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Maximum-entropy distributions of correlated variables with prespecified marginals

Hernán Larralde
Instituto de Ciencias Fı́sicas, UNAM, Apartado Postal 48-3, Codigo Postal 62251, Cuernavaca, Morelos, Mexico

(Received 6 August 2012; published 13 December 2012)

The problem of determining the joint probability distributions for correlated random variables with prespecified
marginals is considered. When the joint distribution satisfying all the required conditions is not unique, the “most
unbiased” choice corresponds to the distribution of maximum entropy. The calculation of the maximum-entropy
distribution requires the solution of rather complicated nonlinear coupled integral equations, exact solutions to
which are obtained for the case of Gaussian marginals; otherwise, the solution can be expressed as a perturbation
around the product of the marginals if the marginal moments exist.
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Consider the situation in which we are given two random
variables, say X1 ∈ I1 and X2 ∈ I2, which we know to be dis-
tributed as P1(X1) and P2(X2), respectively. Further, assume
we know the variables to be correlated; for example, assume we
are given the covariance �12 = 〈X1X2〉 − 〈X1〉〈X2〉 �= 0. We
are now required to construct the joint probability distribution
P(1,2)(X1,X2) with the prescribed marginals P1(X1) and
P2(X2), and covariance �12.

This and other similar problems arise in a wide variety
of contexts, ranging from the description of correlated fi-
nancial instruments in economics [1], electroencephalogram
signals [2,3] in medicine, to systems out of equilibrium in
statistical mechanics [4–7]; to name but very few. Actually, in
finance and other fields of intense applied statistics [8–11],
it has become popular to describe interdependent random
variables with given marginals using “copulas.” The idea
there is that the “interdependence” of, say, N random vari-
ables described by cumulative marginal distributions Fi(Xi)
is encoded in the N-dimensional cumulative distribution
function with uniform marginals, the copula C(u1, . . . ,uN ) :
[0,1]N → [0,1], with C(1,1, . . . ,uj , . . . ,1) = uj . The com-
plete description is achieved through the joint cumulative
distribution F (X1, . . . ,XN ) = C(F1(X1), . . . ,FN (XN )). This
approach treats the individual statistics of the random vari-
ables, the marginals, separately from the interdependence
of the said variables, allowing one, for example, to change
the marginals while keeping the interdependence, the copula,
fixed. These tools are extremely powerful and general, but hard
to estimate directly from data. Another characterization of data
interdependence relates to whether there is a causal relation
between the variables, which can be tested along the lines origi-
nally proposed by Granger in the context of econometrics [12].
In contrast to these more sophisticated methods, and while far
from a complete description of the interdependence structure
of much data, the correlation between two random variables is
a frequently and easily measured quantity, extensively used in
many disciplines, including, of course, physics.

As it stands, however, the problem may be ill posed since
there could be infinitely many distributions (or none at all)
satisfying the conditions of the prespecified marginals and
given covariance. To lift the ambiguity, when it arises, we
follow Jaynes [13] and require the joint distribution function to
be that which maximizes the relative entropy or, equivalently,
minimizes the discrimination information over the product of
the marginals. This choice is, as argued by Jaynes, the “least

biased” distribution which is consistent with the restrictions:
“the maximization of entropy is [· · ·] a method of reasoning
which ensures that no unconscious assumptions have been
introduced.” [13] To this point, then, the problem is formally
straightforward: we need to find the extreme of the entropy
functional subject to the appropriate restrictions. That is, we
require P(1,2)(x,y) such that

0 = δ

[ ∫
I1×I2

P(1,2)(X1,X2) ln

(
P(1,2)(X1,X2)

P1(X1)P2(X2)

)
dX1dX2

+ λ12

∫
I1×I2

X1X2P(1,2)(X1,X2)dX1dX2

+
∫

I1×I2

[a(X1) + b(X2)]P(1,2)(X1,X2)dX1dX2

]
(1)

(we do not need to condition the distribution to be normalized,
as the marginals are assumed to be already normalized). The
required distribution can be written as

P(1,2)(X1,X2) = P1(X1)P2(X2)e−a(X1)−b(X2)−λ12X1X2−1

≡ P1(X1)P2(X2)A(X1)B(X2)e−λ12X1X2 . (2)

The Lagrange multipliers a(X1) and b(X2) [or equivalently the
functions A(X1) and B(X2)], and the constant λ12, are chosen
to enforce the restrictions, which results in the set of coupled
nonlinear integral equations

1 = A(X1)
∫

I2

P2(X2)B(X2)e−λ12X1X2dX2, X1 ∈ I1,

(3)
1 = B(X2)

