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Non-Markovian stationary probability density for a harmonic oscillator in an electromagnetic field
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We calculate the exact solution of the Fokker-Planck equation for the stationary-state probability density of a
harmonic oscillator embedded in an electromagnetic field. The magnetic field is assumed to be a constant and
the electric field an external stochastic force with the properties of a Gaussian and exponentially correlated noise
(Ornstein-Uhlenbeck process). In this work, we first study the problem in the absence of the magnetic field, then
we obtain the complete solution and corroborate that the latter reduces to the former when the magnetic field is
suppressed.
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I. INTRODUCTION

To describe a variety of physical, chemical, and biological
phenomena wherein noise plays a fundamental role, two
theoretical approaches, Markovian and non-Markovian, have
been developed [1–34]. The Markovian processes are easier
to handle than the non-Markovian ones because a lot of the
former admit exact analytical solutions, whereas for the latter
ones it is not an easy task to extract the exact statistical
information. This is indeed the case in trying to solve explicitly
the Fokker-Planck (FP) equation for the time-dependent
probability density function for linear and nonlinear potentials
[6–10], to give just an example. However, substantial ad-
vances have been achieved when the non-Markovian Langevin
equation is driven by a Gaussian exponentially correlated
noise [Ornstein-Uhlenbeck (OU) noise] [5–24]. Within this
context, the ordinary Brownian harmonic oscillator driven
by external, exponentially correlated noise has been a topic
of great interest, widely studied in the literature [8–11]. It
is important to notice the small number of contributions on
Brownian motion in a magnetic field driven by Gaussian
colored noise proposed in the literature [27,28], compared to
those given for the same problem driven by a Gaussian white
noise (GWN) [25–34].

The diffusion process in a plasma, studied as a Brownian
motion problem across a magnetic field, was solved a long
time ago [25,26] and assumed to arise from local fluctuations
of the electric field which induce collisions between particles
in a Brownian motion–like manner. In [25] it was considered
a situation in which the density gradient occurs in a direction
orthogonal to the magnetic field where the magnetic pressure
is dominant. The ion velocity is much less than the electron
velocities so that the mean friction dynamics on an ion will be
proportional to the ion velocity. After these pioneer works, the
studies given in this context have considered such fluctuations
as a thermal noise where the fluctuation-dissipation relation
holds [25–33]. In this case, a balance between both the
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fluctuating and friction forces originating from the same
environment allows the system to reach the equilibrium
state. However, when the fluctuating and dissipative forces
originate from different environments, the system reaches a
nonequilibrium steady state. This kind of fluctuating force
is known as an external noise and it leads to breakdown of
the fluctuation-dissipation relation. The problem of Brownian
motion of a charged harmonic oscillator in an electromagnetic
field driven by an external colored noise for the electric field
is addressed here. In a more realistic situation, a randomly
fluctuating electric field should produce a randomly fluctuating
magnetic field. In this case, the solution of the problem
would require the combined effect of Maxwell equations
considered as a set of stochastic equations strongly coupled to
a generalized Langevin equation. However, this task is beyond
our purposes in this work. It is also true that a radiation reaction
occurs for a single charged particle moving in an external
field leading to the appearance of a damping force also called
Lorentz friction force [35]. It will be shown in Sec. III that in
the study of Brownian motion the damping radiation force is
much less than the Stokes friction dynamics, and thus can be
safely ignored.

It is our purpose in this contribution to study the plasma
diffusion process across a constant magnetic field when the
electric field satisfies the properties of an OU noise. Our study
is mainly related to the calculation of the exact solution of
the FP equation for the stationary-state probability density
(SSPD) of a charged Brownian harmonic oscillator. Due to
the external nature of the electromagnetic field, one can keep
a constant magnetic field greater than the amplitude of the
external fluctuating electric field, which we can consider also
to be dominant over the internal noise (local fluctuations
of the electric field). The SSPD of the FP equation in an
electromagnetic field supports the recent results [34] obtained
via the Langevin equation, for the statistics of the initial
conditions required to characterize the decay of nonlinear
unstable states driven by an OU process for the electric field.
The robustness of our analytical results is also corroborated
when they are compared with the numerical simulation
showing excellent agreement.
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Our work is then structured as follows: in order to compare
with our theoretical results, in Sec. II we calculate the SSPD
for the ordinary harmonic oscillator driven by an external OU
process. In Sec. III we extend the problem to the case in the
presence of an electromagnetic field. We give our concluding
remarks in Sec. IV and, at the end of our work, two Appendixes
with the explicit calculations are included.

