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Quantum transport efficiency and Fourier’s law
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We analyze the steady-state energy transfer in a chain of coupled two-level systems connecting two thermal
reservoirs. Through an analytic treatment we find that the energy current is independent of the system size, hence
violating Fourier’s law of heat conduction. The classical diffusive behavior in Fourier’s law of heat conduction
can be recovered by introducing decoherence to the quantum systems constituting the chain. We relate these
results to recent discussions of energy transport in biological light-harvesting systems, and discuss the role of
quantum coherence and entanglement.
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I. INTRODUCTION

In recent years, energy propagation in systems that must
be described in a quantum mechanical way has become a
growing field. This growth is partially due to the fact that
the understanding of how energy flow can be controlled and
efficiently distributed has been identified as one of the crucial
fields of study for the development of modern societies [1,2].
One of the conceptual pillars in energy transport, the validity
of Fourier’s law of heat conduction, has become an active area
of investigation and has been investigated in classical [3,4] and
quantum systems [5–7].

Since experimental evidence for quantum coherent excita-
tion transport in the early light-harvesting step of photosyn-
thesis has been presented [8,9], investigations in systems of
molecular biology have focused on the question to what extent
quantum mechanics contributes to the near perfect transport
efficiency in light harvesting. The emphasis has been put on
the transient transport efficiency of an initial excitation in
the presence of noise and disorder [10–12]. The experiments
have been performed with pulsed femtosecond laser sources
to excite and probe the molecule samples, whereas it has been
suggested [13,14] that the light-harvesting process in vivo
would be described more accurately in a steady-state scenario,
because the light flux coming from the sun is essentially
static on time scales that are relevant for molecular excitation
transport. A realistic treatment of the energy transport through
photosynthetic complexes in such a scenario will be a
formidable task and is yet to be developed. In this paper, we
will reconsider the treatment of the light-harvesting complex
as a system of coupled two-level systems [10–12,14] and study
the role of noise and entanglement in a steady-state scenario.
We will concentrate here on a simple one-dimensional model,
for which we find an analytical formula for the heat current
and its dependence on the dephasing. Using this formula, we
find a transition from ballistic to diffusive transport due to
decoherence, recovering earlier results [15]. We also discuss
implications regarding the possible role of the environment
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for the transport efficiency [10–12] and the occurrence of
entanglement in the steady state.

An important step in the understanding of how Fourier’s
law emerges from the quantum domain has been made by
Michel et al. [6]. In this work Fourier’s law is derived for a
model system that is a chain of N identical coupled subunits,
where each of the subunits has a single ground state and a
narrow “band” of equally spaced excited states. In the present
work, we employ a similar system, i.e., a one-dimensional
chain of two-level systems, for which we compare the energy
current in the classical analog, where Fourier’s law applies,
with the quantum case, where we find the energy current to be
independent of the chain length. This means that for the one-
dimensional chain of two-level atoms Fourier’s law applies
for the classical variant but there is a distinct violation in the
quantum transport scenario. By introducing dephasing to the
quantum model, we can study the transition from coherent
to incoherent transport and show how Fourier’s law can be
recovered from the quantum case.

Fourier’s law of heat conduction states that the heat current
through a classical macroscopic object is proportional to the
applied temperature gradient [16],

J = −κ∇T , (1)

where κ is the thermal conductivity. For a one-dimensional
homogeneous object, the heat current is therefore determined
by the temperature difference of the two heat baths �T , and
the object length L. Generally, the validity of Fourier’s law
does not seem to be strictly linked to the classical or quantum
nature of the system. For example, in the classical limit, for
diffusive systems Fourier’s law can be applied, but for ballistic
systems in one and two dimensions there are divergences of the
thermal conductivity as κ ∼ Lα (see [4] for a review of heat
transfer in low-dimensional systems). For a discretized object
composed of N equally spaced parts (sites), L ∝ N and thus

J = −κ
�T

L
= −cNα �T

N
= −c �T Nα−1, (2)

where c is a constant of proportionality. For some
one-dimensional quantum systems, on the other hand,
there is evidence that Fourier’s law is valid, i.e., α = 0 [5,6].
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FIG. 1. Chain of two-level quantum systems with its terminal
sites coupled to heat baths of different temperatures.

