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Percolation of linear k-mers on a square lattice: From isotropic through partially
ordered to completely aligned states
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Numerical simulations by means of Monte Carlo method and finite-size scaling analysis have been performed to
study the percolation behavior of linear k-mers (also denoted in publications as rigid rods, needles, sticks) on two-
dimensional square lattices L × L with periodic boundary conditions. Percolation phenomena are investigated for
anisotropic relaxation random sequential adsorption of linear k-mers. Especially, effect of anisotropic placement
of the objects on the percolation threshold has been investigated. A detailed study of the behavior of percolation
probability RL(p) that a lattice of size L percolates at concentration p in dependence on k, anisotropy, and lattice
size L has been performed. A nonmonotonic size dependence for the percolation threshold has been confirmed
in the isotropic case. We propose a fitting formula for percolation threshold, pc = a/kα + b log10 k + c, where a,
b, c, and α are the fitting parameters depending on anisotropy. We predict that for large k-mers (k � 1.2 × 104)
isotropically placed at the lattice, percolation cannot occur, even at jamming concentration.
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I. INTRODUCTION

Percolation deals with the properties of disordered media.
Such media can be composed of the objects placed in a
space. The objects can connect with each other and form
clusters. If object concentration is large enough, infinitely large
cluster occurs. Such a concentration is known as a percolation
threshold. The properties of media are considerably different
below and above percolation threshold. If objects are placed in
a space purely at random, the percolation is called random
or Bernoulli percolation. Moreover, different correlations
or constrains may be applied to the space distribution of
the objects. The media composed in such a way may be
partially disordered and anisotropic. Very often, a discrete
space (lattice) is utilized to simplify consideration. In this case,
the cluster-forming objects are sites of the lattice. Percolation
of the point objects (singly occupied site) on different lattices in
plane and multidimensional space is more intensively studied.
Percolation of the objects occupying several nearest sites
is studied significantly less. The examples of such objects
are linear, cyclic, and branched k-mers, i.e., k nearest sites.
The numerous publications are devoted to both theoretical
and applied aspects of percolation (see, e.g., Refs. [1–3]).
During the past few decades, percolation of the anisotropic
penetrable and impenetrable objects (rods, sticks, linear k-
mers, ellipsoids, etc.) has been intensively investigated. Our
overview is restricted to the works devoted to the percolation
of linear objects on a lattice.
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Mainly, the studies are devoted to the isotropic problem on
a square lattice when the k-mers with horizontal and vertical
orientations are deposited with equal probability. A computer
simulation model for linear k-mers (k = 1 . . . 20) showed that
percolation threshold pc decreases with increasing of the
chain-length k as 1/k0.5 [4]. The percolation exponents (order
parameter, susceptibility, and correlation length exponents)
seemed to remain unchanged.

The study of the percolative properties of systems generated
by a random sequential adsorption (RSA) of k-mers (k =
1 . . . 40) have been performed by Leroyer and Pommiers [5].
They have demonstrated that as the segment length grows, the
percolation threshold pc decreases, goes through a minimum,
and then increases slowly for large k (k � 16).

Later on, Kondrat and Pękalski [6] extended the studies
percolation and jamming of the same problem to the k-
mer length in the interval k = 1 . . . 2 000. The authors have
shown that the jamming threshold decreases monotonically
approaching the asymptotic value of pj = 0.66 ± 0.01 at large
k, and percolation threshold pc is a nonmonotonic function
of the length k, with a minimum for a certain length of the
k-mers (k = 13). However, these results for very large needles
cannot be treated as accurate because of moderate size of the
studied lattices (L � 2 500) and possibility of large finite-size
corrections.

