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A system that exhibits nonlinear oscillations in the presence of low friction and weak fluctuations is considered.
An expression for the mean density of level crossings whose duration exceeds a certain value is derived under
the assumption of the high Q factor of the oscillations.
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I. INTRODUCTION

Studies of the level crossings of random processes have
been attracting the attention of physicists, mathematicians,
and experts in applied sciences for a long time. This is due to
the complexity of the analytical solutions of such problems as
well as their practical significance.

The importance of studying level crossings was recognized
relatively long ago. The first papers in this area were devoted to
the theoretical study of the behavior of physical (in particular,
oscillatory) systems described by stochastic differential equa-
tions. First of all, Pontryagin’s fundamental results [1] on the
first passage time of Markovian random processes for systems
with at least one absorbing boundary should be pointed out.

Intensive statistical analysis of the level crossings of random
processes was initiated by Rice’s pioneering works [2,3],
where the formulas for the mean number of level crossings and
distribution of maxima were given for some types of stochastic
processes. The works of Tikhonov [4,5] and Stratonovich [6]
are also worth mentioning. Interest in this subject has not
diminished since then. In subsequent years, the level crossings
of stochastic processes have been considered in a number of
theoretical and experimental works [7–12]. In several works,
the statistics of level crossings for Gaussian processes was
studied [3,5,13]. For non-Gaussian processes, there are only
a few analytical works regarding the duration distributions of
level crossings [3,5,6].

Progress in statistical optics, holography, laser location and
laser communication, and the study of random processes has
stimulated analysis of the level crossings of light fields [14].

The persistence of a signal level over a time period may
also be interpreted as the level crossing of the corresponding
stochastic process [15,16]. Persistent properties in different
systems, such as twisted nematic liquid crystals [17], laser-
polarized 129Xe gas [18], fluctuating steps of Al atoms on Si
surface [19], soap froth [20], or droplets on a substrate [21]
were experimentally investigated.

Under certain conditions, the mathematical formalism of
level crossings can be applied in the study of radio-signal
fading resulting from multipath and diffuse propagation in a
turbulent medium or reflections from rough surfaces [22]. The
duration distribution of level crossings of Nakagami random
processes was studied in Ref. [23].
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Generally, consideration of the one-dimensional Brownian
motion of particles is carried out in the so-called overdamped
mode; in this case it is described by the first-order differential
equation. Brownian motion of a particle in periodic potentials
has been investigated in the low-friction limit [24]. When the
friction coefficient is far from these limits, the quasiequilib-
rium Boltzmann distribution can be applied [25,26]. In general,
an escape of a Brownian particle from a potential well is a
well-known Kramers problem [27–29].

In this work, we consider the behavior of a nonlinear
oscillator in the presence of weak noise in the low-friction
limit. For the trajectories, we obtain an expression for the
mean density of level crossings (i.e., the average number of
them per unit time) whose duration exceeds a certain value.
Several specific scenarios are discussed.

II. NONLINEAR OSCILLATOR IN THE PRESENCE
OF WEAK NOISE

We consider the one-dimensional motion of a particle of
mass m in the potential U (x) = kx2n (k > 0,n ∈ Z+). Motion
is periodic for the conservative system. The equation of motion
of a nonlinear oscillator is written as

mẍ + 2nkx2n−1 = 0,

where x(t) is the displacement from equilibrium. The solutions
to this equation can be represented in terms of elliptic and
trigonometric functions depending on n. The oscillation period
depends on the energy E of the particle except for the harmonic
case (n = 1):

T =
√

2m

n
E

1
2n

− 1
2 k− 1

2n B

(
1

2
,

1

2n

)
. (1)

For an anharmonic oscillator in the presence of noise, the
equation is written as

mẍ + βẋ + 2nkx2n−1 = ζ (t). (2)

Using the notation ε = β/m, α = k/m, ξ (t) = ζ (t)/
√

mβ, we
obtain

ẍ + εẋ + 2nαx2n−1 = √
εξ (t), (3)

where ε = 2δ (δ is decrement) is much less than 1/T for high
Q-factor oscillations. Under the above assumptions, Eq. (3)
describes a system that exhibits nonlinear oscillations in the
presence of low friction and weak fluctuations.
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For convenience, we introduce the energy of the oscillator
per unit mass:

E = ẋ2

2
+ αx2n. (4)

Multiplying Eq. (3) by ẋ, we get

Ė = −εẋ2 + √
εẋξ (t). (5)

Thus, we have two fluctuation equations with the notation
u(x) = αx2n introduced:

ẋ =
√

2[E − u(x)],
(6)

Ė = −2ε[E − u(x)] +
√

2ε[E − u(x)]ξ (t).