∫
I1

P1(X1)A(X1)e−λ12X1X2dX1, X2 ∈ I2,

plus a condition on the value of λ12:∫
I1×I2

X1X2P1(X1)P2(X2)A(X1)B(X2)e−λ12X1X2dX1dX2

= �12 + 〈X1〉〈X2〉, (4)

where the mean values 〈X1〉 and 〈X2〉 are calculated from
the corresponding marginals. The above equations may be
rewritten in the slightly more compact form

P1(X1) = Q
(2)
1 (X1)

∫
I2

Q
(2)
2 (X2)e−λ

(2)
12 X1X2dX2, X1 ∈ I1,

(5)
P2(X2) = Q

(2)
2 (X2)

∫
I1

Q
(2)
1 (X1)e−λ

(2)
12 X1X2dX1, X2 ∈ I2,
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and∫
I1×I2

X1X2Q
(2)
1 (X1)Q(2)

2 (X2)e−λ
(2)
12 X1X2dX1dX2 = �12, (6)

where Q
(2)
1 (X1) = P1(X1)A(X1) and Q

(2)
2 (X2) =

P2(X2)B(X2). The superscripts have been added to indicate
that these quantities are elements of the joint distribution of
two variables.

Though far from opening the way to a full solution, it
is worthwhile noting that Eqs. (5) can be decoupled by
multiplying the first one, say, by e−λ

(2)
12 X1Y and integrating over

X1. Then

P̃1
(
λ

(2)
12 Y

) ≡
∫

I1

P1(X1)e−λ12X1Y dX1

=
∫

I2

Q
(2)
2 (X2)

∫
I1

Q
(2)
1 (X1)e−λ

(2)
12 (X2+Y )X1dX1dX2

=
∫

I2

Q
(2)
2 (X2)P2(X2 + Y )

Q
(2)
2 (X2 + Y )

dX2, (7)

where P̃1(Y ) is the Laplace transform of P1(X). This is a rather
difficult nonlinear integral equation that determines Q

(2)
2 (X2),

up to a multiplicative constant, in terms of the marginals and
the covariance.

If the variables are discrete rather than continuous, similar
expressions are obtained with summations instead of integrals.
Either way, the above equations turn out to be extremely hard
to solve for arbitrary marginals.

The generalization to more than two variables, while
formally equally simple, gives rise to a rather interesting
situation. To illustrate this, consider the case of three variables
X1, X2, and X3 with their respective marginals P1(X1), P2(X2),
and P3(X3); and covariance matrix elements �12, �23, and �13

(in passing, note that only the off-diagonal components of
the covariance matrix can be introduced as constraints; the
diagonal elements are fixed by the marginals). If we follow
the procedure outlined above for two variables—maximizing
entropy relative to the product of the marginals, constrained to
the appropriate marginals and correlations—it is easy to see
that the joint probability distribution should be of the following
form:

P(1,2,3)(X1,X2,X3)

= Q
(3)
1 (X1)Q(3)

2 (X2)Q(3)
3 (X3)e−λ

(3)
12 X1X2−λ

(3)
23 X2X3−λ

(3)
13 X1X3 ,

(8)

where the functions Q
(3)
i (X1) are related to the Lagrange

multipliers that constrain the marginals,

P1(X1) = Q
(3)
1 (X1)

∫
I2×I3

Q
(3)
2 (X2)Q(3)

3 (X3)

× e−λ
(3)
12 X1X2−λ

(3)
23 X2X3−λ

(3)
13 X1X3dX2dX3, (9)

and so on.
Now the question arises as to whether it must also be true

that the distribution obtained by integrating P(1,2,3)(X1,X2,X3)
over X3, say, must have the form of the constrained maximum-
entropy joint distribution for two variables discussed above.

That is, whether∫
I3

P(1,2,3)(X1,X2,X3)dX3

= Q
(3)
1 (X1)Q(3)

2 (X2)e−λ
(3)
12 X1X2

×
∫

I3

Q
(3)
3 (X3)e−(λ(3)

23 X2+λ
(3)
13 X1)X3dX3

= Q
(2)
1 (X1)Q(2)

2 (X2)e−λ
(2)
12 X1X2 = P(1,2)(X1,X2). (10)

If so, this would in turn imply that, independently of what
the marginals Pi(Xi) are, the integral that appears above can
always be resolved as∫

I3

Q
(3)
3 (X3)e−(λ(3)

23 X2+λ
(3)
13 X1)X3dX3

= q
(3)
1 (X1)q(3)

2 (X2)e−μ
(3)
12 X1X2 , (11)

in terms of which we can express Q
(2)
1 (X1) =

q
(3)
1 (X1)Q(3)

1 (X1), Q
(2)
2 (X2) = q

(3)
2 (X2)Q(3)

2 (X2), and λ
(2)
12 =

λ
(3)
12 + μ

(3)
12 .