II. HARMONIC OSCILLATOR DRIVEN BY EXTERNAL
COLORED NOISE

The Langevin equation for a Brownian harmonic oscillator
of mass m in the presence of an external noise μ(t) which
satisfies the OU process is given by

m
dv
dt

= −αv − kr + μ(t) , (1)

where α > 0 is the friction coefficient, k is the harmonic force
constant, and μ(t) is the external fluctuating force satisfying
the property of a Gaussian exponentially correlated noise with
zero mean value and correlation function

〈μi(t)μj (t ′)〉 = λ

τ
δij e

−|t−t ′ |/τ , i,j = x,y,z, (2)

with λ and τ being the intensity and correlation time of the
noise, respectively. We are interested in the calculation of the
SSPD in the overdamped approximation of the above Langevin
equation, leading in this case to

ṙ = −ar + α−1μ(t), (3)

where a = k/α. Due to the properties of the Gaussian colored
noise, the stochastic processes (3) can be seen as two
Markovian processes described by [5,8–10,14]

ṙ = −ar + α−1μ, (4)

μ̇ = − 1

τ
μ + 1

τ
ξ (t), (5)

where ξ (t) is a Gaussian white noise with zero mean value and
correlation function

〈ξi(t)ξj (t ′)〉 = 2λ δij δ(t − t ′). (6)

Equation (5) describes an OU process, equivalent to Eq. (2).
To check that this is indeed the case, we first integrate Eq. (5)
to obtain

μ(t) = e−t/τμ0 + 1

τ

∫ t

0
e−(t−t ′)/τ ξ (t ′)dt ′, (7)

with μ(t = 0) = μ0. For this process, we assume an ini-
tially Gaussian distribution function such that 〈μ0i〉 = 0 and
〈μ0iμ0j 〉 = (λ/τ ) δij . In this case, we can see that 〈μ(t)〉 = 0
and, if we assume that 〈μ0iξj 〉 = 0, then

〈μi(t1)μj (t2)〉 = λ

τ
δij e

−(t1+t2)/τ + 1

τ 2

∫ t1

0

∫ t2

0
e−(t1+t2−t ′1−t ′2)/τ

×〈ξi(t
′
1)ξj (t ′2)〉dt ′1dt ′2, (8)

which, after integration, becomes

〈μi(t1)μj (t2)〉 = λ

τ
δij e

−(t1+t2)/τ+λ

τ
δij [e−|t1−t2|/τ−e−(t1+t2)/τ ]

= λ

τ
δij e

−|t1−t2|/τ (9)

consistent with Eq. (2); therefore, μ is a stationary OU
process. Now we can establish the FP equation for the joint
probability density P (r,μ; t) associated with Eqs. (4) and (5).
This equation reads

∂P

∂t
= a∇r · (rP ) − μ

α
· ∇rP + 1

τ
∇μ · (μP ) + λ

τ 2
∇2

μP.

(10)

As far as we know, the explicit analytical solution for the time-
dependent P (r,μ; t) has not yet been reported in the literature.
However, due to the Gaussian noise character and the fact that
the Langevin equation is linear, the stationary solution denoted
by Pst(x) ≡ Pst(r,μ) is proposed as a Gaussian distribution
function given by [1,2]

Pst(x) = N exp

⎡⎣−1

2

6∑
i,j=1

σ−1
ij (xi − 〈xi〉)(xj − 〈xj 〉)

⎤⎦ , (11)

where N = 1/(2π )3
√

detσij is the normalization constant
with the vector x = (r,μ) = (x,y,z,μx,μy,μz). The matrix σij

represents the steady-state correlation matrix of the random
variables xi and σ−1

ij its inverse. Due to the structure of
Eqs. (4) and (5) the total SSPD will be given by Pst(r,μ) =
P1st(x,μx)P2st(y,μy)P3st(z,μz); then we proceed to calculate
the SSPD for two variables, say P1st(x,μx). For such a purpose,
we identify the matrix elements σ11 = 〈x2〉st, σ22 = 〈μ2〉st,
and σ12 = 〈xμ〉st = 〈μx〉st = σ21. The elements of the 2 × 2
matrix σij can be easily calculated from Eqs. (4) and (5),
yielding

