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The distribution of the performed work for spin glasses with gauge symmetry is considered. With the aid
of gauge symmetry, which leads to exact (rigorous) results in spin glasses, we find a fascinating relation
of the performed work to the fluctuation theorem. The integral form of the resultant relation reproduces the
Jarzynski-type equation for spin glasses that we have obtained. We show that similar relations can be established
not only for the distribution of the performed work but also for that of the free energy of spin glasses with gauge
symmetry, which provides another interpretation of the phase transition in spin glasses.
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I. INTRODUCTION

The fluctuation theorem makes current activities to un-
derstand the nonequilibrium behavior [1–8]. The theorem
consists of a relation between distribution functions in different
conditions. The first discovery was in long-time observation
for an entropy production rate [2,3]. The rigorous derivation
of the fluctuation theorem was given by Gallavotti and Cohen
for the thermostated deterministic steady-state ensembles [4,5]
and for the stochastic dynamics [6–8]. The fluctuation theorem
for the nonequilibrium behavior as well as for the symmetry
broken states in equilibrium have been discovered [9]. In the
present study, we focus on the fluctuation theorem for the
performed work distributions [1]. This type of fluctuation
theorem yields a fascinating relation to the expectation of
the exponentiated work known as the Jarzynski equality
[10,11]. The Jarzynski equality creates a relationship between
the equilibrium free energy differences associated with the
initial and final conditions and the performed work during a
nonequilibrium process.

Recently the author and co-workers investigated the Jarzyn-
ski equality for spin glasses with competing interactions
between adjacent spins [12,13]. Spin glasses often exhibit
extremely long-time relaxation toward equilibrium. The long
equilibration time hampers observations of the equilibrium
state of spin glasses. However, the previous study pointed out
the possibility of investigating the equilibrium property from
the observations in a different path through nonequilibrium
behavior. Then we use the properties of the Jarzynski equality
by evaluating the average of the exponentiated performed
work during the nonequilibrium process. In other words,
nonequilibrium behavior would not be a nuisance, but would
be a benefit to investigating the equilibrium behavior in spin
glasses. In the present study, we address the distribution of the
performed work in such beneficial nonequilibrium behavior
with long-time equilibration in spin glasses.

We revisit the analysis of the nonequilibrium behavior
in spin glasses in terms of the distribution function of the
performed work by evaluation of the rate function. As a result,
we obtain a relation in a similar form to the conventional
fluctuation theorem for the performed work for spin glasses.
The similar analyses reveal that the gauge symmetry, which
leads to simple expressions of several quantities for spin
glasses [14,15], is closely related to the existence of the
fluctuation-theorem-type relation.

The paper is organized as follows. The second section gives
a brief introduction of several notations and tools in spin
glasses. In the third section, we review the previous study
on the performed work by use of the Jarzynski equality. In the
present study we give the fluctuation theorem in spin glasses
by employing several techniques developed in spin glasses.
We show the detailed analysis in Sec. IV. The analyses with
the aid of the specialized tool for spin glasses can yield other
types of fluctuation theorems rather than that for the performed
work. We show the fluctuation theorems for the free-energy
differences and free energy itself in the following sections. In
the last section, we conclude our present work.

II. SPIN GLASS AND GAUGE SYMMETRY

We deal with the random-bond Ising model, whose Hamil-
tonian is defined as

H (S|{τij }) = −J
∑
〈ij〉

τijSiSj , (1)

where Si is the Ising spin taking values ±1, J denotes the
strength of the coupling, and τij is the sign of the coupling. We
use the notation S = (S1,S2, . . . ,SN ) for the spin configuration
of total N spins for convenience. We set J = 1 without loss
of generality. The summation is taken over all bonds, whereas
one may suppose usual nearest neighboring bonds on a d-
dimensional hypercubic lattice. We make no restrictions on
the type or dimension of the lattice in the present study. The
distribution function of quenched randomness is specified as

P (τij ) = pδ(τij − 1) + (1 − p)δ(τij + 1) = eβpτij

2 cosh βp

, (2)

where βp is defined as e−2βp = (1 − p)/p. The following
analyses can readily be applied to other types of interaction
and their distribution functions as long as they satisfy a certain
type of gauge symmetry [14,15].