The details of the monotonic behavior of the percolation
threshold for small k-mer length (k � 15) have been widely
discussed in literature [7–10]. Percolation and jamming phe-
nomena have been investigated for k-mer length within the
interval k = 1 . . . 10 by Vandewalle et al. [7]. The authors
conjectured presence of a universal connection in geometry of
jamming and percolation that resulted in constancy of the ratio
of percolation and jamming concentration pc/pj (�0.62) for
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all sizes of k-mers. The following equation for the percolation
threshold as a function of k-mer length has been proposed

pc = C

[
1 − γ

(
k − 1

k

)2
]

, (1)

where C and γ are the constants.
Cornette et al. [8] have performed the finite-size scaling

tests and shown that the k-mer problem in all the studied cases
belongs to the random percolation universality class. They
fitted the data for the k-mers (k = 1 . . . 15) with the following
exponential equation:

pc = p∞
c + � exp

(
− k

κ

)
, (2)

where p∞
c = 0.461 ± 0.001, � = 0.197 ± 0.02, and κ =

2.775 ± 0.02 are the fitting parameters. p∞
c is the expected

value in the limit k → ∞.
Recently, these problems have been extended for partially

ordered k-mer (when the particles with horizontal and ver-
tical orientations can be deposited with unequal probability)
[11–13]. The effect of dimer alignment on percolation and
jamming phenomena on a square lattice has been investigated
by Cherkasova et al. [11]. The influence of dimer alignment
on the electrical conductivity has been also examined. The
effect of k-mer alignment on the jamming threshold has been
extensively examined for the k in the interval 1 . . . 256 [12].
The percolation behavior for the k-mer length in the interval
k = 1 . . . 15 has been studied recently by Longone et al. [13].
Only two particular cases have been studied in the work,
i.e., the isotropic case and the completely ordered case (all
k-mers are aligned along the given direction). In both cases,
the percolation threshold is the monotonic decreasing function
of the k-mer length k.

Most recent numerical studies have been devoted to the
analysis of equilibrium properties in systems of k-mers
[14–17]. The equilibrium systems have been simulated using
the deposition-evaporation dynamics. The studies showed
existence of an orientationally ordered phase (nematic phase)
for long k-mers. The universality class for the percolation
and isotropic-nematic phase transition has been found to be
the same as of the random percolation and Ising models.
The nonmonotonic size dependence has been observed for
the percolation threshold of unaligned k-mers; it goes through
a minimum at k � 5 and asymptotically converges toward a
definite value of pc � 0.54 for large, fully aligned k-mers [18].
It has been interpreted as a consequence of the isotropic-
nematic phase transition occurring in the system for large
values of k.

Except purely theoretical interest, such considerations may
have different applications. For instance, the percolation ap-
proach is suitable to describe physical and chemical properties
of monolayers formed during adsorption of the polymer
chains [19]. Another possible application is connected with
the nanotechnologies (see, e.g., Ref. [20]). Recently, the
current progress in the production of aligned single-walled
carbon nanotubes (SWCNTs) has been reviewed by Ma et al.
[21]. The semiempirical theories of composites containing
randomly oriented anisotropic inclusions (needle, prolate
or oblate spheroid, sphere, or disk) have been developed

and they are useful for prediction of effective electrical
or thermal conductivities of multiwalled carbon nanotube
composites [20,22–25]. The first experiments evidenced the
lowering of the threshold in comparison with isotropic systems
[26]. The experiments for random stick patterns obtained
by photolithographic techniques supported the universality
hypothesis for 2D systems [27]. The universality concept has
been also confirmed in experiments with the aluminum film
containing the insulating ellipsoids with the same direction of
the major axis [28].

This work discusses the percolation behavior of linear
k-mers on square lattice with different degrees of alignment
characterized by order parameter. We try to shed light on
the uncertainty in question about the presence or absence the
nonmonotonic k-dependence for the percolation threshold by
studying the systems with k varying from 1 up to 512.

In our work, we try to find the answers to the questions
listed below

(1) Are Eqs. (1) and (2) valid for very long linear objects or
do they work only for rather short objects?

(2) How does anisotropic placement of the objects effect
the percolation threshold?

The rest of paper is arranged as follow. In Sec. II, we
describe our model and the details of simulation. The obtained
results are discussed in Sec. III. We summarize the results and
conclude our paper in Sec. IV.

II. DESCRIPTION OF MODELS AND DETAILS
OF SIMULATIONS

The problem of linear k-mers, where k = 2n and n =
1,2, . . . ,9, on the square lattices of L × L size has been
studied. Linear lattice size, L, varies from 100 to 19 200 in
different simulations. Periodic boundary conditions in vertical
and horizontal directions have been applied, i.e., percolation
on a torus has been considered.