σ11 = λ

aα2(1 + aτ )
, σ12 = λ

α(1 + aτ )
, σ22 = λ

τ
, (12)

and 〈x〉st = 0, 〈μ〉st = 0. Since detσij = [λ/τ (1 + aτ )]σ11, the
matrix elements of σ−1

ij are

σ−1
11 = aα2(1 + aτ )2

λ
, σ−1

22 = τ (1 + aτ )

λ
,

σ−1
12 = σ−1

21 = −aατ (1 + aτ )

λ
. (13)

Hence, for just two random variables, the SSPD given by
Eq. (11) reads as

P1st(x,μx) = N̂ exp
[ − Ax2 + Bxμx − Cμ2

x

]
, (14)

with N̂ = [
√

aτ (1 + aτ )/2παD] the normalization constant
and

A = a(1 + aτ )2

2D
, B = aτ (1 + aτ )

αD
, C = τ (1 + aτ )

2α2D
,

(15)
with D being a redefinition of the noise intensity given by
D = λ/α2. We get analogous expressions for P2st(y,μy) and
P3st(z,μz) and therefore the solution for the stationary state of
the FP Eq. (10) can be written as

Pst(r,μ) = N̂3exp[−A|r|2 + Br · μ − C|μ|2]. (16)

After some straightforward algebra it can be shown that the
marginal probability densities are

Pst(r) =
(

1

2πDe/a

)3/2

exp

(
− |r|2

2De/a

)
, (17)

Pst(μ) =
(

1

2πλ/τ

)3/2

exp

(
− |μ|2

2λ/τ

)
, (18)
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where the quantity De = D/(1 + aτ ) is a rescaling of the
noise intensity D. The result given in Eq. (17) shows that
the contribution of the external colored noise amounts to a
renormalization of the noise intensity D by the factor 1/(1 +
aτ ), where the correlation time τ plays a relevant role. On
the other hand, due to the Gaussian character of the noise μ

with zero mean value and correlation function as given by
Eq. (2), it is also stationary as shown in Eq. (5). Its stationary
distribution is that given by Eq. (18), which has been obtained
as additional information from Eq. (16) as expected, because
we already know that 〈μi〉st = 0 and 〈μ2

i 〉st = λ/τ .

III. HARMONIC OSCILLATOR IN AN
ELECTROMAGNETIC FIELD DRIVEN BY EXTERNAL

COLORED NOISE

Now consider that the above Brownian harmonic oscillator
has a charge q and is under the action of an electromagnetic
field. We take into account a constant magnetic field pointing
along the z axis, that is B = (0,0,B), and an external
fluctuating electric field Ē(t) = (Ex,Ey,Ez) satisfying the OU
process. Due to the orientation of the magnetic field, the
Langevin equation can be split into two independent processes:
one is given along the magnetic field and the other on the
x-y plane orthogonal to this field. The SSPD describing the
stationary process parallel to the magnetic field (along the z

axis) is quite similar to the z component given in Sec. II and
therefore we just pay attention to the process in the x-y plane.
Before we establish the Langevin equation for the charged
particle, it must be mentioned that for a single particle moving
in an external field a damping radiation occurs. This damping
radiation is also called the Lorentz friction force and it is given
by F

L
= 2 e2r̈/3(4πε0)c3, with ε0 = 8.854 × 10−12 C2/Nm2

being the vacuum electric permittivity [35]. By comparing
this radiation damping force with the Brownian friction force
(Stokes force) given by FS = −αṙ, we can estimate the order
of magnitude of both forces. For a charged Brownian particle
we can consider an ion with a charge q = ne, where n = 10
and e ∼ 10−19 C, |r| can be considered approximately as the
size l of the particle, and l ∼ R, with R being its radius.
Hence |r̈| ∼ l/τ 3, where τ is a characteristic time which can
be estimated as τ ∼ l2/D = R2/D and D is the diffusion
coefficient. In this case, the amplitude of the Lorentz force
F

L
∼ (e2/ε0c

3)|r̈| ∼ (10−36/1012)l/τ 3 = 10−48D3/R5. For a
Brownian particle the amplitude of the friction dynamics
is F

S
= α|ṙ|, where α ∼ ηR is the friction coefficient, η

being the viscosity and thus F
S

∼ ηR l/τ ∼ ηD. So that a
comparison between the amplitude of both frictional forces
leads to F