We assume that the correlation time τcor of the stationary
random function ξ (t) is much less than the characteristic time
of x(t) ∼ T . In this case, we proceed from the fluctuation
equations (6) to the Fokker-Planck equation for the joint
probability density w(x,E,t) [6]:

∂w

∂t
= − ∂

∂x
[
√

2[E − u(x)]w]

+ 2ε
∂

∂E

[(
E − u(x) − K

4

)
w

]

+ εK
∂2

∂E2
{[E − u(x)]w}, (7)

where K = ∫ ∞
−∞ 〈ξ (t)ξ (t + τ )〉dτ and 〈ξ (t)〉 = 0.

For random function x(t), the level crossing takes place
at instant t0 if x(t) reaches and then immediately exceeds a
certain fixed level b (Fig. 1). Stratonovich showed [6] that the
mean density of level crossings of duration greater than τ is
given by

h(b,τ ) = w0(b)
∫ ∞

b

χ (x,τ )dx, (8)

where w0(x) is the stationary distribution of x(t) and χ (x,t) is
a solution to the Fokker-Planck equation (7) with the following
initial and boundary conditions:

χ (x,t) = 0 (t < 0), χ (b,t) = δ(t). (9)

t

x

b

t0 t0 + τ

x(t)

FIG. 1. (Color online) Level crossing of random process.

A. Small and medium durations of level crossing

We assume that ∂w/∂t and the first term on the right-hand
side of Eq. (7) have the same order of magnitude. Then we
represent w(x,E,t) in following form:

w(x,E,t) = w(0)(x,E,t) + εw(1)(x,E,t) + · · · . (10)

In zero order of ε we get

∂w(0)

∂t
= − ∂

∂x
[
√

2[E − u(x)]w(0)].

Using the method of characteristics, we obtain a general
solution of this equation:

w(0)(x,E,t) =
�

(
t − x√

2E
2F1

(
1
2 , 1

2n
,1 + 1

2n
, u(x)

E

))
√

E − u(x)
, (11)

where �(z) is an arbitrary function. We consider level crossing
in the plane {x,E} (see Fig. 2). Then the boundary condition
must be modified to

w(0)(b,E,t) = w+
0 (b,E)δ(t),

where w+
0 (x,E) is the stationary distribution of {x,E} with

positive velocities. Positivity of velocity near the bound x = b

is a necessary condition of level crossing. Taking into account
the boundary condition and using the notation

θ (x,E) = x√
2E

2F1

(
1

2
,

1

2n
,1 + 1

2n
,
u(x)

E

)
,

we obtain for positive velocities

w
(0)
+ (x,E,t) = w+

0 (b,E)

√
E − u(b)

E − u(x)
δ[t − θ (x,E) + θ (b,E)].

(12)

Note that this solution obviously satisfies the necessary
initial condition w

(0)
+ (x,E,0) = 0, x > b. It goes over

x

E

b0

E = u(x)

FIG. 2. (Color online) Level crossing of 2D random process in
the plane {x,E}.
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continuously into the density for negative velocities

w
(0)
− (x,E,t) = w+

0 (b,E)

√
E − u(b)

E − u(x)
δ(t + θ (x,E) + θ (b,E) − 2θ [(E/α)

1
2n ,E]). (13)

Then we get

h(b,τ,E) =
∫



w
(0)
− (x,E,τ )dx =

√
2[E − u(b)]

⎧⎪⎨
⎪⎩w+

0 (b,E), τ �
(

E
α

) 1
2n

√
E

√
2π�

(
1+ 1

2n

)
�

(
1
2 + 1

2n

) , E � �(b,τ )

0, otherwise.