A. Filling of the lattice by k-mers

The relaxation random sequential adsorption (RRSA)
model [12] has been used to place the k-mers on a lattice. In this
model, there is an infinitely large reservoir filled with k-mers
oriented with given and fixed anisotropy. The k-mer is taken
from the reservoir and an attempt of its deposition is carried
out starting from a lattice site selected at random until the
object is deposited. In contrast with the conventional random
sequential adsorption (RSA) model, when any unsuccessful
attempt is rejected and another object is selected for deposition,
the RRSA model ensures that anisotropy of the deposit is
the same as the anisotropy of the objects suspended in the
reservoir [12].

The degree of anisotropy is characterized by the order
parameter s defined as

s =
∣∣∣∣N| − N−
N| + N−

∣∣∣∣ , (3)

where N| and N− are the numbers of k-mers oriented in vertical
and horizontal directions, respectively.

For isotropic system, s = 0, the quantity of vertical and
horizontal k-mers are the same, and for totally aligned system,
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FIG. 1. (Color online) Percolating clusters of different sorts on a
plane and on a torus. (a) Crossing clusters; (b) spiral-like wrapping
clusters; (c) ringlike wrapping clusters.

s = 1, all k-mers are aligned in vertical direction. For these
two marginal cases, RRSA and RSA models are absolutely
identical [12].

The Mersenne twister random number generator [29] with
a period of 219 937 − 1 has been exploited to generate positions
and orientations of the deposited objects.

B. Determination of percolation threshold

A crossing cluster is determined as a cluster that connects
two opposite borders of lattice with open boundary conditions.
Examples of crossing clusters that percolate along vertical di-
rection or along horizontal direction are presented in Fig. 1(a).

A wrapping cluster is determined as a cluster that winds
(i.e., provides a path of length 2π ) around the lattice with the
periodic (toroidal) boundary conditions along the given direc-
tion [30]. The wrapping cluster may be either disconnected
(spirallike) [Fig. 1(b)] or continuous (ringlike) [Fig. 1(c)] or
more complex.

From the topological point of view, the spirallike clusters
presented in Fig. 1(b) are homotopic to a point; i.e., they can
be continuously deformed to a point. Hence, they significantly
differ from the ringlike clusters shown in Fig. 1(c). From

the physical point of view, it is rather natural to think that
applying periodic boundary conditions cannot destroy a per-
colating state existing in plane with open boundary conditions.
Moreover, it can produce a new percolating state due to an
additional kind of symmetry, i.e., translation symmetry.

In our study, a system is considered as percolating if at least
one spiral cluster [Fig. 1(b)] can be found. To be certain, we call
it a problem of physical percolation on a torus in contrast with
topological percolation when only self-connected clusters are
treated as wrapping ones [31].

The value of threshold concentration may be determined
by calculation of the probability RL(p) for a cluster to cross
a square lattice of L × L sites, if the boundary conditions are
open, or to wrap around the periodic boundary conditions. In
the thermodynamical limit (L → ∞), this probability is equal
to the probability that the system percolates (i.e., it tends to
the step-function and equals 0 below the percolation threshold
and 1 above it) [32].

Since cluster wrapping can be defined in a number of
different ways (see, e.g., Ref. [32]), there are a corresponding
number of different probabilities RL:

(1) Rh
L is the probability of wrapping horizontally around

the system;
(2) Rv

L is the probability of wrapping vertically around the
system;

(3) Ror
L is the probability of wrapping around either the

horizontal or vertical direction, or both;
(4) Rand

L is the probability of wrapping around both direc-
tions simultaneously.

For the square lattices and isotropic problem these proba-
bilities satisfy the following relations [32,33]:

Rh
L = Rv

L, (4)

Rh
L = (

Ror
L + Rand

L

)/
2, (5)

as well as the inequalities

Rand
L � Rh

L � Ror
L . (6)

Equations (4) and (5) provide evidence that only two of the
percolation probabilities are independent. Obviously, for an
anisotropic system Eq. (4) cannot hold and, hence, there are
three independent probabilities. Nevertheless, for a strong
anisotropic system, a spanning or wrapping cluster always
arises along one direction, say vertical, and hence, Rv = Ror,
Rh = Rand.