II. QUANTUM MODEL

The quantum system considered is a one-dimensional chain
of N � 2 two-level systems with coherent next-neighbor
couplings as depicted in Fig. 1. The Hamiltonian is

H =
N∑

k=1

h̄ω

2
σ z

k +
N−1∑
k=1

h̄g(σ+
k σ−

k+1 + σ−
k σ+

k+1), (3)

where σ z
k , σ+

k , and σ−
k are the Pauli-z, raising, and lowering

operators in the basis of ground and excited states of the
kth two-level system, respectively, with on-site energy h̄ω

and coupling strength g. Similar simple models of coupled
effective two-level systems are used in recent analyses of
energy transfer in photosynthetic complexes [10–12] and spin
transport in models for magnetism [15,17,18]. The influence
of the two heat baths is modeled by incoherently coupling
each of the terminal sites to a bosonic heat bath described by
a master equation of Lindblad form. The system dynamics is
then described by the master equation

ρ̇ = − i

h̄
[H,ρ] + L1ρ + LNρ, (4)

whereLk acts on the first (last) site for k = 1 (N ), respectively,
and is given by

Lkρ = �k(nk + 1)
(
σ−

k ρσ+
k − 1

2 {σ+
k σ−

k ,ρ})
+�knk

(
σ+

k ρσ−
k − 1

2 {σ−
k σ+

k ,ρ}). (5)

The first term in Lk accounts for emission into the reservoir,
the second term accounts for absorption, �k is the interaction
rate, and nk = 1/{exp[h̄ω/(kBTk)] − 1} is the temperature-
dependent mean excitation number at the resonance frequency
in the respective bosonic thermal reservoir [19], with kB being
Boltzmann’s constant.

III. HEAT CURRENT

The expression of the heat current for a quantum system,
JQ, is derived from the time derivative of the energy of the
system,

Ė = d

dt
〈H 〉 = Tr(Hρ̇) = 0, (6)

which vanishes in the steady state. When inserting (4) into this
expression, we obtain

0 = Tr(HL1ρ + HLNρ) =: J1 + JN, (7)

on the basis of which one can define the heat current to and
from the respective reservoirs, both being of opposite sign, but
equal in magnitude [19]. The heat current through the chain
is therefore equal to the net energy that enters the network
from one reservoir and exits to the other per unit time, i.e.,
the quantity JQ = |J1| = |JN |. A straightforward evaluation
of JQ for our system in the steady state yields the compact

expression

JQ = γ1h̄ω(s1 − 〈σ+
1 σ−

1 〉) − γ1h̄g

2
(〈σ+

1 σ−
2 〉 + 〈σ−

1 σ+
2 〉), (8)

where γ1 = �1(2n1 + 1) denotes the effective coupling to the
reservoir, s1 = n1/(2n1 + 1) is the excited-state population of
a single two-level system in thermal equilibrium with reservoir
1, and all expectation values are taken with respect to the steady
state of the chain. The heat current in the steady state is thus
solely characterized by the excited-state population of the first
site and its specific energy gap, and since 〈σ+

1 σ−
2 〉 = 〈σ−

1 σ+
2 〉∗,

it is furthermore given by the real part of the coherence
between sites 1 and 2. An analogous expression can be given
for the last site of the chain, which is connected to the second
heat bath.

For the complete expression of the heat current, we need
the excited-state population of the first site, 〈σ+

1 σ−
1 〉, and the

coherences between the first two sites, 〈σ+
1 σ−

2 〉. The excited-
state populations of the individual sites in the steady state
can be obtained from considering specific matrix elements of
the master equation of the kind ∂

∂t
〈σ+

k σ−
k 〉 = Tr(σ+

k σ−
k ρ̇) = 0.

There are different cases: sites 1 and N , which are connected
to their respective heat baths, and the remaining sites, which
are in the middle of the chain. The relevant equations for the
terminal sites k = 1 and k = N yield

γ1(s1 − 〈σ+
1 σ−

1 〉) = ig(〈σ+
1 σ−

2 〉 − 〈σ−
1 σ+

2 〉),
γN (sN − 〈σ+

N σ−
N 〉) = −ig(〈σ+

N−1σ
−
N 〉 − 〈σ−

N−1σ
+
N 〉).

For the inner sites 1 < k < N , we obtain

〈σ+
k−1σ

−
k 〉 − 〈σ−

k−1σ
+
k 〉 = 〈σ+

k σ−
k+1〉 − 〈σ−

k σ+
k+1〉, (9)

that is, the imaginary parts of all coherences between neigh-
boring sites are equal. These equations motivate the following
general form for the excited-state populations of the terminal
sites:

〈σ+
1 σ−

1 〉 = s1 − �/γ1, 〈σ+
N σ−

N 〉 = sN + �/γN. (10)

The transport along the chain thus causes a shift of the
excited-state population of the terminal sites from the thermal
equilibrium by �/γk , where � = ig(〈σ+

1 σ−
2 〉 − 〈σ−

1 σ+
2 〉).