(14)

These conditions follow from the existence of zero in x of
the δ function’s argument for fixed b and τ when b < x �
(E

α
)1/2n. Note there is at most one such zero. The integration

domain  is u(b) � u(x) � E. �(b,τ ) is the minimal energy
at which the δ function’s argument may vanish. It can be found
from the following transcendental equation:

τ + 2b√
2�

2F1

(
1

2
,

1

2n
,1 + 1

2n
,
u(b)

�

)

=
(

�

α

) 1
2n

√
2π

�

�
(
1 + 1

2n

)
�

(
1
2 + 1

2n

) . (15)

The stationary distribution w+
0 (b,E) is easily obtained from

Eq. (7):

w+
0 (b,E) =

(
2α

K

) 1
2n 1

2
√

πK �
(
1 + 1

2n

) e− 2E
K√

2[E − u(b)]
.

Integrating Eq. (14) with respect to E, we finally obtain

h(b,τ ) =
(

2α

K

) 1
2n K/4√

πK �
(
1 + 1

2n

)e− 2�(b,τ )
K . (16)

B. Large duration of level crossing

Let us consider level crossings for which the duration is
greater than the oscillation period. Following Ref. [6], we find
the two-dimensional probability density. Since the friction is
low, the energy E is conserved during a significant number
of oscillation periods. We assume that a quasiequilibrium
distribution characterized by ∂w/∂t ∼ ε is established after
some time. Using expression (7), we get

∂

∂x
[
√

2[E − u(x)]w] = O(ε).

Integrating with respect to x, we have

w(x,E,t) = C(E,t)√
E − u(x)

+ O(ε).

So in zero order in ε the joint probability density w(x,E,t)
can be factored to

w(x,E,t) = w(x|E)w(E,t).

For a fixed value of energy, the normalized conditional
probability density is

w(x|E) =
⎧⎨
⎩

nα
1

2n

B
(

1
2 , 1

2n

) E
1
2 − 1

2n√
E−u(x)

, u(x) < E,

0, u(x) � E.

(17)

This expression can also be obtained using the fact that the
time that process x(t) spends in a small neighborhood of x is
inversely proportional to the velocity ẋ = √

2[E − u(x)].
Then the two-dimensional probability density is given by

w(x,E,t) = nα
1

2n

B
(

1
2 , 1

2n

) E
1
2 − 1

2n w(E,t)√
E − u(x)

, u(x) < E. (18)

Substituting expression (18) into formula (7) and integrating
along x, we obtain the Fokker-Planck equation with respect to
w(E,t):

∂w

∂t
= εK

2

∂2

∂E2
[γEw] + ε

∂

∂E

[(
γE − K

2

)
w

]
. (19)

Here we use the notation

1

γ
= 1

2
+ 1

2n
.

First, we solve Eq. (19) with respect to w(E,t) using the
Laplace transform:

εK

2

∂2

∂E2
[γEw̄] + ε

∂

∂E

[(
γE − K

2

)
w̄

]
− pw̄ = 0, (20)

where the bar denotes the transform

w̄(E,p) =
∫ ∞

0−
e−ptw(E,t)dt. (21)

Expanding the brackets in Eq. (20), we obtain the following
equation:

εγEK

2

∂2w̄

∂E2
+ ε

[
γE +

(
γ − 1

2

)
K

]
∂w̄

∂E
+ (εγ − p)w̄ = 0.

The substitution η = −2E/K reduces it to the standard form
of the confluent hypergeometric equation:

η
∂2w̄

∂η2
+

(
2 − 1

γ
− η

)
∂w̄

∂η
−

(
1 − p

εγ

)
w̄(η,p) = 0.