The detailed studies have shown [8,34] that for the
specified problem (e.g., for crossing or wrapping clusters)
and the criterion used, the curves RL(p) cross each other
in a unique intersection point R∗ located at p = pc in the
thermodynamical limit (L → ∞).

Figure 2 compares Ror
L (p) and Rand

L (p) dependencies for
monomer problem (k = 1), i.e., conventional site problem,
for different size of square lattice, L. The results are presented
for the systems with periodic and open boundary conditions.

If the disconnected spiral clusters similar to those shown in
Fig. 1(b) are not treated as percolating, the exact expressions
of R∗ at percolation threshold, pc, for each of the definitions
have been deduced [34] from the work by Pinson [31]. The
values of R∗ presented by Newman and Ziff [32,33] are
R∗or = 0.690 473 725, R∗and = 0.351 642 855.
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FIG. 2. (Color online) Comparison of Ror
L and Rand

L versus p

dependencies for monomer problem (k = 1) (physical percolation)
and crossing clusters (with open boundary conditions) and different
size of square lattice, L.

In our study, the intersection points R∗ for physical
percolation are R∗or

L � 0.90 and R∗and
L � 0.98.

The RL(p) functions have been estimated by performing
1 000 independent runs. Percolation concentration pc(L) for
the lattice of given linear size L filled with k-mers at the
given concentration p has been determined using the fitting
function [35]

RL(p) = (1 + exp {−[p − pc(L)]a})−1 , (7)

where a is adjusted constant.
To extrapolate the estimations of the percolation thresholds

pc(L) obtained at the lattice of size L to the infinitely large
lattice pc(∞), the usual finite-size scaling analysis of the
percolation behavior has been done. To perform extrapolation,
we used at least three lattices of different sizes and scaling
relation

|pc(L) − pc(∞)| ∝ L−1/ν, (8)

where ν = 4/3 is the critical exponent of correlation length
for the 2D random percolation problem [1]. In our study,
the typical values of lattice size are L = 50k,75k,100k,

150k,200k,400k.
The universality of the k-mers problem (s = 0) has been

justified before [8]. We tested validity of scaling Eq. (8) for
anisotropic problem (s > 0) (see Fig. 3 for typical sample).

FIG. 3. Critical exponent ν extracting for k = 2, s = 0.5.
ν−1 = 0.750 ± 0.001. Log-log scale.

Our result ν−1 = 0.750 ± 0.001 is in the excellent agreement
with the theoretical value ν = 4/3 [1].

Examples of pc versus L scaling behavior for k = 16,
s = 0.8, and four criteria (h,v,or,and) are presented in Fig. 4.

The preliminary studies have shown that in all cases
the pc(L) scaling is minimal for criterion and. The final
results of percolation concentration have been obtained using
the criterion and. To simplify the notation, below we omit
superscript and where it is possible.

To avoid very time-consuming computations with the
lattices of huge size for k = 256 and s = 0, we used only
two relatively small lattices, L = 50k and L = 75k, and two
different criteria, namely and and or. Intersection points [i.e.,
pc(∞)] extracted from Eq. (8) for two different criteria are
almost the same within error bar about 0.001.

Another special case is k = 512, s = 0. Only one lattice size
L = 37k has been used for rough estimation of the percolation
threshold. Percolation concentration has been calculated from
the equation Rand

L (pc) = 0.9.

C. Other details

Breadth-first search (BFS) algorithm has been applied to
identify a percolation cluster. BFS seems to be faster and more
appropriate for the toroidal boundary conditions than Hoshen-
Kopelman (HK76) algorithm [36]. The additional tests have
shown that results obtained using BFS and HK76 algorithms
are identical within error bar.

The mean degree of the system anisotropy has been
calculated as

δ =
Nc∑
i=1

Niαi/Nt , (9)

where αi = (Ry

i − Rx
i )/Ri . Here, R

y

i and Rx
i are radii of

gyration of cluster i in y and x directions, respectively; Ri

is its mean radius of gyration, Nc is a total number of clusters,
Ni is a number of filled sites in the cluster i, and Nt is a total
number of the filled sites.
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(a) (b) (c)

FIG. 4. (Color online) Percolation concentration pc versus size of the lattice L for different criteria for physical percolation. (a) Isotropic
case, k = 2, s = 0.0. (b) Slightly anisotropic case, k = 4, s = 0.1. (c) Anisotropic case, k = 16, s = 0.8.