We use the gauge transformation, which enables us to
perform the exact (rigorous) analyses in spin glasses, espe-
cially on a special subspace β = βp known as the Nishimori
line [14,15]. The gauge transformation is defined as

τij → τij σiσj , Si → σiSi, (3)

where σi is the gauge variable taking ±1. The Hamiltonian (1)
is gauge invariant, while the distribution function (2) changes
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as P (τij ) ∝ exp(βpτijσiσj ). If we take the summation over all
combinations of {σi}, the product of the distribution function
for {τij } over all bonds can be reduced to the partition
function of the random-bond Ising model Z(βp; {τij }) =∑

σ exp(βp

∑
〈ij〉 τij σiσj ). We mainly use this property to

obtain the results in the present study.
In order to analyze the dynamical property of the Ising

spin glass, let us suppose that the system evolves following a
stochastic dynamics as governed by the master equation. In the
present study, we consider changing the inverse temperature.
This case is found in a generic solver of the optimization
problem as the simulated annealing [16]. We will formulate
our theory for discrete time steps for simplicity, although
the continuous case can be treated similarly. We change
the coupling β from β0 at t = 0 to βT at t = T in T

steps of time evolution (β0,β1, . . . ,βT ). Correspondingly, the
spin configuration changes as St . The path probability for
expressing the dynamical behavior of the system is then written
by the product of the transition rate from state St to state St+1

following the master equation Pt (St+1|St ,{τij }). The transition
rate is also gauge invariant, since it depends on the form of the
Hamiltonian [15,17].

III. JARZYNSKI EQUALITY FOR SPIN GLASSES

We analyze the work distribution function for spin glasses
with a number of spins in the present study. For convenience,
we fix several notations and review the previous study before
demonstrating the detailed analysis on our issue.

A. Jarzynski equality

We define the discretized pseudo work given by the
difference of the inverse temperature as

δYt (St+1|{τij }) = βt+1H (St+1|{τij }) − βtH (St+1|{τij }). (4)

If we change the parameters in the Hamiltonian instead of
the inverse temperature, then the discretized pseudo work is
reduced to the ordinary work as

δYt (St+1|{τij }) = βHt+1(St+1|{τij }) − βHt (St+1|{τij })
≡ βδWt (St+1|{τij }). (5)

For instance, changing the magnetic field as in Ref. [12] is the
case. The performed (pseudo) work consists of a collection of
the discretized pseudo work

Y ({St },{τij }; 0 → T ) =
T −1∑
t=0

δYt ({τij },St+1). (6)

Notice that the performed work depends on the specific
configuration of {τij }.

We briefly review the previous study for the performed
work in spin glasses [12,18]. We applied the Jarzynski equality
to the special case for spin glasses in the previous study.
The Jarzynski equality states that the expectation of the
exponentiated work during the nonequilibrium process is given
by the difference of the free energy [−βF = log Z(β; {τij })]
between the initial and final conditions as [10,11]

〈e−Y 〉0→T = e−�0→T (βF ), (7)

where �0→T (βF ) = βT F (βT ; {τij }) − β0F0(β0; {τij }). The
brackets denote the nonequilibrium average over all realiza-
tions of the spin configurations in a nonequilibrium process
starting from the equilibrium state defined as

〈· · ·〉0→T =
∑
{St }

T −1∏
t=0

Pt (St+1|St ,{τij })P t=0
eq (S0|{τij }), (8)

where P t
eq(S|{τij }) denotes the equilibrium distribution func-

tion

P t
eq(S|{τij }) = 1

Z(βt ; {τij })e
−βtH (S|{τij }). (9)

B. For spin glasses

Since the work is given by the realization of the spin
configurations at each time, the path probability can be
regarded as the distribution function of the performed work
with the specific configuration of {τij } as P (y; {τij },0 → T ).
However, in spin glasses, we are often interested in the
averaged quantity over all realizations of {τij }. In the previous
study, the author and co-workers evaluated the averaged
Jarzynski equality as

[〈e−Y 〉0→T ]β0 =
(

2 cosh βT

2 cosh β0

)NB

, (10)

where NB is the number of bonds, and the square brackets
denote the configurational average over all realizations of {τij }
defined as

[· · ·]βp
=

∑
{τij }

∏
〈ij〉

P (τij ) × · · · =
∑
{τij }

∏
〈ij〉

eβpτij

2 cosh βp

× · · · .