Linearly independent solutions of this equation for arbitrary
values of parameters are confluent hypergeometric functions
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η1/γ−1�( 1
γ

− p

εγ
, 1
γ
,η) and η1/γ−1eη�( p

εγ
, 1
γ
,−η) [30]. Hence

the general solution of Eq. (20) can be represented as

w̄(E,p) =
(

2E

K

)1/γ−1[
c1(p)�

(
1

γ
− p

εγ
,

1

γ
,−2E

K

)

+ c2(p)e− 2E
K �

(
p

εγ
,

1

γ
,
2E

K

)]
, (22)

where the functions c1,2(p) are found below.
With the aid of Eq. (18), we derived the expression for the

transform of function χ (x,t):

χ̄(x,p) =
∫ ∞

0
w̄(x,E,p)dE

=
∫ ∞

0
w̄(E,p)w(x|E)dE

= α1/γ−1/2(
2
γ

− 1
)
B

(
1
2 , 1

γ
− 1

2

) ∫ ∞

u(x)

w̄(E,p)dE

E1/γ−1
√

E − u(x)
.

(23)

The calculation of the necessary integrals is given in
Appendix A. Substituting expressions (A3) and (A6) into
integral (23), we obtain

χ̄ (x,p) = c̃1(p)�

(
1

γ
− p

εγ
− 1

2
,

1

γ
− 1

2
,−2u(x)

K

)

+ c̃2(p)e− 2u(x)
K �

(
p

εγ
,

1

γ
− 1

2
,
2u(x)

K

)
.

We must use c̃1(p) = 0 because the first term ex-
ists only for Re p < ε − εγ /2 (see Appendix A), whereas
limx→∞ exp(− 2u(x)

K
)�( p

εγ
, 1
γ

− 1
2 , 2u(x)

K
) = 0 for Re p > 0.

We choose c̃2(p) so the function χ̄ (x,p) satisfies the
boundary condition χ̄(b,p) = 1 from Eq. (9):

χ̄ (x,p) = e−2 u(x)−u(b)
K

�
(

p

εγ
, 1
γ

− 1
2 , 2u(x)

K

)
�

(
p

εγ
, 1
γ

− 1
2 , 2u(b)

K

) . (24)

The transform of the density of level crossings is given by

h̄(b,p) = w0(b)
∫ ∞

b

χ̄(x,p)dx. (25)

Substituting integral (B1) into Eq. (25), we have

h̄(b,p) = w0(b)

(
K

2α

) 1
γ
− 1

2
(

1

γ
− 1

2

)

×
�

(
p

εγ
+ 3

2 − 1
γ
, 3

2 − 1
γ
, 2u(b)

K

)
�

(
p

εγ
, 1
γ

− 1
2 , 2u(b)

K

) . (26)

The stationary distribution w0(b) is easily obtained from
Eq. (7):

w0(b) =
[

2�

(
1

γ
− 1

2

)(
K

2α

) 1
γ
− 1

2
(

1

γ
− 1

2

)]−1

e− 2u(b)
K .

(27)

Substituting expression (27) into Eq. (26), we finally get

h̄(b,p) = e− 2u(b)
K

2�
(

1
γ

− 1
2

) �
(

p

εγ
+ 3

2 − 1
γ
, 3

2 − 1
γ
, 2u(b)

K

)
�

(
p

εγ
, 1
γ

− 1
2 , 2u(b)

K

) . (28)

Consider the function

f (p) = p
�

(
p

εγ
+ 3

2 − 1
γ
, 3

2 − 1
γ
, 2u(b)

K

)
�

(
p

εγ
, 1
γ

− 1
2 , 2u(b)

K

) .

When z 	= 0, the principal branch of �(a,c,z) is the entire
function of a, so f (p) is a meromorphic function. Because
p = 0 is a regular point of f (p), the function can be expanded
in rational fractions using the Mittag-Leffler theorem [31]:

f (p) = f (0) +
∑

l

Res
p=pl

f (p)

(
1

p − pl

+ 1

pl

)
.

Here pl are simple poles of f (p) numbered in ascending order
of absolute value, i.e., the roots of the equation

�

(
p

εγ
,

1

γ
− 1

2
,
2u(b)

K

)
= 0. (29)

The residue of f (p) at pl is

Res
p=pl

f (p) = pl

�
(

pl

εγ
+ 3

2 − 1
γ
, 3

2 − 1
γ
, 2u(b)

K

)
∂
∂p

�
(

p

εγ
, 1
γ

− 1
2 , 2u(b)

K

)∣∣
p=pl

.