L
/FS ∼ 10−48D2/ηR5. For water the viscosity is of

the order of η ∼ 10−3 kg/ms and the diffusion coefficient D ∼
10−5 m2/s. For a Brownian particle of the order of microns
(10−6 m) or nanometers (10−9), the ratio F

L
/FS ∼ 10−25 or

F
L
/FS ∼ 10−10, respectively, which are much less than the

unity. Due to this fact, the damping radiation in the study of
plasma diffusion considered as a classical Brownian motion
can be neglected. Hence the Langevin equation describing the
process in the x-y plane can be written as

m
du
dt

= −αu + q

c
u × B − kr + μ(t), (19)

where r = (x,y), u = dr/dt = (ux,uy), with μ = qE(t) =
(μx,μy) satisfying the property of a Gaussian colored noise
with zero mean value and correlation function

〈μi(t)μj (t ′)〉 = λ

τ
δij e

−|t−t ′ |/τ , i,j = x,y. (20)

The overdamped Langevin equation is now given as

dr
dt

= −�̃r + α−1
e 
μ(t), (21)

where the matrices �̃ and 
 are defined as

�̃ =
(

ã �̃

−�̃ ã

)
, 
 =

(
1 C0

−C0 1

)
, (22)

with ã = k/αe, �̃ = ãC0, and αe = α(1 + C2
0 ); C0 = qB/cα

is a dimensionless constant. In a way similar to Sec. II, we split
Eq. (21) into a set of four Markovian differential equations,
written in vectorial form as

ṙ = −�̃r + α−1
e 
μ, (23)

μ̇ = − 1

τ
μ + 1

τ
ξ (t), (24)

where, due to the structure of matrix �̃, Eq. (23) represents a
coupled pair of differential equations, although the processes
μ = (μx,μy) are independent. The term ξ (t) = (ξx,ξy) also
satisfies the property of a GWN as before. The FP equation
for the joint probability density P m(r,μ; t) is given by

∂P m

∂t
= ∇r · (�̃rP m) − 1

αe


μ · ∇rP
m + 1

τ
∇μ · (μP m)

+ λ

τ 2
∇2

μP m. (25)

The explicit solution of Eq. (25), as well as its stationary-state
solution, is reported here. Again the SSPD is proposed to
satisfy the Gaussian distribution function (11), now for the
vector x = (x,y,μx,μy) and the normalization constant N =
1/(2π )2

√
detσij . The 4 × 4 matrix σij , its inverse, as well as

the SSPD, are all explicitly calculated in Appendix A, yielding
the exact result

P m
st (r,μ) = N exp[−A|r|2 + B(r · μ)

− C|μ|2 + D(r × μ)z], (26)

where N as well as the coefficients A, B, C, and D are given
in Appendix A. We also show explicitly in Appendix B that
the solution (26) is indeed the exact solution of Eq. (25). The
marginal SSPDs P m

st (r) and P m
st (μ) can be calculated after

integration over the noise space μ and the configuration space
r, respectively. After some algebra we arrive at the expressions

P m
st (r) = 1

2πσ11
exp

(
− |r|2

2σ11

)
, (27)

P m
st (μ) = 1

2π (λ/τ )
exp

(
− |μ|2

2λ/τ

)
, (28)

where the exact expression of σ11 is given by Eq. (A4)
of Appendix A, which can also be written as σ11 =
Dm(1 + ãτ )/̃a[(1 + ãτ )2 + (�̃τ )2] and Dm = (λ/α2)/(1 +
C2

0 ) = D/(1 + C2
0 ). The result (27) is obtained for all τ

values, being strongly coupled to the magnetic field through

061115-3
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the term �̃τ . Again, due to the fact that the noise term
μ = qE(t) satisfies the properties of a Gaussian colored noise
(OU noise), its stationary probability function is given by
Eq. (28), as expected. Its derivation from Eq. (26) justifies
the consistency of this equation itself. Equation (27) tells
us that the position of the charged particle reaches the
stationary state and the width of its distribution is measured by
an effective noise intensity Dm(1 + ãτ )/[(1 + ãτ )2 + (�̃τ )2].
This effective noise intensity is quantified by the cooperative
effect of the friction coefficient, the magnetic field, and the
noise correlation time.