(11)

The above equality holds for the special initial condition
that the nonequilibrium process starts from the Nishimori
line βp = β0 [14,15]. Then the averaged free energy on the
right-hand side can be reduced to a trivial quantity. However,
the Jarzynski equality is for the expectation, which is the
average over all realizations. We cannot obtain the detailed
structure of the distribution functions only from the expec-
tation. In the present study, we thus revisit the problem on
the performed work during a nonequilibrium process in spin
glasses by evaluating the distribution function in a different
way. That is the motivation of our study.

IV. FLUCTUATION THEOREM FOR SPIN GLASSES

A. Large deviation

Throughout the present study, we assume the large deviation
property in the distribution function for the system with a
large number of components. For instance, the distribution
function P (y; {τij },0 → T ) of the performed work for the
specific configuration of {τij } takes an asymptotic form as,
for a large N ,

P (y; {τij },0 → T ) ∼ e−NI (y;{τij },0→T ), (12)

where I (y; {τij },0 → T ) is the rate function and always takes
a non-negative value. At the most frequent realization of
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the performed work (thermodynamic work), the rate function
vanishes. Here y stands for the scaled work defined as

y = Y ({St },{τij }; 0 → T )/N. (13)

In the thermodynamic system, the empirical average as the
above scaled work can be evaluated by the zero point y∗ of the
rate function and coincides with the expectation, since∫

dy P (y; {τij },0 → T )y = y∗. (14)

On the other hand, the rate function can characterize the
fluctuation around the zero point. For the rate function,
an important relation—the fluctuation theorem—holds. As
detailed in Appendix A, the fluctuation theorem states the
symmetry of the rate functions as

I (y; {τij },0 → T )

= I (−y; {τij },T → 0) − y

− 1

N
[log Z(βT ; {τij }) − log Z(β0; {τij })]. (15)

This symmetry of the rate functions yields the well-known
fluctuation theorem (Crooks fluctuation theorem) for the
distribution functions of the performed work as

P (y; {τij },0 → T )

P (−y; {τij },T → 0)
= exp {N [y − �0→T (βf )]} . (16)

Rather than the Jarzynski equality—namely, the expectation—
the fluctuation theorem provides more detailed information on
the distribution function. Therefore we consider finding the
fluctuation theorem to spin glasses in the present study.

B. Generating function

The above fluctuation theorem holds for the specific
configuration of {τij }, similarly to the Jarzynski equality.
However, in spin glasses, we find sample-to-sample fluctuation
in observations for different realizations of {τij }. We thus must
evaluate the fluctuation around the most probable realization
for the infinite-size system. By the analysis of the generating
function of the distribution function of {τij } associated with
the quantity we are interested in, we can evaluate such
sample-to-sample fluctuations by the rate function. Let us
define the following generating function of the performed work
for spin glasses as

�y(r; βp,0 → T ) ≡ 1

N
log[〈exp(rNy)〉0→T ]βp

, (17)

and of its inverse process,

�y(r; βp,T → 0) ≡ 1

N
log[〈exp(−rNy)〉T →0]βp

. (18)

It is convenient to define the generating function for the specific
configuration of {τij } as

�y(r; {τij },0 → T ) ≡ 1

N
log〈exp(rNy)〉0→T , (19)

and for its inverse process

�y(r; {τij },T → 0) ≡ 1

N
log〈exp [rN(−y)]〉T →0. (20)

Notice that the definition of �y(r; βp,0 → T ) reads, by
Eq. (19),

exp[N�y(r; βp,0 → T )] = [〈exp(rNy)〉0→T ]βp

= [eN�y (r;{τij },0→T )]βp
. (21)