Substituting these expressions into Eq. (26) and with allowance
for f (0) = 0, we obtain

h̄(b,p) = e− 2u(b)
K

2�
(

1
γ

− 1
2

)
×

∑
l

�
(

pl

εγ
+ 3

2 − 1
γ
, 3

2 − 1
γ
, 2u(b)

K

)
∂
∂p

�
(

p

εγ
, 1
γ

− 1
2 , 2u(b)

K

)∣∣
p=pl

1

p − pl

.

(30)

Finally, applying the inverse Laplace transform, we obtain
the desired distribution

h(b,τ ) = e− 2u(b)
K

2�
(

1
γ

− 1
2

) ∑
l

�
(

pl

εγ
+ 3

2 − 1
γ
, 3

2 − 1
γ
, 2u(b)

K

)
∂
∂p

�
(

p

εγ
, 1
γ

− 1
2 , 2u(b)

K

)∣∣
p=pl

eplτ .

(31)

The expression for the derivative of the Tricomi function is
given in Appendix C.

III. RESULTS AND DISCUSSION

A. Small and medium durations of level crossing

Consider the obtained expressions in detail. First, restriction
on duration (14) can be explained by the fact that level
crossings, whose duration exceeds a half of the oscillation
period T [see Eq. (1)], will appear relatively rarely. Then the
mean density of level crossings (16) is proportional to 1/T , at
least in the harmonic case, because on the average there is at
most one such crossing during the period of oscillation.

Figure 3 demonstrates a typical dependence of the mean
density of crossings on the level and duration (16).
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h10
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FIG. 3. Plot of the mean density of crossings h(b,τ ) (16) vs the
level and duration (n = 1, α = 3, ε = 0.1, K = 2).

Here we provide the results of numerical simulation of
the stochastic differential equation (3). The continuous-time
process is simulated by Euler’s discrete-time approximation.
The noise impact is a δ-correlated stationary Gaussian process.
We use the Mersenne twister [32] as a pseudorandom number
generator. The time period of the simulation and the time step
are 100 000 and 2 × 10−4, respectively.

A comparison of analytical and numerical results for the
harmonic oscillator (n = 1) at various parameters is presented
in Figs. 4 and 5. The solid lines correspond to theoretical
consideration, whereas the markers denote the results of
numerical simulation.

The results for the anharmonic quartic oscillator (n = 2)
are presented in Figs. 6 and 7.

Note that the theory is in good qualitative and quantitative
agreement with numerical experiment. The difference between
the analytical consideration and direct numerical simulation
appears to be due to discarding the terms of higher order of ε

in Eq. (10).

0.0 0.3 0.6 0.9 1.2 1.5
0.00

0.06

0.12

0.18

0.24

0.30

h

 =0.3

 =0.5

 =0.9

τ

b
b
b

FIG. 4. (Color online) Plot of the mean density of crossings
h(b,τ ) vs the duration at different values of level (n = 1, α = 3, ε =
0.1, K = 2) from analytical (16) and numerical simulations.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.08

0.16

0.24

0.32

0.40

h

b

 =0.1

 =0.5

 =1

τ
τ
τ

FIG. 5. (Color online) Plot of the mean density of crossings
h(b,τ ) vs the level at different values of duration (n = 1, α = 3, ε =
0.1, K = 2) from analytical (16) and numerical simulations.

B. Large duration of level crossing

1. Roots of Eq. (29)

It is obvious that the real roots of Eq. (29) are pl < 0 [30].
Wimp [33] demonstrated that the maximum root was

p1 � −εγ

2

(
3

2
− 1

γ

)
.

Using the asymptotic expression for �(a,c,z) at a → −∞
[30], we easily find the large negative roots of Eq. (29):

pl = −εγ

[
l + 2

π

√
2u(b)

K
l + 4u(b)

Kπ2
− 1

2γ
+ O

(
1√
l

)]
.

Figure 8 contains a graphical representation of the mean
density of crossings on the level and duration (31). Note
that this dependence for small and medium durations is for
illustrative purposes only.

In the present case of long-lasting level crossings, such that
τ 
 1/εγ , we can restrict sum (31) to the first few terms.

Let us consider the particular cases of distribution (31).