While it turns out that for the simple cases considered
in this paper, Eq. (10) is indeed satisfied, I cannot find any
reason why it should be true in general. Actually, let me
consider another joint distribution �(1,2,3)(X1,X2,X3) defined
to be the maximum-entropy distribution conditioned so that
integrating over any variable yields the corresponding two-
point maximum-entropy distributions discussed above:

0 = δ

[ ∫
I1×I2×I3

�(1,2,3)(X1,X2,X3)

× ln

(
�(1,2,3)(X1,X2,X3)

p1(X1)p2(X2)p3(X3)

)
dX1dX2dX3

+
∫

I1×I2×I3

[α(1,2)(X1,X2) + α(2,3)(X2,X3)

+α(1,3)(X1,X3)]�(1,2,3)(X1,X2,X3)dX1dX2dX3

]
,

the solution to which can be written as

�(1,2,3)(X1,X2,X3)

= F(1,2)(X1,X2)F(2,3)(X2,X3)F(1,3)(X1,X3), (12)

where the functions F(i,j )(Xi,Xj ) are simply related to
the Lagrange multipliers α(i,j )(Xi,Xj ) and satisfy nonlinear
integral equations that enforce the conditions imposed on
�(1,2,3)(X1,X2,X3), namely,

P(1,2)(X1,X2)

= F(1,2)(X1,X2)
∫

I3

F(2,3)(X2,X3)F(1,3)(X1,X3)dX3,

(13)

and so on. The conditions on the distributions P(i,j )(Xi,Xj )
ensure that �(1,2,3)(X1,X2,X3) has the correct one-point
marginals Pi(Xi) for i = 1,2,3, and covariance �i,j . It should
be noted that P(1,2,3)(X1,X2,X3), as expressed in Eq. (8), can be
written in the form shown in Eq. (12). However, the conditions
on �(1,2,3)(X1,X2,X3) are as restrictive or more so than those
on P(1,2,3)(X1,X2,X3); thus, it should not necesarily be the case
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that P(1,2,3)(X1,X2,X3) = �(1,2,3)(X1,X2,X3). Conversely, it
does not appear to be necessarily true that

P(1,2)(X1,X2) =
∫

I3

P(1,2,3)(X1,X2,X3)dX3, (14)

etc., so that one could end with the somewhat uncomfortable
situation in which the two-point marginals obtained from the
maximum-entropy three-point distribution may themselves not
be maximum-entropy two-point distributions.

We now turn to simple cases for which the required
maximum-entropy distributions can be calculated explic-
itly. First, however, for the trivial case of “uncorrelated”
variables (i.e., the case in which �i,j = 0), the required
maximum-entropy joint distribution is indeed the product
of the marginals. The first nontrivial example is the case
of two correlated random variables with Gaussian marginal
distributions, say,

P1(X1) =
√

α

2π
e−αX2

1/2, (15)

P2(X2) =
√

β

2π
e−βX2

2/2, (16)

and let the correlation parameter be � = 〈X1X2〉. Then, to
determine the joint distribution we need to solve√

α

2π
e−αX2

1/2 = Q1(X1)
∫ ∞

−∞
Q2(X2)e−λX1X2dX2, (17)

√
β

2π
e−βX2

2/2 = Q2(X2)
∫ ∞

−∞
Q1(X1)e−λX1X2dX1, (18)

where the sub- and superscripts have been dropped for
notational lightness. Substituting Q1(X1) and Q2(X2) by
Gaussians, it is easy to see that the required maximum-entropy

joint distribution is

P(1,2)(X1,X2) = 1

2π

(
αβ

1 − αβ�2

)1/2

× e−[1/2(1−αβ�2)][αX2
1+βX2

2+2αβ�X1X2]. (19)

Perhaps not unexpectedly, the maximum-entropy joint distri-
bution for more variables with Gaussian marginals will be
again a Gaussian distribution with appropriate correlations. At
this point it is worth mentioning that if we restrict ourselves
to the class of continuous functions, then the set of joint
distributions having prespecified marginals and covariance is
convex, and the concavity of the entropy functional guarantees
that the distribution at which it is maximized is unique. How-
ever, a more difficult problem concerns whether distributions
satisfying the requirements exist at all [note, for example,
that for large enough � in Eq. (19), the argument of the
exponential changes sign, in which case P(1,2)(X1,X2) cannot
be interpreted as a probability distribution]. Unfortunately, the
general conditions under which the set of distributions having
the prescribed marginals and covariance is not empty are not
easy to establish [14]. Finally, as upon integration Gaussians
beget Gaussians, for these distributions Eq. (14), as well as
generalizations to more variables, will always hold.