For each realization of {τij }, the fluctuation theorem for the
generating function holds as (see Appendix A)

�y(r; {τij },0 → T )

= �y[−(r + 1); {τij },T → 0]

+ 1

N
[log Z(βT ; {τij }) − log Z(β0; {τij })]. (22)

We thus obtain

eN�y (r;{τij },0→T ) = Z(βT ; {τij })
Z(β0; {τij }) eN�y [−(r+1);{τij },T →0]. (23)

Therefore we evaluate the exponentiated generating function
as

eN�y (r;βp,0→T ) = [eN�y (r;{τij },0→T )]βp

=
[
Z(βT ; {τij })
Z(β0; {τij }) eN�y [−(r+1);{τij },T →0]

]
βp

.

(24)

The gauge transformation yields, as detailed in Appendix B,

2N (2 cosh βp)NB eN�y (r;βp,0→T )

=
∑
{τij }

Z(βp; {τij })eN�y (r;{τij },0→T )

=
∑
{τij }

Z(βp; {τij })Z(βT ; {τij })
Z(β0; {τij }) eN�y [−(r+1);{τij },T →0].

(25)

We set βp = β0 and then obtain

2N (2 cosh β0)NB eN�y (r;β0,0→T )

=
∑
{τij }

Z(β0; {τij })eN�y (r;{τij },0→T )

=
∑
{τij }

Z(βT ; {τij })eN�y [−(r+1);{τij },T →0]. (26)

On the other hand, let us evaluate the exponentiated generating
function of the inverse process

eN�y (r;βp,T →0) = [eN�y (r;{τij },T →0)]βp

=
[

Z(β0; {τij })
Z(βT ; {τij })e

N�y [−(r+1);{τij },0→T ]

]
βp

.

(27)

When βp = βT , the gauge transformation yields

2N (2 cosh βT )NB eN�y (r;βT ,T →0)

=
∑
{τij }

Z(βT ; {τij })eN�y (r;{τij },T →0)

=
∑
{τij }

Z(β0; {τij })eN�y [−(r+1);{τij },0→T ]. (28)
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Since the second line of Eq. (26) is equal to the third line of
Eq. (28) except for the arguments of the generating function
�y , we reach

eN�y [−(r+1);β0,0→T ] =
(

2 cosh βT

2 cosh β0

)NB

eN�y (r;βT ,T →0). (29)

C. Rate function and fluctuation theorem

The relation (29) yields the symmetry of the rate function
of the performed work for spin glasses. We assume that the
existence of the rate function for a large N as

P (y; βp,0 → T ) ∼ e−NJ (y;βp,0→T ). (30)

From the generating function we evaluate the rate function
through the Legendre transformation as

J (y; βp,0 → T ) = sup
r

{ry − �y(r; βp,0 → T )}, (31)

and that for its inverse process as

J (y; βp,T → 0) = sup
r

{ry − �y(r; βp,T → 0)}. (32)

Then the relation (29) yields

J (y; β0,0 → T )

= sup
r

{ry − �y(r; β0,0 → T )}
= sup

r

{(r + 1)y − �y[−(r + 1); βT ,T → 0]}

− y − d log

(
2 cosh βT

2 cosh β0

)

= J (−y; βT ,T → 0) − y − d log

(
2 cosh βT

2 cosh β0

)
, (33)

where d = NB/N . Consequently, we obtain the fluctuation
theorem for spin glasses as

P (y; β0,0 → T )

P (y; βT ,T → 0)
=

(
2 cosh βT

2 cosh β0

)NB

eNy. (34)

The fluctuation theorem for spin glasses immediately reads

[〈exp(−Ny)〉0→T ]β0 =
(

2 cosh βT

2 cosh β0

)NB

, (35)

which reproduces the Jarzynski equality for spin glasses (29).
We here use the fact that we can replace the integration over
all realizations of the performed work as the average over all
configurations of {τij } and {St } as

[〈· · ·〉0→T ]βp
=

∫
dy P (y; βp,0 → T ) × · · · . (36)

