization of the square-gradient parameter κ is not
properly taken into account, since it enters here only as a
constant numerical prefactor. Indeed, if this effect is neglected
in Eq. (68), the scaling exponent changes to z − d − 2η < 0
in 2D, implying a nondivergent νs,crit. An alternative method
to determine the effective shear viscosity would be to compute
the transverse current correlation function. However, due to the
small value of κ , which is a necessity of the present LB model
(see Refs. [118,119]), νs,crit remains orders of magnitude below
its bare value νs . Thus, exceeding computational resources
would be necessary to extract the fluctuation contribution to
the shear viscosity from the transverse current correlation
function. Clearly, a different critical behavior of the shear
viscosity can also have repercussions on the order parameter
dynamics and lead to a slightly different value of the dynamic
critical exponent z. Further numerical investigation of the shear
viscosity in a two-dimensional isothermal fluid using alterna-
tive simulation methods are, thus, desirable for future work.
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FIG. 6. (Color online) (a) Critical fluctuation contribution to the shear viscosity in dependence of the reduced temperature. The data (filled
symbols) is obtained from simulations using the Green-Kubo relation (70) at k = 0. The solid curve represents the theoretical prediction
of Eq. (68). (b) Wave-number dependence of the critical shear viscosity (at θ = 0) obtained from Eq. (70), plotted in double-logarithmic
representation. For comparison, the same data is plotted in the inset in log-linear scale. (c) Finite-size behavior of the shear stress correlation
function (normalized by the system volume V = L2) and the critical fluctuation contribution to the shear viscosity, νs,crit (inset). The dashed
curve is ∝L−0.15. Time is expressed in units of the characteristic order-parameter relaxation time 1/�op. The theoretically predicted power-law
divergence of the shear viscosity is not recovered by the present simulations. See text for further discussion.

IV. DISCUSSION

In a conventional single-component fluid (model H), the
dominant transport mechanism is heat diffusion, while sound
waves are decoupled from the order-parameter dynamics [1,6,
50,69]. In contrast, under isothermal conditions, heat diffusion
is absent and order-parameter fluctuations can relax only via
sound waves. Based on scaling considerations it has been
argued here that, below four dimensions, the order-parameter
dynamics of the critical isothermal fluid is characterized by
model A–type behavior. This implies that, at long wavelengths,
sound waves are overdamped due to a strongly diverging bulk
viscosity, νl ∝ ξx . The relaxation rate, � = c2

s /νl , scales as ξ−z

with a dynamic critical exponent of z = γ /ν + x = 2 − η +
x, where γ /ν represents the contribution from the isothermal
speed of sound and x ≈ 1.7η represents the “nonclassical”
contribution from the renormalized bulk viscosity. While in
model H, the divergence of the kinetic coefficient arises due
to the advective coupling to the transverse velocity modes
[6,50], it is due to the nonlinear thermodynamic pressure
in the isothermal case. Longitudinal and transverse currents
are approximately decoupled for d close to 4—a property
that becomes exact in the linear case. In 2D, our simulations
of the fluctuating hydrodynamic equations yield a value of

z ≈ 2.2 ± 0.1 and x ≈ 0.45 ± 0.1, in reasonable agreement
with theoretical expectations and Monte Carlo simulations of
model A. The scaling theory predicts the shear viscosity to
remain finite for d > 2 and weakly diverge by a power law
in two dimensions. This divergence could, however, not be
observed within the present simulation approach. The essential
differences in the critical dynamics of an isothermal and an
ordinary fluid (model H) are collected in Table I.

It is interesting to compare the present findings also
to the situation in hydrodynamic models of the glass
transition [40,41,44,97], where the isothermal compressible
Navier-Stokes equations have been investigated in conjunction
with a purely Gaussian free energy. There, the density
correlation function shows an an anomalously slow decay at
low temperatures, accompanied by a strong increase of the bulk
viscosity. Quite analogously to the case in critical dynamics,
this is a generic mode-coupling effect caused by a nonlinear
pressure term. In the case of a supercooled liquid, however,
the dominant contribution arises from the quadratic pressure
nonlinearity [rφ2 in Eq. (20)], whereas in the critical fluid,
this term turns out to be irrelevant due to the smallness of r .

The present model is particularly interesting in the two-
dimensional case, where an experimental realization of
the isothermal condition might be achievable. While the
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FIG. 7. Schematic diagrams of the additional contributions to the order-parameter self-energy [cf. Eq. (47)] at two-loop order. Unlabeled
dots represent the possible couplings r , κ , νl , νt associated with the three-point vertices. Open circles and arrows (indicating correlation or
response functions) are understood to be present on some of the internal lines.

present scaling considerations indicate the divergence of
additional contributions to the bulk viscosity beyond the
model A term, our simulation results suggest that the model
A–type critical behavior essentially persists also in 2D,
with possible corrections to critical exponents being small,
at least. For future work, it, thus, will be interesting to
treat the isothermal fluid model within a renormalization-
group approach and derive more detailed predictions in the
two-dimensional case. In order to clarify the critical behavior
of the shear viscosity in 2D, alternative simulation methods
could be invoked.

The predictions obtained in this work might be experimen-
tally testable on single-component monolayer films that admit
for liquid-vapor-like phase-separation below a critical point
[14,15]. Of course, the present model is highly idealized in that
it neglects the possible influence of electrostatic long-range
interactions [127–130], friction between fluid and substrate,
and hydrodynamic back-coupling [9,90,131,132]. Also, it is
assumed that the rate of heat transfer between fluid and sub-
strate is sufficiently large to provide an effective isothermal en-
vironment for the critical fluctuations (cf. Ref. [133]). Since the
long-wavelength dynamics of a fluid becomes arbitrarily slow
on approaching the critical point, one might expect that even
a relatively small thermal coupling will actually be sufficient.

From a theoretical perspective, crossover behavior between
different dynamic universality classes of a single-component
fluid film is expected: in case of negligible friction, model H is
obtained for vanishing thermal coupling and, as shown in this

work, model A for perfect thermal coupling. In the opposite
case of large friction, it is expected that model B (i.e., a purely
diffusive order-parameter transport) results [80,90].
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APPENDIX: FURTHER CONTRIBUTIONS TO THE
SELF-ENERGY

The contributions to the order-parameter self-energy at
two-loop order are diagrammatically shown in Fig. 7. We have
omitted diagrams where some of the solid lines are replaced
by wavy lines representing transverse current response or
correlation functions. Regarding the scaling behavior, these
types of diagrams need not be explicitly evaluated, since all
three-point vertices scale in the same way. Taking into account
the proper critical behavior of the couplings, the dynamic part
of each diagram in Fig. 7 is found to scale ∝ξ 2−d [up to
corrections of exponents of O(η)] and, thus, gives negligible
contributions to the renormalized viscosity for d > 2.
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