The coherences, and thereby �, can be obtained by a
similar argument. Summing up coherences of the steady state,
∂
∂t

∑N−1
k=1 〈σ+

k σ−
k+1〉 = 0, provides the equation

−ig(〈σ+
1 σ−

1 〉 − 〈σ+
N σ−

N 〉) = γ1

2
〈σ+

1 σ−
2 〉 + γN

2
〈σ+

N−1σ
−
N 〉,

the imaginary part of which, using (9) and (10), yields

� = 4g2γ1γN (s1 − sN )

(γ1 + γN )(4g2 + γ1γN )
. (11)

Next, for the complete solution of the heat current, we need
the real part of the next-neighbor coherences, i.e., 〈σ+

1 σ−
2 〉 +

〈σ−
1 σ+

2 〉. For a chain of sites with uniform on-site energy as
considered here, these coherences are purely imaginary, which
can be shown from the structure of the master equation (see
Appendix A). We thus arrive at the final expression of the heat
current for a uniform quantum chain,

JQ = h̄ω� = −2h̄ωgIm〈σ+
1 σ−

2 〉. (12)
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Here, we observe an important property of the heat current. It
is independent of the chain length and thus violates Fourier’s
law, that is, the thermal conductivity scales as κ ∼ N , and thus
α = 1.

IV. CLASSICAL MODEL

Next, for comparison of the quantum model with the
analogous classical model, we derive the heat current for the
latter, which corresponds to the symmetric simple exclusion
process [20], or Förster-type hopping [21]. It is a chain of
N sites, which each may carry a single particle (excitation)
that probabilistically moves between neighboring sites. The
probability of the particles to jump to each neighboring site
are equal, with the only condition that each site can carry only
one particle. This diffusive model fulfills Fourier’s law. The
classical probability for a particle to be at site k is given by
Pk , and the state of the system at any given time is defined by
the set of probabilities {Pk} for each site. As in the quantum
model, the extreme sites are connected with thermal baths. The
master equation (4) is thus turned into a Pauli master equation,
i.e., a set of classical rate equations:

Ṗ1 = �1n1 + P1[−�1(n1 + 1) − �1n1 − V ] + V P2,

Ṗk = V (Pk−1 + Pk+1 − 2Pk) (k �= 1,N ),

ṖN = �NnN + PN [−�N (nN + 1) − �NnN − V ] + V PN−1,

where V is the constant rate of hopping between sites, and �k

and nk are the bath parameters, with the same interpretation
as in the quantum master equation. In the classical system, the
heat current is defined by JC = |V (Pi+1 − Pi)|, i.e., the net
transfer rate of energy between sites, which in the steady state
yields

JC = γ1γNV (s1 − sN )

V (γ1 + γN ) + γ1γN (N − 1)
.

In the limit N → ∞, the heat current scales with the system
size as JC ∼ V (s1 − sN )/N. Therefore, the heat current of
the classical analog obeys Fourier’s law with κ = const. and
α = 0, in contrast to the quantum system.

V. DEPHASING

The difference between the heat currents of quantum
and classical systems can be lifted by adding a dephasing
environment to each site of the quantum model. This amounts
to introducing an additional term for every site in the master
equation (4):

Ldephρ = γ

N∑
k=1

(
σ+

k σ−
k ρσ+

k σ−
k − 1

2
{σ+

k σ−
k ,ρ}

)
. (13)

This term reduces the quantum coherences of the system
and thereby progressively transforms the coherent transport
into an incoherent, classical one. The transition depends on
the parameter γ . For small values of the dephasing rate the
coherent transport is predominant and the transport should
be similar to the pure quantum one. A finite dephasing rate
causes an incoherent transport for sufficiently long chains with
equal classical probabilities of transition between different
neighbors, in a similar way to the symmetric simple exclusion
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FIG. 2. (Color online) Heat current as a function of the system
size in a log-log plot (left) for the classical model for different values
of the coupling V , and (right) for the quantum model for different
values of the dephasing rate γ . Unless otherwise indicated V = 1,
g = 1, kBT1 = 1, h̄ω = 1, �1 = �N = 1, and TN = 0.

process. For a very high dephasing rate the coherences are
reduced dramatically and therefore the transport between
neighboring sites is suppressed.