By taking the logarithm of the fluctuation theorem (34) and
average to make the form of the Kullback-Leibler (KL) di-
vergence DKL(PA|PB) = ∫

dx PA(x) log [PA(x)/PB(x)], we
obtain two inequalities:

[〈y〉0→T ]β0
+ d log

(
2 cosh βT

2 cosh β0

)
� 0 (37)

and

[〈y〉T →0]βT
− d log

(
2 cosh βT

2 cosh β0

)
� 0. (38)

Thus we obtain

[〈y〉0→T ]β0
+ [〈y〉T →0]βT

� 0. (39)

The equality holds, when two of the distribution functions are
the same,

P (y; βT ,T → 0) = P (y; β0,0 → T ), (40)

since the left-hand side of Eq. (39) can be evaluated by

[〈y〉0→T ]β0
+ [〈y〉T →0]βT

=
∫

dy [P (y; β0; 0 → T ) − P (−y; βT ,T → 0)]

× log

(
P (y; β0,0 → T )

P (−y; βT ,T → 0)

)
. (41)

If we consider the quasistatic process, then 〈y〉0→T =
�(βf )0→T following the second law of thermodynamics [i.e.,
P (y; βp,0 → T ) = P (�(βf ); βp,0 → T )]. Therefore, for the
difference of the free energy of spin glasses, we expect
the existence of a similar relation to the above fluctuation
theorem.

V. FLUCTUATION THEOREM FOR FREE
ENERGY DIFFERENCE

A. Generating function

Let us consider the sample-to-sample fluctuations for
the free-energy difference �(βf ) by dealing with the rate
function. We define the generating function for the free-energy
difference as

��(βf )(r; βp,0 → T ) ≡ 1

N
log [exp [rN�0→T (βf )]]βp

.

(42)

The gauge transformation gives

eN��(βf )(r;βp,0→T ) =
∑
{τij }

Z(βp; {τij })
2N (2 cosh βp)NB

(
Z(βT ; {τij })
Z(β0; {τij })

)r

.

(43)

We set βp = β0 and obtain

eN��(βf )(r;β0,0→T ) =
∑
{τij }

Z(βT ; {τij })
2N (2 cosh β0)NB

(
Z(βT ; {τij })
Z(β0; {τij })

)r−1

.

(44)

On the other hand, the condition βp = βT leads to

eN��(βf )(r;βT ,0→T ) =
∑
{τij }

Z(βT ; {τij })
2N (2 cosh βT )NB

(
Z(βT ; {τij })
Z(β0; {τij })

)r

.

(45)

Therefore we find a relation of the generating function as

��(βf )(r + 1; β0,0 → T )

= ��(βf )(r; βT ,0 → T ) + d log

(
2 cosh βT

2 cosh β0

)
. (46)
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B. Rate function and fluctuation theorem

We assume that the large-deviation property holds for the
free energy of the large system N → ∞ as

P [�0→T (βf ); βp] ∼ exp{−NK[�0→T (βf ); βp]}. (47)

We then obtain the rate function of the free-energy difference
through the Legendre transformation as

K[�0→T (βf ); βp] = sup
t

{r�(βf ) − ��(βf )(r; βp,0 → T )}.
(48)

By use of Eq. (46), we immediately find

K[�0→T (βf ); β0]

= K[�0→T (βf ); βT ] − �(βf ) − d log

(
2 cosh βT

2 cosh β0

)
.