Explicit expressions for maximum-entropy joint distribu-
tions corresponding to non-Gaussian marginal distributions
appear to be very hard to obtain. However, a perturbation
expansion in powers of the parameter λ can be carried out
rather easily. Writing

Q1(X1) = P1(X1)
[
1 + f

(1)
1 (X1)λ + f

(2)
1 (X1)λ2 + · · · ], (20)

Q2(X2) = P2(X2)
[
1 + f

(1)
2 (X2)λ + f

(2)
2 (X2)λ2 + · · · ] (21)

in Eqs. (5) and grouping powers of λ, after some rather messy
algebra, one can write that, correct to order λ2,

P(1,2)(X1,X2) = P1(X1)P2(X2)e−{λ(X1−〈X1〉)(X2−〈X2〉)+(λ2/2)[(〈X2
2〉−〈X2〉2)(X1−〈X1〉)2+(〈X2

1〉−〈X1〉2)(X2−〈X2〉)2−(〈X2
1〉−〈X1〉2)(〈X2

2〉−〈X2〉2)]},

where the averages 〈X1〉, 〈X2
1〉, etc., are taken over the marginal

distributions, assuming the moments exist, and λ is calculated
using Eq. (6):

λ ≈ 〈X1X2〉 − 〈X1〉〈X2〉(〈
X2

1

〉 − 〈X1〉2
)(〈

X2
2

〉 − 〈X2〉2
) + · · · . (22)

Clearly, writing the joint distribution as an exponential in
Eq. (22) is not really warranted, except by the fact that it
guarantees both positivity and integrability, and that it turns
out to be slightly more compact than might have been expected.
Further, it also highlights the fact that the approximation for
P(1,2)(X1,X2) has the form required by Eq. (2), corresponding
to a maximum-entropy distribution. From this expression,
approximate conditional distributions can be derived immedi-
ately, as well as conditional expectations. Thus, for example,
the conditional expectation of X1 given X2, to linear order in

λ, is

〈X1|X2〉 ≈ 〈X1〉 − λ
(〈
X2

1

〉 − 〈X1〉2
)
(X2 − 〈X2〉) + · · ·

= 〈X1〉 − (〈X1X2〉 − 〈X1〉〈X2〉)(X2 − 〈X2〉)〈
X2

2

〉 − 〈X2〉2
+ · · · .

(23)

Also, the excess entropy over the product of marginals is found
to be

	S =
∫

I1×I2

P(1,2)(X1,X2) ln

(
P(1,2)(X1,X2)

P1(X1)P2(X2)

)
dX1dX2

≈ −λ2
(〈
X2

1

〉 − 〈X1〉2
)(〈

X2
2

〉 − 〈X2〉2
) + · · ·

= − (〈X1X2〉 − 〈X1〉〈X2〉)2(〈
X2

1

〉 − 〈X1〉2
)(〈

X2
2

〉 − 〈X2〉2
) + · · · .
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The three-point distribution can be obtained in the same
way, but the result is too long and unenlightening to include
here. Nevertheless, it should be mentioned that at least to
second order in the perturbation parameter, Eq. (14) still
holds (assuming that all the correlation coefficients can be
considered to be of linear order in the perturbation parameter).

In summary, the construction of maximum-entropy joint
probability distributions with the prescribed marginals and
covariance has been discussed. It should be noted that while
there are other convenient methods for constructing joint
probability distributions with the prescribed marginals and
covariance [14], only when the entropy is maximized can we
be sure that no extra, uncontrolled assumptions have been
introduced.

Extensions to even more variables are straightforward in
principle, but the set of coupled equations that results from
the maximization of entropy is larger and harder to solve, the
exception being, as mentioned earlier, the case of Gaussian

marginals with fixed correlations, for which the maximum-
entropy distribution is the appropriate correlated Gaussian
distribution. Also, the whole discussion can be extended to
the case in which the inter-relation among the variables is
not encoded in the linear correlation constant, but rather by
other more general moments; for example, for the case of
random variables X1 and X2 with given marginals, with the
constriction 〈f (X1,X2)〉 = 0. Another interesting extension
pertains to approximation schemes for the joint distribution.
For example, for the case in which the marginals do not have
second moment, the perturbation expansion as presented above
is not possible.
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