III. RESULTS AND DISCUSSION

A. Nonuniversality of intersection points R∗

The value of the percolation probability or percolation
cumulant at the intersection point R∗ may be an important
characteristic representing the universality class [13]. Figure 5
presents examples of percolation probability RL versus k-mers
concentration p for isotropic systems, s = 0, and different
values of k and L.

For the isotropic problem, the position of the intersection
point remained unchanged within precision of estimation,
being R∗ � 0.90 for all k within the interval between 1
and 512. This behavior is rather similar to that observed for
percolation problem of k-mers with open boundary condition
[8]. For the criterion and, the same values of R∗ � 0.3 have
been observed for the different length of k-mers ranging
between k = 1 and k = 25. Thus, universality of intersection
points R∗ has been observed for the systems with different
boundary conditions (periodical and open) and it may indicate
the conserving of universality class irrespective of the size of
k-mers.

FIG. 5. (Color online) Probability curves for isotropic systems,
s = 0, and different values of k and L. Arrows indicate the intersection
points.

However, such universality of intersection points R∗ has
been not observed for anisotropic systems. Figure 6 presents
examples of percolation probability R versus k-mer concen-
tration p for k = 32 and different values of s and L. At fixed
value of k, the position of intersection point R∗ continuously
decreased with increasing of s.

The more detailed studies have shown that for anisotropic
systems the position of intersection points R∗ also depends
on the value of k (Fig. 7). For the completely ordered
systems, s = 1, the value of R∗ decreased monotonically and
became close to 0 for larger sizes of k-mers. This observation
may reflect the continuous change of universality class and
corresponds to previously reported data for the completely
ordered systems with open boundary conditions [13]. For
partially ordered systems, the similar effect of k-mers length
on the value of R∗ has been observed (Fig. 7).

Thus, orientation of k-mers affected the universality class
of this percolation problem and it has been conserved only for
the isotropic systems (s = 0), where universality is the same
for the different length of k-mers. It can be speculated that this
violation of universality can reflect the effect of the system
anisotropy. This anisotropy has been maximally denominated

FIG. 6. (Color online) Probability curves for k = 32, s = 0.0,0.7,

1.0. Arrows indicate the intersection points.
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FIG. 7. (Color online) Intersection point of percolation probabil-
ity R∗ versus k at s = 0.0,0.7,1.0.

for the completely ordered systems (s = 1), where the effect
of the k-mer length on the value of R∗ is maximal (Fig. 7).
The more detailed analysis has shown that the structure of
percolation clusters strongly depends upon k; they have been
elongated along vertical direction and the degree of elongation
increased as length of k-mers increased (Fig. 8). Moreover, the
mean degree of system anisotropy δ calculated using Eq. (9)
is dependent on k-mer concentration p, length k, and order
parameter s.

Figure 9(a) presents examples of δ versus order parameter
s at different fixed concentrations p and fixed length of k-mer,
k = 32. The size of lattice is relatively large, L = 4 096, so,
the finite size effects are rather small. For isotropic systems
(at s = 0), the value of δ is always zero and it is maximal for
completely ordered systems (at s = 1). At small values of p

the relation between δ and s is nearly linear. With increasing of
p and fixed s the value of δ decreased; however, it noticeably
dropped above percolation threshold and became practically
zero in the vicinity of jamming concentration. For example, the
concentration of p = 0.50 is above the percolation threshold

TABLE I. Percolation threshold pc versus order parameter s for
k-mers of different length k. The errors are no larger than half a unit
in the last place of the presented results.