(49)

Therefore we find

P [�0→T (βf ); β0]

P [�0→T (βf ); βT ]
=

(
2 cosh βT

2 cosh β0

)NB

eN�(βf ). (50)

Due to the definition of the free-energy difference,
P [�0→T (βf ); βp] = P [−�T →0(βf ); βp], and we thus obtain
the relation in the same form as the fluctuation theorem,

P [�0→T (βf ); β0]

P [−�T →0(βf ); βT ]
=

(
2 cosh βT

2 cosh β0

)NB

eN�(βf ). (51)

We also establish the Jarzynski-type equality as, by integrating
the exponentiated free-energy difference,

[exp [−N�0→T (βf )]]β0 =
(

2 cosh βT

2 cosh β0

)NB

. (52)

We here use the fact that we can regard the distribution function
of {τij } as that of the free-energy difference as

[· · ·]βp
=

∫
dx P (x : βp) × · · · . (53)

By making the form of the KL divergence, we obtain the
following inequalities:

[�0→T (βf )]β0
+ d log

(
2 cosh βT

2 cosh β0

)
� 0 (54)

and

[�T →0(βf )]βT
− d log

(
2 cosh βT

2 cosh β0

)
� 0. (55)

We thus obtain

[�T →0(βf )]βT
+ [�0→T (βf )]β0

� 0. (56)

The deviation from zero can be written as

[�T →0(βf )]βT
+ [�0→T (βf )]β0

=
∫

dx [P (−x; βT ) − P (x; β0)] log

(
P (−x; βT )

P (x; β0)

)
.

(57)

The equality holds when P [�0→T (βf ); β0] =
P [−�T →0(βf ); βT ]. Since two of the distribution functions

P [�0→T (βf ); β0] and P [−�T →0(βf ); βT ] do not coincide
with each other in general, the equality in Eq. (56) is not
expected to hold; nor is the equality in Eq (39). The magnitude
of the violation of the equality can be evaluated by the
quantity related to the KL divergence.

As considered above, the gauge symmetry leads to another
type of fluctuation theorem not only for the performed work
but also the free-energy differences for different configurations
of {τij }. In this sense the obtained relations (34) and (51) are
different from the ordinary fluctuation theorem. Our results are
related to the sample-to-sample fluctuations of the different
realizations of {τij }. The sample-to-sample fluctuation yields
relevant effects even in equilibrium. In theoretical studies
in spin glasses, we usually employ the replica method to
evaluate the equilibrium property. In the next section we
demonstrate how to evaluate the equilibrium property for spin
glasses with gauge symmetry from a perspective of the rate
function without the replica method. As a result, we find
a different way to understand the peculiar behavior in spin
glasses.

VI. FLUCTUATION THEOREM FOR FREE ENERGY

A. Free energy statistics

We again assume the large-deviation property for free
energy in a large-N system,

P (f ; βp,β) ∼ exp[−NL(f ; βp,β)]. (58)

Here we regard the distribution function of {τij } as that of
the free energy. We define the generating function of the free
energy as

�f (r; βp,β) = 1

N
log [exp [rN(−βf )]]βp

. (59)

The exponentiated generating function is

eN�f (r;βp,β) = [Zr (β; {τij })]βp
. (60)

The analysis by the gauge transformation led us to

�f (r; βp,β) = − log 2 − d log[2 cosh(βp)]

+ 1

N
log

⎛
⎝∑

τij

Z(βp; {τij })Zr (β; {τij })
⎞
⎠ .

(61)

On the Nishimori line βp = β, we find

�f (r; β,β) = − log 2 − d log (2 cosh β)

+ 1

N
log

⎛
⎝∑

τij

Zr+1(β; {τij })
⎞
⎠ . (62)

We obtain the following similar quantity in the symmetric
distribution (βp = 0):

�f (r; 0,β) = −d log 2 + 1

N
log

⎛
⎝∑

τij

Zr (β; {τij })
⎞
⎠ .
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B. Fluctuation theorem

We find a relation from the above generating functions:

�f (r; β,β) + log 2 + d log (cosh β) = �f (r + 1; 0,β),

(63)

which is essentially the same as the calculation in Ref. [19].
The above relation enables us to analyze the critical behavior of
the spin glasses in the symmetry distribution through the free
energy on the Nishimori line as shown in Ref. [20]. However,
in a modern point of view, this relation can be regarded as
the fluctuation theorem for free energy. Indeed we find the
symmetry of the rate function of the free energy through the
Legendre transformation as

L(f ; β,β) = L(f ; 0,β) + βf + log 2 + d log(cosh β),

(64)

where we defined the rate function as

L(f ; βp,β) = sup
r

{r(−βf ) − �f (r; βp,β)}. (65)