To verify our theoretical results we compare them with
those obtained in the previous section in the absence of the
magnetic field (C0 = 0). In this case, it is clear that the
parameters are αe = α and ã = (k/α) = a. It can be readily
shown that the coefficientsA = A,B = B, C = C,D = 0, and
the normalization constant N = 1/(2π )2H given in Eq. (26)
reduces to N = aτ (1 + aτ )2/(2π )2λD, which is quite similar
to N̂2, with N̂ defined in Sec. II. So, for zero magnetic field,
the SSPD (26) reduces to the SSPD given by Eq. (16) when we
write Pst(r,μ) = N̂2P1st(x,μx)P2st(y,μy). In a similar way, for
the marginal SSPD P m

st (r) given by Eq. (27) we can check that
σ11 reduces to σ11 = λ/α2a(1 + aτ ) = De/a and therefore
P m

st (r) reduces to Eq. (17) when Pst(r) = P1st(x)Pst(y) =
(1/2πDe/a)exp(−|r|2/2De/a).

An interesting approximation comes out when we consider
that the magnetic field is weakly coupled to the noise
correlation time such that �̃τ 	 1. In this case σ11 reduces
to σ11 = Dm/̃a(1 + ãτ ), and thus

P m
st (r) = 1

2πDm/̃a(1 + ãτ )
exp

(
− |r|2

2Dm/̃a(1 + ãτ )

)
,

(29)

where it is seen that the presence of the magnetic field in
Eq. (29) with respect to the colored noise D/a(1 + aτ ) induces
a rescaling of the parameters D and a by a factor 1/(1 + C2

0 )
leading to Dm and ã, respectively.

To see the robustness of our exact analytical results, they
have been compared with the numerical simulation of Eqs. (23)
and (24). In Fig. 1(a) we compare the singled-valued marginal
SSPDs (27) and (28) for the fieldless case (C0 = 0), showing
clearly a remarkable match between both results. The single-
valued marginal SSPDs are possible due to the independence
of the Langevin equations in the absence of the magnetic field.
In fact, the SSPD given by Eq. (28) is the same as Eq. (18).
The marginal SSPD (27) takes into account the presence
of the magnetic field and is given in two dimensions. For
practical purposes in the plot, we transform it in terms of the
variable R2 = x2 + y2, given as a result the normalized SSPD
P m

st (R) = (R/σ11)exp(−R2/2σ11). This probability function
is compared with the numerical simulation results as shown in
Fig. 1(b), where again the agreement between both results is
excellent.

IV. CONCLUDING REMARKS

In this work we have obtained the exact analytical ex-
pression of the SSPD P m

st (r,μ) for a Brownian harmonic
oscillator under the influence of a constant magnetic field and
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FIG. 1. (Color online) (a) Marginal SSPDs Pst(x) (continuous
line) and Pst(μx) (dashed line) obtained from Eqs. (27) and (28) for
the set of parameters C0 = 0, k = α = 1, and λ = τ = 0.5. Circles
and diamonds correspond to numerical results obtained from direct
simulation of Eqs. (23) and (24). (b) Marginal SSPD P m

st (R) obtained
for the same set of parameters as in (a), except for C0 = 1; again,
symbols correspond to numerical simulation results.

a randomly fluctuating electric field modeled as a Gaussian
exponentially correlated noise. Due to the non-Markovian
character introduced by the electric field the SSPD P m

st (r,μ)
given in Eq. (26) has been derived through the usual procedure
which extends the space of variables, whereby a Markovian
problem results. The SSPD has been obtained for all values
of noise correlation which is shown to be strongly coupled
to the magnetic field through the term �̃τ , as shown in
Eqs. (A4)–(A6). The marginal probabilities P m

st (r) and P m
st (μ)

are calculated after marginal integration of Eq. (26). In the
particular case of weak coupling between the magnetic field
and the noise correlation time, for which �̃τ 	 1, the exact
SSPD (27) reduces to Eq. (29). In this case the presence of
the magnetic field induces, with respect to the colored noise, a
renormalization in the noise intensity D and the parameter a.
As shown in Fig. 1, our theoretical results agree in an excellent
way with the numerical simulation results.