VI. DISCUSSION

The results for the classical and quantum chain are given in
Fig. 2 on a log-log scale. The classical model features a linear
dependence in the system size, for high enough values of N

as expected. The heat current of the quantum case without
dephasing is also linear in N , but constant. However, when
additional dephasing is applied, the heat current is suppressed
and now features a size dependence as 1/N for sufficiently
large values of the dephasing rate γ , as confirmed by a
numerical analysis of fitting the heat current to a power law (see
Appendix B). By adding dephasing to the quantum system,
we can thus recover the classical 1/N dependence of the heat
current in the large-N limit. Phase transitions of this kind have
also been observed in low-dimensional models for magnetism;
see, e.g., [15].

In a common interpretation of a dephasing environment,
dephasing is caused by fluctuations of the on-site energy of
every site. The excited state then effectively forms a band
of states that is separated by a gap from the ground state.
Adding dephasing thus effectively recovers the quantum model
treated in [6], and yields the same qualitative result concerning
the validity of Fourier’s law regarding its dependence on the
system size.

Turning from the system size to the temperature depen-
dence, we find that in the quantum system the heat current
features a strong dependence on the temperatures of the heat
baths. Figure 3 collects the temperature dependencies for both
models. The heat current of the classical system saturates for
high values of the temperature, which constitutes a violation
of Fourier’s law. This is due to the fact that the system has only
two levels, which implies a finite heat capacity of the system.
Therefore, it cannot transport an arbitrarily large amount of
energy, and thus cannot scale linearly with the temperature
for a large temperature difference. The quantum transport
features a more intricate behavior. For a high temperature
of the hot heat bath, its mean number of excitations and
thereby γ1 increase, causing a Zeno-type effect that reduces the
transport efficiency of the system. With additional dephasing,
the temperature dependence of the heat current of the quantum
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FIG. 3. (Color online) Heat current as a function of temperature
T1 with TN = 0 fixed, for the classical transport for different sizes of
the system (left), and the quantum transport for N = 4 and different
dephasing rate (right). Parameters are kB = 1, h̄ω = 1, �1 = �N = 1,
V = 1, and g = 1.

system approaches a qualitatively similar saturating behavior
as in the classical system.

A. Disorder

A relevant point in this respect is the influence of disorder
in the system, and the observation that additional noise
may unlock the effect of localization in disordered systems
for transient transport processes [10,11]. However, Figs. 2
and 3 show that additional noise due to local dephasing
reduces the observed heat current. Although, here, this result
is obtained for a chain with uniform on-site energies and
intersite couplings, i.e., in the absence of disorder, we have
also numerically investigated disordered chains. To this extent
we have sampled the heat current in chains with N = 5, with
all on-site energies h̄ωk and couplings gkl randomly chosen
from a uniform distribution in the interval [0,1]. In 8662 of
the 10 000 disorder samples, we found dephasing to reduce
the heat current. Whenever additional dephasing is found to
increase the heat current, the original random configuration
exhibited a heat current below average of the entire random
ensemble. We thereby extended what has been observed in
the transient case [12] to the one-dimensional steady-state
scenario.

B. Entanglement

With the perspective of identifying conceivable biological
realizations of this transport scenario, an interesting aspect
is the question whether entanglement is generated and what
role it plays, as addressed in [22,23]. Figure 4 summarizes for
which parameters entanglement of the nonequilibrium steady
state occurs for a chain with N = 2 and equal effective bath
rates γ1 = γN . We find that entanglement can occur, but only
in specific regions of the parameter space. Furthermore, for
rates �1 = �N , the steady state is never entangled for any
choice of bath temperatures and coupling g. A bias in the bath
rates, however, may drive the system to an entangled steady
state. Depending on the interaction strength between the sites,
entanglement may exist for certain range of temperatures. In
contrast to entanglement studies in photosynthesis [22], in the
present scenario we find that the occurrence of entanglement
is not equivalent to, and does not necessarily come with,
the mere presence of coherences. It is thus an additional
feature.
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FIG. 4. (Color online) Region of parameter space where the
steady state may exhibit entanglement for γ1 = γN . Within the shaded
area of all possible values for s1 and sN , the upper (darker) parameter
region indicates values for s1 and sN where entanglement can occur
(dashed boundary not included). That is, only for s1 and sN in this
region do parameters g and γ1 = γN exist such that the steady state is
entangled. Entanglement cannot occur for any values of the coupling
parameters outside the darker shaded region.