s k = 2 k = 4 k = 8 k = 16 k = 32 k = 64 k = 128

0.0 0.5619 0.5050 0.4697 0.4638 0.4748 0.4928 0.5115
0.1 0.5621 0.5056 0.4702 0.4644 0.4751 0.4930
0.2 0.5627 0.5067 0.4717 0.4656 0.4763 0.4936
0.3 0.5638 0.5090 0.4742 0.4677 0.4777 0.4948
0.4 0.5653 0.5124 0.4777 0.4708 0.4802 0.4964
0.5 0.5672 0.5167 0.4825 0.4751 0.4834 0.4993
0.6 0.5698 0.5224 0.4890 0.4807 0.4879 0.5025
0.7 0.5728 0.5296 0.4977 0.4883 0.4939 0.5074
0.8 0.5765 0.5389 0.5092 0.4987 0.5021 0.5132
0.9 0.5809 0.5510 0.5251 0.5140 0.5142 0.5210
1.0 0.5862 0.5672 0.5526 0.5442 0.5397 0.5376 0.5366

for the systems with order parameter s below �0.8 and,
here, the δ(s) dependence noticeably deviates from near linear
[Fig. 9(a)]. Figure 9(b) presents examples of δ versus order
parameter s at different concentrations and fixed length of
k-mer, k = 32, and the concentrations that corresponds to
the percolation transitions for the given systems. The value
of k-mer length k strongly affected the mean degree of the
system anisotropy δ at the percolation transition. For example,
for dimers, k = 2, the value of δ is rather small in the whole
range of s between 0 and 1; however, with increasing of k,
the δ(s) has become more noticeable. We believe that they can
transfer into the near-linear of type δ � s in the limit of large
k-mer length, k → ∞.

B. Dependence of percolation threshold pc

versus order parameter s

The pc(s) dependencies for k-mers of different length
(k = 2 . . . 128) are presented in Fig. 10. For completeness, the
precise numerical information is also collected in Table I. In
addition, Table II presents rougher estimations for k = 256 and
k = 512 for isotropic (s = 0) and completely ordered (s = 1)
systems.

FIG. 8. Examples of wrapping clusters incipient in vertical direction for completely ordered system (s = 1.0) for different length of k-mers.
The size of a square lattice is L = 128k. Periodical boundary conditions. (a) k = 2; (b) k = 8; (c) k = 32.
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(a) (b)

FIG. 9. (Color online) Mean degree of the system anisotropy δ versus order parameter s: (a) at different concentrations p and the fixed
length of a k-mer, k = 32; (b) at different k-mer length k and concentrations that corresponds to the percolation transition for given systems.
The size of lattice is L = 4 096 and the data averaged over 100 independent runs.

The obtained data evidence that the increase of system
ordering always results in increase of pc value. Such behavior
correlates with theoretical results obtained for the systems of
partially oriented penetrable rods [37–40] and experimentally
studied effect of carbon nanotube alignment on percolation in
polymer composites [41].

Figure 11 presents examples of pc versus k dependencies
obtained for different values of s in this work (1), as well as
data presented earlier for the isotropic (s = 0) and completely
ordered (s = 1): (2) Ref. [5], (3) Ref. [7], (4) Ref. [6], (5)
Ref. [8], and (6) Ref. [13].

For completely ordered systems, i.e., at s = 1, the per-
colation threshold pc monotonically decreased as value of k

increased. Recently, the similar behavior for k from 1 to 12
with the asymptotic limit of p∞

c = pc(k → ∞) � 0.54 has
been reported [13].

The analysis has shown that the data obtained in our work
may be rather well fitted by the power function

pc = a1/kα1 + p∞
c , (10)

where p∗
c = 0.533 ± 0.001, a1 = 0.088 ± 0.003, α1 =

0.72 ± 0.04, and r2 = 0.998 for the coefficient of
determination.

We should note that for completely ordered penetrating
anisotropic objects and continuous problem, the excluded
volume theory predicts the absence of noticeable dependence
of the percolation threshold on aspect ratio k [37,38]. In the
lattice problem under consideration, observed effect of pc(k)

TABLE II. Estimations of percolation threshold pc for k-mers of
large length k. The errors are no larger than half a unit in the last
place of the presented results.

s k = 256 k = 512

0.0 0.530 0.5485
1.0 0.535

dependence may reflect the influence of the lattice discreteness
on the percolation threshold.