Finally, we mention two problems in which our present
contribution has been useful: the first one is related to the recent
study on the decay of unstable states driven by a Gaussian
colored noise under the action of an electromagnetic field [34].
The decay process is characterized through the statistics of
the first passage time distribution [16,22], which strongly
depends on the initial distribution function. The variance of
this initial distribution was calculated only via the Langevin
equation in [34] and it is exactly the same as Eq. (A4) of the
present work if the parameter ã is replaced by ã0. Therefore,
the solution of the stationary-state FP equation provides
another alternative way of how to calculate the statistics of
such an initial condition. The other problem is related with
the work per unit time fluctuation theorem for a charged
Brownian harmonic oscillator in an electromagnetic field for
a Gaussian exponentially correlated noise. This problem has
been successfully achieved and recently submitted elsewhere.
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APPENDIX A: P m
st (r,μ) CALCULATION IN AN

ELECTROMAGNETIC FIELD

Here we calculate the SSPD solution of the FP Eq. (25).
We write the SPD as

P m
st (x) = N exp[−(xT · σ−1 · x)/2], (A1)

where N = 1/(2π )2
√

detσij , xT is the transpose of the vector
x, and σ−1 is the inverse of the 4 × 4 matrix σ ≡ σij such that

σ =

⎛⎜⎜⎝
〈x2〉st 〈xy〉st 〈xμx〉st 〈xμy〉st

〈yx〉st 〈y2〉st 〈yμx〉st 〈yμy〉st

〈μxx〉st 〈μxy〉st 〈μ2
x〉st 〈μxμy〉st

〈μyx〉st 〈μyy〉st 〈μyμx〉st 〈μ2
y〉st

⎞⎟⎟⎠ . (A2)

We already know that σ33 = 〈μ2
x〉 = 〈μ2

y〉st = σ44 = λ/τ and
that σ34 = 〈μxμy〉st = 〈μyμx〉st = σ43 = 0. It is also clear that
σ12 = 〈xy〉 = 〈yx〉st = σ21, σ13 = 〈xμx〉st = 〈μxx〉st = σ31,
σ14 = 〈xμy〉st = 〈μyx〉st = σ41, σ23 = 〈yμx〉st = 〈μxy〉st =
σ32, and σ24 = 〈yμy〉st = 〈μyy〉st = σ42. Therefore, we have
only seven coefficients to be determined which can be
calculated from Eqs. (23) and (24). These equations lead to
a set of seven coupled algebraic equations given by

ãσ11 + ãσ22 − 1

αe

[σ13 + σ24] − C0

αe

[σ14 − σ23] = 0,

ãσ11 − ãσ22 + 2�̃σ12 + 1

αe

[σ24 − σ13] − C0

αe

[σ14+σ23] = 0,

�̃σ11 − �̃σ22 − 2̃aσ12+ 1

αe

[σ14+σ23] − C0

αe

[σ24 − σ13] = 0,

(1+ãτ )σ13+�̃τσ23 − λ

αe

= 0,

(1+ãτ )σ23 − �̃τσ13+C0λ

αe

= 0,

(1+ãτ )σ24 − �̃τσ14 − λ

αe

= 0,

(1 + ãτ )σ14 + �̃τσ24 − C0λ

αe

= 0.

(A3)

After some intricate algebra we get the following results:
σ11 = 〈x2〉st = 〈y2〉st = σ22, σ12 = 〈xy〉st = σ21 = 0, σ13 =
〈xμx〉st = 〈yμy〉st = σ24, and σ14 = 〈xμy〉st = −〈yμx〉st =
−σ23, where

σ11 = λ(1 + ãτ )

ãα2
(
1 + C2

0

)
[(1 + ãτ )2 + (�̃τ )2]

, (A4)

σ13 = λ[(1 + ãτ ) + C0�̃τ ]

αe[(1 + ãτ )2 + (�̃τ )2]
, (A5)

σ14 = λC0

αe[(1 + ãτ )2 + (�̃τ )2]
. (A6)

The correlation matrix σ ≡ σij is then

σ =

⎛⎜⎝σ11 0 σ13 σ14

0 σ11 −σ14 σ13

σ13 −σ14 σ33 0
σ14 σ13 0 σ33

⎞⎟⎠ , (A7)

with its inverse given by

σ−1 = 1

H

⎛⎜⎝ σ33 0 −σ13 −σ14

0 σ33 σ14 −σ13

−σ13 σ14 σ11 0
−σ14 −σ13 0 σ11

⎞⎟⎠ , (A8)

and H = σ11σ33 − σ 2
13 − σ 2

14, where H is related to detσij =
H 2. Taking into account Eq. (A8) and the vector x =
(x,y,μx,μy) we conclude that the exact SSPD reads as