VII. SUMMARY

To conclude, we have analyzed the energy transfer in a
quantum system, formed by a paradigmatic chain of two-level
systems, for which we found the heat current in the steady
state to be independent of the chain length. We recover
Fourier’s law in the quantum-to-classical transition by adding
dephasing that destroys quantum coherences. These results are
compared with a purely classical model, the symmetric simple
exclusion model, showing that for an appropriate value of
the dephasing rate the quantum and classical systems exhibit
the same qualitative behavior. It is the coherences in the
system that govern the transport properties by design, whereas
entanglement may appear independently and in addition for a
sufficiently large nonequilibrium.
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APPENDIX A: PURELY IMAGINARY COHERENCES

From the structure of the master equation in Lindblad form
(4), an ordinary linear differential equation, one can directly
infer that next-neighbor coherences are imaginary. In Liouville
space the equation reads ρ̇ = Lρ, where ρ is the vector of all
matrix elements, which are coupled linearly by the matrix L,
the Liouvillian. For our purposes, it is helpful to introduce
notation for the matrix elements:

12···N 〈ik · · · q|ρ|j l · · · r〉12···N ≡ ρij,kl,...,qr ,

where indices are grouped by subsystem. The vectors are
products of basis vectors of the individual sites with ground
state |0〉 and excited state |1〉. We thus treat matrix elements
with possible indices “0” and “1.”
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The Liouvllian L is a sum of three parts, each of which
couples certain matrix elements, which yields independent
sets of coupled matrix elements. It is possible to distinguish
independent sets by observing general rules of how the
Liouvillian couples matrix elements. We formulate these rules
by the way indices are transformed by the Liouvillian.

The Lindblad terms Lk of the Liouvillian inject or extract
excitations at the terminal sites of the chain. Thereby, they
transform matrix elements into one another that differ only by
a pair of “00” and “11” indices of the first or last subsystem,
e.g., ρ00,01 ↔ ρ11,01. This constitutes a change of the total
number of indices “0” and “1” by two, hence leaving the
respective total number of indices “0” and “1” even or odd.
Since H commutes with the excitation number operator, the
commutator that appears in the Liouvillian leaves the total
number of excitations invariant and hence couples only matrix
elements with the same number of indices “0” and “1,”
respectively. The coherent dynamics captures the exchange of
excitations between neighboring sites and, in terms of matrix
elements, couples those that can be transformed into each other
by exchanging a “0” and a “1” index between neighbors, while
maintaing the relative index position, i.e., left and right indices
are transformed within themselves, e.g., ρ01,10 ↔ ρ11,00. This
implies that the ground state ρ00,00,... is coupled to all other
populations, i.e., matrix elements with indices of the form
ρii,jj,..., and only to those coherences that contain an equal
number of indices “1” on the left and right. The remaining
matrix elements form an independent closed set of equations,
whose steady-state solution is therefore the trivial solution,
where all matrix elements vanish. (The set of equations that
includes the populations is not solved by the trivial solution

in the steady state because it is subject to the boundary
condition Tr ρ = 1.) Note that the diagonal of L contains only
coefficients with negative real parts, meaning that all matrix
elements would decay to zero if not sufficiently maintained by
a positive contribution due to another element. A population
is coupled to a next-neighbor coherence, e.g., ρ11,00 ↔ ρ01,10,
with a coupling ±ig such that (real) populations pump the
imaginary part of the next-neighbor coherences, and vice
versa. The contributions to and from the real part of the
latter cancel, leading to their decay. In longer chains (N > 2)
next-neighbor coherences are also coupled to next-to-nearest-
neighbor coherences, e.g., ρ01,10,00 ↔ ρ01,00,10, with the same
factor ±ig thus coupling the imaginary (real) part of the
former to the real (imaginary) part of the latter. Therefore,
the imaginary and real parts of the next-neighbor coherences
belong again to different and independent sets of coupled
differential equations. The real parts have the trivial solution,
whereas the imaginary part is nonzero in the steady state.

APPENDIX B: FIT OF DEPHASING NUMERICS

To analyze the behavior of the quantum system under the
effect of dephasing, we take the logarithm of (2) and obtain a
linear dependence between ln J and ln N :

ln J = ln(−c�T ) + (α − 1) ln N.

By a linear regression of the numerical data of Fig. 2, for γ = 5
we obtain a value α = 0.0242 with a regression coefficient
R = 0.999 985 1. The small discrepancy with Fourier’s law
(α = 0) is due to the finite size of the system.
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