0.0 0.3 0.6 0.9 1.2 1.5
0.00

0.03

0.06

0.09

0.12

0.15

h

τ

 =0.6

 =0.7

 =0.9

b
b
b

FIG. 6. (Color online) Plot of the mean density of crossings
h(b,τ ) vs the duration at different values of level (n = 2, α = 1, ε =
0.1, K = 1) from analytical (16) and numerical simulations.
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τ
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FIG. 7. (Color online) Plot of the mean density of crossings
h(b,τ ) vs the level at different values of duration (n = 2, α = 1, ε =
0.1, K = 1) from analytical (16) and numerical simulations.

2. Relatively low level

Let b = 0. In this case, the solution can be written in terms
of elementary functions. We derive the expression for the
mean density transform, using the limiting form of the Tricomi
function for small values of the argument [30]:

h̄(b,p) = 1

2�
(

3
2 − 1

γ

) �
(

p

εγ
+ 3

2 − 1
γ

)
�

(
p

εγ
+ 1

) .

Using the inverse Laplace transform and the results from
Ref. [34], we obtain

h(b,τ ) = εγ

2�
(

3
2 − 1

γ

)
�

(
1
γ

− 1
2

) (eεγ τ − 1)
1
γ
− 3

2

= −εγ cos(π/γ )

2π
(eεγ τ − 1)

1
γ
− 3

2 . (32)

0.2
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1.2
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bτ

FIG. 8. Plot of the mean density of crossings h(b,τ ) (31) vs the
level and duration (n = 1, α = 1, ε = 0.1, K = 1).

3. Relatively high level

Let u(b)/K 
 1. Using asymptotic expression of the
Tricomi function for large values of the argument and the
first parameter Re p → ∞ [30], we derive the following
expression:

h̄(b,p) =
√

εγ e− 2u(b)
K

2�
(

1
γ

− 1
2

) (
2u(b)

K

)1/γ−1 1√
p + εγ

2
u(b)
K

.

Applying the inverse Laplace transform [34], we obtain

h(b,τ ) =
√

εγ e− 2u(b)
K

2�
(

1
γ

− 1
2

) (
2u(b)

K

)1/γ−1
e− u(b)

2K
εγ τ

√
πτ

. (33)

4. Harmonic oscillator

Let n = 1. In this case, the oscillator moves in a quadratic
potential. The expression for the mean density of level cross-
ings (31) can be simplified for the harmonic oscillator using
the relationship between confluent hypergeometric functions
and parabolic cylinder functions Dν(z) [30]. Thus, we obtain

h(b,τ ) = e− 2u(b)
K√

2π

∑
l

D−1−2 pl
εγ

(
2
√

u(b)
K

)
∂
∂p

D−2 p

εγ

(
2
√

u(b)
K

)∣∣
p=pl

eplτ . (34)

IV. SUMMARY

The theory of level crossings of oscillator trajectories
can be applied to the description of chemical reactions, in
particular, to the processes in the active sites of enzymes, where
decreasing the energy barrier of the reaction is determined
by the relative position of amino acid residues [35,36]. Due
to vibrations, charged groups of enzyme approach the bond
so that the reaction barrier is additionally decreased and the
reaction rate increases. Note that the above results can also be
used in the analysis of stochastic ratchet systems.

Thus, we considered the trajectories of the nonlinear
oscillator in the presence of weak noise and derived the mean
density of level crossings whose duration exceeds a certain
value in the low-friction limit.
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APPENDIX A: CALCULATION OF THE INTEGRALS (23)

We consider the integral∫ ∞

u(x)

�
(
a,c,− 2E

K

)
dE√

E − u(x)
= u(x)1/2

∫ ∞

1

�
(
a,c,− 2u(x)

K
z
)
dz√

z − 1
.