P m
st (r,μ) = N exp[−A|r|2 + Br · μ − C|μ|2 + D(r × μ)z],

(A9)

where N = 1/(2π )2
√

detσij = 1/4π2H and

A = σ33

2H
, B = σ13

H
, C = σ11

2H
, D = σ14

H
. (A10)

APPENDIX B: PROOF OF THE STATIONARY SOLUTION
OF THE FOKKER-PLANCK EQ. (25)

In this Appendix we will show explicitly that our solution
given by Eq. (26) is effectively the stationary solution of
Eq. (25). For this purpose we use the following representations
for the derivatives, matrices, and vectors:

∇ξ ≡ ∂

∂ξi

êi , L ≡ Lij êi êj , ξ ≡ ξi êi , (B1)

where ξ represents the vectors r and μ, and the matrix L the
matrices �̃ and 
; the scalar product êi · êj = δij will be used.
We first identify the product �̃r ≡ �̃ · r = �̃jkxl êj êk · êl , and
then �̃rP m

st = �̃jkxlP
m
st êj (êk · êl) = �̃jkxkP

m
st êj . Hence each

term of Eq. (25) is given by

∇r · (
�̃rP m

st

) = ∂

∂xi

�̃jkxkP
m
st êi · êj = ∂

∂xi

�̃ikxkP
m
st

= ∂

∂x
(�̃11x + �̃12y)P m

st

+ ∂

∂y
(�̃21x + �̃22y)P m

st , (B2)

1

τ
∇μ · (

μP m
st

) = 1

τ

∂

∂μi

μjP
m
st êi · êj = 1

τ

∂

∂μi

μiP
m
st

= 1

τ

∂

∂μx

μxP
m
st + 1

τ

∂

∂μy

μyP
m
st , (B3)

− 1

αe


μ · ∇rP
m
st = − 1

αe


ijμj êi · ∂

∂xk

P m
st êk

= − 1

αe


ijμj

∂

∂xi

P m
st

= − 1

αe

(

11μx

∂

∂x
P m

st + 
12μy

∂

∂x
P m

st

)
− 1

αe

(

21μx

∂

∂y
P m

st + 
22μy

∂

∂x
P m

st

)
, (B4)

λ

τ 2
∇2

μP m
st = λ

τ 2

(
∂2

∂μ2
x

P m
st + ∂2

∂μ2
y

P m
st

)
. (B5)

By substituting the matrix elements of �̃ and 
, and calculating
the corresponding derivatives of P m

st , we get, after a long but
straightforward algebra, that the right-hand side of Eq. (25)
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can be written in the following way:

[C0 − C1|r|2 + C2r · μ + C3(r × μ)z − C4|μ|2]P m
st , (B6)

where the Ci coefficients are given by

C0 = 2

τ
(1 + ãτ ) − 4λ

τ 2
C, (B7)

C1 = 2̃aA − λ

τ 2
B2 − λ

τ 2
D2, (B8)

C2 = 1

τ
(1 + ãτ )B + ãC0D + 2

αe

A − 4λ

τ 2
BC, (B9)

C3 = 1

τ
(1 + ãτ )D − ãC0B + 2C0

αe

A − 4λ

τ 2
DC, (B10)

C4 = 1

αe

B + C0

αe

D + 2

τ
C − 4λ

τ 2
C2. (B11)

To prove that P m
st is the solution of Eq. (25) we must show that

Eq. (B6) is identically zero. This must be true if each of the
constants Ci = 0. For such a purpose we must first notice from
Eqs. (A4)–(A6) that the relation σ11 = (1/̃aαe)(σ13 + C0σ14)
is satisfied. In this case, it can be shown that the H parameter
defined in Appendix A is equal to

H = σ11σ33 − σ 2
13 − σ 2

14

=
(

λ

αeãτ
− σ13

)
σ13 +

(
λC0

αeãτ
− σ14

)
σ14. (B12)

Using the explicit expression of σ13 and σ14 it is also shown
that

λ

αeãτ
− σ13 = λ(1 + ãτ )

αeãτ�
,

(B13)
λ

αeãτ
− σ14 = λC0

αeãτ�
(� − ãτ ),

where � ≡ (1 + ãτ )2 + (�̃τ )2. It is also possible to show that(
λ

αeãτ
− σ13

)
σ13 = λ2

α2
e ãτ�2

(
� + ãC2

0τ
)
, (B14)(

λ

αeãτ
− σ14

)
σ14 = λ2C2

0

α2
e ãτ�2

(� − ãτ ). (B15)