In the problem under consideration, at s = 1, the formation
of percolation cluster reflects the mode of connectivity be-
tween vertically oriented one-dimensional chains of k-mers. It
may be assumed that in the limit of k → ∞ the connectivity of
two k-mers in the neighboring vertical lines at their end sites is
sufficient for a formation of percolation cluster with minimal
concentration of p = 0.5, which is close to the numerically
estimated value of p∗

c = 0.533 ± 0.001.
In contrast, for partially ordered systems, i.e., at s < 1, the

percolation threshold pc is a nonmonotonic function of k and
for a certain length of k-mers k = km a minimum of pc has
been observed (Fig. 11). In total, the data obtained in this
work for isotropic systems (i.e., at s = 0) have been in good
correspondence with previously published data [5,7,8,13,42]
with the only exception to those obtained for very long k-mers
(k > 64) in Ref. [42]. This inequality may reflect the relatively

FIG. 10. (Color online) Percolation threshold pc versus order
parameter s for k-mers of different length.
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FIG. 11. (Color online) Percolation threshold pc versus k-mer
length k at different values of order parameter s. Here, the different
data are presented that have been obtained in: (1) this work, (2)
Ref. [5], (3) Ref. [7], (4) Ref. [6], (5) Ref. [8] and (6) Ref. [13]. The
dashed lines have been obtained by least-square fitting of the data
points using Eqs. [(10), (11)].

moderate size of lattices that has been used in Ref. [42]
(L � 2 500), whereas in our simulations, the maximum size
of the lattice is L ∼ 100k, as a rule. In any case, our data
confirmed the conclusion by Leroyer and Pommiers [5] and
Kondrat and Pękalski [6] about the presence of minimum at
the pc versus k dependence. For the disordered systems the
position of the minimum, km, is dependent on the value of s,
e.g., it is km � 13 at s = 0, km � 16 at s = 0.7, km � 22 at
s = 0.9, and it seems that km → ∞ in the limit of s → 1
(Fig. 11). We should note, that the asymptotic limit of
p∗

c = pc(k → ∞) � 0.461 derived in Ref. [8] for s = 0 in fact
is very close to the value of pc at point of minimum, km � 13.

It is attractive to speculate that extremal pc versus behavior
for partially ordered systems may reflect the competition of

the two different effects influencing the value of percolation
threshold. We tried to fit the obtained data for isotropic system
(s = 0) using the function

pc = a0/kα0 + b log10 k + c (11)

and obtained the following numerical estimations for the
parameters a0 = 0.36 ± 0.02, α0 = 0.81 ± 0.12, b = 0.08 ±
0.01, c = 0.33 ± 0.02, and r2 = 0.991 for the coefficient of
determination.

It is remarkable that exponents α0 = 0.81 ± 0.12 and
α1 = 0.72 ± 0.04 are practically the same for s = 0 and
s = 1, respectively, and it may reflect the same effect of the
discreteness on the percolation at the relatively small k (�10).
For disordered systems, the logarithmic increase of pc at large
values of k [Eq. (11)] may reflect the tendency of k-mers for
stacking, or formation of squarelike blocks, especially at large
values of k. Such blocks of vertically and horizontally oriented
k-mers are typical for partially ordered systems in jamming
configurations [12]; however, they are also important at the
percolation threshold. Examples of k-mer patterns (k = 128)
in the percolation point are presented in Fig. 12 for isotropic
system (s = 0). The sequential magnification of the system has
shown the presence of rather compact blocks of vertically and
horizontally oriented k-mers that have been connected into the
percolating structure by overhanging of k-mers. The numerical
studies have shown that for the ideal blocks, i.e., k × k

squares, the percolation concentration increased and jamming
concentration decreased as k value increased [43], and above
certain critical value of k no percolation has been observed.
In this situation, even at the saturation coverage (jamming),
where no more object can be placed without any overlap, there
exists only finite clusters of k × k squares. We can assume
the similar mechanism that governs the observed pc ∝ k

increasing of percolation threshold. Leroyer and Pommiers
used similar arguments for explanation of nonmonotonicity
of percolation threshold [5]. A nonmonotonic pc(k) behavior
has been explained, accounting for the local alignment effects,
which explains the change of structure of the critical clusters.

FIG. 12. (Color online) Examples of percolation configurations of k-mers (k = 128) on a square lattice of size L = 4 096 at s = 0. Vertical
and horizontal orientations are represented by different gray levels in printed version and in red and blue in online version; empty sites are
labeled black and sites of percolation cluster are labeled white. Here, (a) shows the whole lattice; (b) shows the magnification of the pattern
(a) in the central square; (c) shows the magnification of the pattern (b) in the central square.
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FIG. 13. (Color online) Ratio of percolation and jamming con-
centration pc/pj versus k-mer length k for disordered (s = 0) and
completely ordered s = 1 systems. The dashed lines for s = 0 has
been obtained by least-square fitting of the data points using Eq. (12).