(A1)

When z → ∞, the integrand is proportional to z−a−1/2, so
that integral (A1) diverges for Re a � 1/2. We assume that
Re a > 1/2 and take into account that 1/2 < c � 1. Thus,
a /∈ {0 ∪ Z−} and c − a /∈ Z+, and the Mellin-Barnes integral
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representation is valid for the Tricomi function [30],

� (a,c,z) = 1

2πi

∫ σ+i∞

σ−i∞

�(a + s)�(−s)�(1 − c − s)

�(a)�(a − c + 1)
zsds, (A2)

where |arg z| < 3π/2, σ is arbitrary, and the contour has loops if necessary so that the poles of �(a + s) and �(−s)�(1 − c − s)
are on opposite sides of the contour.∫ ∞

u(x)

�
(
a,c,− 2E

K

)
dE√

E − u(x)
= u(x)1/2 1

2πi

∫ σ+i∞

σ−i∞

�(a + s)�(−s)�(1 − c − s)

�(a)�(a − c + 1)

(
−2u(x)

K

)s[ ∫ ∞

1

zsdz√
z − 1

]
ds

= u(x)1/2 1

2πi

∫ σ+i∞

σ−i∞

�(a + s)�(−s)�(1 − c − s)

�(a)�(a − c + 1)

(
−2u(x)

K

)s �
(

1
2

)
�

( − s − 1
2

)
�(−s)

ds

= −i

√
πK

2

�
(
a − 1

2

)
�(a)

�

(
a − 1

2
,c − 1

2
,−2u(x)

K

)
. (A3)

Here, the inner integral converges for Re s < −1/2, and we choose a vertical line −Re a < σ < −1/2 for the contour of the
outer integral.

Now, we consider ∫ ∞

u(x)
e− 2E

K

�
(
a,c, 2E

K

)
dE√

E − u(x)
= u(x)1/2

∫ ∞

1
e− 2u(x)

K
z
�

(
a,c, 2u(x)

K
z
)
dz√

z − 1
. (A4)

If |arg z| < π/2 we have the following integral representation for the Tricomi function [30]:

�(a,c,z) = 1

2πi
e−iπa�(1 − a)

∫ (0+)

∞
e−zt ta−1(1 + t)c−a−1dt, (A5)

where the path of integration starts at infinity on the real axis, encircles the origin in the positive direction, and returns to the
starting point. Changing the order of integration and using [37], we get∫ ∞

u(x)
e− 2E

K

�
(
a,c, 2E

K

)
dE√

E − u(x)
= u(x)1/2 1

2πi
e−iπa�(1 − a)

∫ (0+)

∞

[ ∫ ∞

1

e− 2u(x)
K

z(1+t)

√
z − 1

dz

]
ta−1(1 + t)c−a−1dt

= u(x)1/2 1

2πi
e−iπa�(1 − a)

∫ (0+)

∞

√
π

2u(x)
K

(1 + t)
e− 2u(x)

K
(1+t) ta−1(1 + t)c−a−1dt

=
√

πK

2
e− 2u(x)

K �

(
a,c − 1

2
,
2u(x)

K

)
. (A6)

APPENDIX B: CALCULATION OF THE INTEGRAL (25)

Consider the integral (25). Using the expression for the derivative of the confluent hypergeometric function [30], we
obtain ∫ ∞

b

e− 2u(x)
K �

(
p

εγ
,

1

γ
− 1

2
,
2u(x)

K

)
dx =

(
K

2α

) 1
γ
− 1

2
(

1

γ
− 1

2

) ∫ ∞

2u(b)
K

e−zz
1
γ
− 1

2 −1
�

(
p

εγ
,

1

γ
− 1

2
,z

)
dz

= −
(

K

2α

) 1
γ
− 1

2
(

1

γ
− 1

2

) ∫ ∞

2u(b)
K

d

dz

[
e−z�

(
p

εγ
+ 3

2
− 1

γ
,
3

2
− 1

γ
,z

)]
dz

=
(

K

2α

) 1
γ
− 1

2
(

1

γ
− 1

2

)
e− 2u(b)

K �

(
p

εγ
+ 3

2
− 1

γ
,
3

2
− 1

γ
,
2u(b)

K

)
. (B1)

APPENDIX C: DERIVATIVE OF THE TRICOMI FUNCTION WITH RESPECT TO THE PARAMETER

We derive an expression for the derivative ∂�/∂p. If c /∈ Z (in our case), then the principal branch of �(a,c,z) can be
represented in terms of the Kummer functions [30]:

�(a,c,z) = �(1 − c)