Finally, substituting Eqs. (B14) and (B15) into Eq. (B12) we
obtain

H = λ2
(
1 + C2

0

)
α2

e ãτ�
= λ

τ

λ

α2ã
(
1 + C2

0

)
�

= λ

τ

σ11

(1 + ãτ )
. (B16)

We can now verify, according to the coefficient C = σ11/2H

and Eq. (B16), that the C0 is given by

C0 = 2

τ
(1 + ãτ ) − 4λ

τ 2

σ11

2H

= 2

τ
(1 + ãτ ) − 2

τ
(1 + ãτ ) = 0. (B17)

For coefficient C1 we have

C1 = 2̃aA − λ

τ 2
B2 − λ

τ 2
D2 = ãλ

τH
− λ

τ 2

σ 2
13

H 2
− λ

τ 2

σ 2
14

H 2

= λ

τ 2H 2

[̃
aτH − σ 2

13 − σ 2
14

]
= λ

τ 2H 2

[
λ

τ
σ11 − σ 2

13 − σ 2
14 − H

]
= 0. (B18)

The C2 coefficient is

C2 = 1

τ
(1 + ãτ )B + ãC0D + 2

αe

A − 4λ

τ 2
BC

= (1 + ãτ )

τH
σ13 − 2λ

τ 2

σ11

H

σ13

H
+ ãC0

σ14

H
+ λ

αeτH
.

(B19)

Again, according to Eq. (B16), the first two terms of Eq. (B19)
reduce to

(1 + ãτ )

τH
σ13 − 2λ

τ 2

σ11

H

σ13

H

= (1 + ãτ )

τH
σ13 − 2(1 + ãτ )

τH
σ13 = − (1 + ãτ )

τH
σ13,

(B20)

and the last two terms of Eq. (B19) reduce to

ãC0
σ14

H
+ λ

αeτH
= 1

τH

[
λ

αe

+ λ̃aτC2
0

αe�

]
= λ

αeτH

[
1 + ãτC2

0

�

]
= (1 + ãτ )

τH

λ[(1 + ãτ ) + C0�̃τ ]

αe�
= (1 + ãτ )

τH
σ13,

(B21)

and therefore, due to Eqs. (B20) and (B21),

C2 = (1 + ãτ )

τH
σ13 − (1 + ãτ )

τH
σ13 = 0. (B22)

In a similar way

C3 = 1

τ
(1 + ãτ )D − ãC0B + 2C0

αe

A − 4λ

τ 2
DC

= (1 + ãτ )

τH
σ14 − 2λ

τ 2

σ11

H

σ14

H
− ãC0

σ13

H
+ λC0

αeτH
.

(B23)

The first two terms of Eq. (B23) read as
(1 + ãτ )

τH
σ14 − 2λ

τ 2

σ11

H

σ14

H
= (1 + ãτ )

τH
σ14 − 2(1 + ãτ )

τH
σ14

= − (1 + ãτ )

τH
σ14, (B24)

and the last two terms of Eq. (B23) reduce to
λC0

αeτH
− ãC0

H
σ13 = C0

τH

[
λ

αe

− ãτσ13

]
= λC0

αeτH

[
1 − ãτ [1 + ãτ + C0�̃τ ]

�

]
= (1 + ãτ )

τH

λC0

αe�
= (1 + ãτ )

τH
σ14. (B25)

Again, according to Eqs. (B24) and (B25), we get

C3 = (1 + ãτ )

τH
σ14 − (1 + ãτ )

τH
σ14 = 0. (B26)

Lastly, for the coefficient C4 we obtain

C4 = 1

αe

B + C0

αe

D + 2

τ
C − 4λ

τ 2
C2

= 1

αe

σ13

H
+ C0

αe

σ14

H
+ 1

τ

σ11

H
− λ

τ 2

σ 2
11

H 2
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= 1

αeH
(σ13 + C0σ14) + 1

τH
σ11 − (1 + ãτ )

τH
σ11

= (1 + ãτ )

τH
σ11 − (1 + ãτ )

τH
σ11 = 0, (B27)

where we have used the expression of σ11 in terms of σ13 and
σ14 given above. In conclusion, because all the coefficients
Ci = 0 the stationary probability density P m

st (r,μ) given by
Eq. (26) is the exact solution of the FP equation established in
Eq. (25).
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