We checked the validity of conjecture of Vandewalle et al.
[7] about the constancy of the ratio of percolation and jamming
concentration pc/pj for disordered (s = 0) and completely
ordered s = 1 systems (Fig. 13). The values of jamming
concentration pj have been taken from our previously pub-
lished work [12]. For completely ordered systems (s = 1),
this ratio initially increased and became practically constant,
pc/pj � 0.715, at relatively large length of k-mers, k > 8.

For isotropic systems (s = 0), this ratio is approximately
constant only for small values of k (k = 2 . . . 8). For larger k,
k = 16 . . . 256, the pc/pj increases proportionally to log10 k:

pc/pj = b log10 k + c, (12)

where b = 0.119 ± 0.003 and c = 0.513 ± 0.006 are the
constants. Our result is reasonably close to the estimation by
Kondrat and Pękalski, b � 0.13 and c � 0.50 (15 � k � 45)
[6].

Thus, the constancy of the ratio pc/pj is true for the
completely ordered systems (s = 1). It may reflect a similar
influence of the discreteness of the lattice on both jamming and
percolation. On the other hand, the nonconstancy of the ratio
pc/pj for isotropic systems (s = 0) may reflect a different
influence of the stacking on jamming and percolation. For this
case, the approximation of the data presented in Fig. 13 gives
pc/pj � 1 at k � 1.2 × 104. So, we can suppose that for very
long k-mers, the percolation may be lost in close analogy with
similar behavior observed for k × k squares [43].

IV. CONCLUSION

In this paper, the percolation behavior of partially ordered
linear k-mers on torus (square lattice with periodic boundary
conditions) has been investigated by computer simulations.
The length of a k-mer varies from 1 to 512 and different
lattice sizes up to L = 1 024k are used. The relaxation random
sequential adsorption model [12] has been used to place the
k-mers on a lattice. The alignment degree is characterized
by order parameter s = 0 . . . 1: s = 0 for isotropic system and
s = 1 for perfectly aligned system. The behavior of percolation
cumulant at the intersection point R∗ has been studied in detail
in dependence on k, s, and L. For isotropic problems, the
value of position of intersection point remained unchanged
within precision of estimation, being R∗ � 0.90 for all studied
length of k-mers. The universality of intersection points R∗
(i.e., absence of dependence R∗ of k) has been observed only
for isotropic systems, s = 0. This universality suggests that
R∗ can be derived from Ref. [31], not only for topological
percolation but also for physical one. For anisotropic systems,
this universality is violated and the value of R∗ is dependent
upon k and s. One can suppose that this violation can reflect
the effect of the system anisotropy.

The increase of system ordering always results in an
increase of percolation threshold pc. The dependencies of
pc(k) for completely ordered (s = 1) and partially ordered
(s < 1) systems are obviously different. For completely
ordered systems, the percolation threshold pc monotonically
decreased as k increased. The power-law relation pc ∝ 1/kα1

(α1 = 0.72 ± 0.04) probably reflects effects of the lattice
discreteness. For partially ordered systems, the percolation
threshold pc is always a nonmonotonic function of k and
for a certain length of k-mers, k = km, a minimum of pc

has been observed. It has been assumed that this behavior
may reflect the competition of the lattice discreteness (that is
dominant at small values of k) and the tendency of k-mers for
stacking or formation of squarelike blocks (that is dominant
at large values of k). For completely ordered systems (s = 1),
the ratio of percolation and jamming concentration pc/pj is
practically constant (pc/pj � 0.715, at k > 8). This behavior
evidently reflects the presence of some universal connection
in the geometry of percolation and jamming [7]. For isotropic
systems (s = 0), this ratio is not constant and increased
proportionally to log10 k.

Our simulations suggest that for s = 0, the percolation
may be lost at k � 1.2 × 104. Additional investigation of
percolation with extremely long objects should be performed
in the future to confirm or reject this prediction.
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