�(a − c + 1)
�(a,c,z) + �(c − 1)

�(a)
z1−c�(a − c + 1,2 − c,z). (C1)
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Differentiating expression (C1) with respect to the first parameter and taking into account that the derivative of the confluent
hypergeometric function with respect to the parameter can be expressed in terms of two-argument Kampé de Fériet–like
hypergeometric functions �(1) [38], we find

∂

∂p
�

(
p

εγ
,

1

γ
− 1

2
,
2u(b)

K

) ∣∣∣∣
p=pl

= 1

εγ

{
�

(
3
2 − 1

γ

)
�

(
pl

εγ
− 1

γ
+ 3

2

)
[

2u(b)
K

1
γ

− 1
2

�(1)

(
1,1

∣∣ pl

εγ
,1 + pl

εγ

1 + pl

εγ

∣∣2, 1
2 + 1

γ

∣∣∣∣2u(b)

K
,
2u(b)

K

)

−ψ

(
pl

εγ
− 1

γ
+ 3

2

)
�

(
pl

εγ
,

1

γ
− 1

2
,
2u(b)

K

)]

+
�

(
1
γ

− 3
2

)
�

(
pl

εγ

) (
2u(b)

K

) 3
2 − 1

γ

[
2u(b)

K

5
2 − 1

γ

�(1)

(
1,1

∣∣ pl

εγ
− 1

γ
+ 3

2 ,
pl

εγ
− 1

γ
+ 5

2
pl

εγ
− 1

γ
+ 5

2

∣∣2, 7
2 − 1

γ

∣∣∣∣2u(b)

K
,
2u(b)

K

)

−ψ

(
pl

εγ

)
�

(
pl

εγ
− 1

γ
+ 3

2
,
5

2
− 1

γ
,
2u(b)

K

)]}
. (C2)

Here ψ(z) is the γ function [30]. With allowance for expression (29), we finally obtain

∂

∂p
�

(
p

εγ
,

1

γ
− 1

2
,
2u(b)

K

) ∣∣∣∣
p=pl

= 1

εγ

{
�

(
3
2 − 1

γ

)
�

(
pl

εγ
− 1

γ
+ 3

2

)
[

2u(b)
K

1
γ

− 1
2

�(1)

(
1,1

∣∣ pl

εγ
,1 + pl

εγ

1 + pl

εγ

∣∣2, 1
2 + 1

γ

∣∣∣∣2u(b)

K
,
2u(b)

K

)

+
{
ψ

(
pl

εγ

)
− ψ

(
pl

εγ
− 1

γ
+ 3

2

)}
�

(
pl

εγ
,

1

γ
− 1

2
,
2u(b)

K

)]

+
�

(
1
γ

− 3
2

)
(

5
2 − 1

γ

)
�

(
pl

εγ

) (
2u(b)

K

) 5
2 − 1

γ

�(1)

(
1,1

∣∣ pl

εγ
− 1

γ
+ 3

2 ,
pl

εγ
− 1

γ
+ 5

2
pl

εγ
− 1

γ
+ 5

2

∣∣2, 7
2 − 1

γ

∣∣∣∣2u(b)

K
,
2u(b)

K

)}
. (C3)
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[34] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Tables of Integral Transforms (McGraw-Hill, New York, 1954).

[35] W. Ebeling, L. Schimansky-Geier, and Yu. M. Romanovsky,
Stochastic Dynamics of Reacting Biomolecules (World
Scientific, Singapore, 2002).

[36] W. Ebeling, A. Kargovsky, A. Netrebko, and Yu. Romanovsky,
Fluct. Noise Lett. 4, 183 (2004).

[37] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series,
and Products (Elsevier/Academic Press, Amsterdam, 2007).

[38] L. U. Ancarani and G. Gasaneo, J. Math. Phys. 49, 063508
(2008).

061114-9

http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1103/RevModPhys.62.251
http://dx.doi.org/10.1016/0370-1573(91)90108-X
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1090/S0002-9939-1965-0173793-8
http://dx.doi.org/10.1142/S0219477504001823
http://dx.doi.org/10.1063/1.2939395
http://dx.doi.org/10.1063/1.2939395