Thus we obtain the fluctuation-theorem-type equality for the
free energies on the Nishimori line and in the symmetric
distribution as

P (f ; β,β)

P (f ; 0,β)
= e−Nβf

2N (cosh β)NB
. (66)

By taking the logarithm and average to make the form of the
KL divergence, we obtain two inequalities:

−βf ∗(β,β) � log 2 + d log (cosh β) (67)

and

−βf ∗(0,β) � log 2 + d log (cosh β) , (68)

where we defined the free energy in the thermodynamic limit
as

f ∗(βp,β) =
∫

df P (f ; βp,β)f. (69)

C. Phase diagrams in spin glasses

The common quantity on the right-hand sides of Eqs. (67)
and (68) is equal to the annealed free energy given in the sym-
metric distribution as −βfa(0,β) = log[Z(β; {τij })]βp=0/N .
Thus the inequalities (67) and (68) read

f ∗(β,β) � fa(0,β) (70)

and

f ∗(0,β) � fa(0,β). (71)

From the fluctuation-theorem-type relation (66), the violation
of the equality relates to the KL divergence as

f ∗(β,β) − fa(0,β) = − 1

β
DKL[P (f ; β,β)|P (f ; 0,β)] (72)

and

f ∗(0,β) − fa(0,β) = 1

β
DKL[P (f ; 0,β)|P (f ; β,β)]. (73)

When f ∗(0,β) = fa(0,β), we immediately find DKL[P (f ;
β,β)|P (f ; 0,β)] = DKL [P (f ; 0,β)|P (f ; β,β)] = 0. Thus

(a) (b)

FIG. 1. Phase diagrams of spin glasses. (a) The typical phase
diagram of several mean-field models and that of the Mattis model
(then Tc = TSG). (b) Typical instance of the finite-dimensional ±J

Ising model. The vertical axis denotes the temperature and the
horizontal one expresses the density of the quenched randomness.
The dashed line depicts the Nishimori line (βp = β). The solid
lines separate the representative phases: the ferromagnetic (Ferro),
paramagnetic (Para), and spin glass (SG) ones. In (b), below the
dotted line, the Griffiths paramagnetic phase is expected to be laid.

we conclude that f ∗(β,β) = f ∗(0,β). This relation ensures
that the critical point on the Nishimori line is located at
the same temperature in the symmetry distribution, when
f ∗(0,β) = fa(0,β) as often seen in the paramagnetic solutions
for the mean-field spin glass models and the free energy of
the Mattis model [21,22] as in the case of (a) in Fig. 1. These
models show the parallel phase boundary to the βp axis from
the Nishimori line to the region in the symmetric distribution.

In addition, since fa(0,β) is a trivial function, the
nonanalytical point of the free energy f ∗ is identified as
that of the KL divergence. If two of the KL divergences
DKL [P (f ; β,β)|P (f ; 0,β)] and DKL [P (f ; 0,β)|P (f ; β,β)]
have the nonanalytical points at the same temperature, the
phase boundary can be parallel to the βp axis from the
Nishimori line to the region in the symmetric distribution.
Note that this does not necessarily mean that two of the KL
divergences coincide with each other. This case is expected to
be the Griffiths singularity, which is considered to be located
at the same temperature Tc for any βp as the ferromagnetic
transition point without the quenched randomness [23–25], as
in the case of (b) in Fig. 1. In this sense, the Griffiths singularity
might be specified as the appearance of a simultaneous
nonanalytical point of two symmetric KL divergences of
the free-energy distribution functions. It would increase the
understanding of the Griffiths singularity with the aid of the
information geometry [26] through the above consideration.

VII. CONCLUSION

We analyzed the distribution function of the performed
work for the spin glass with the gauge symmetry. The gauge
symmetry revealed the existence of the symmetry in the rate
function of the performed work as well as the free energy
depending on each realization of the quenched randomness.
As a result we obtained several relations in the same form as
the fluctuation theorem. In order to analyze a spin glass system,
we usually use the replica method, which deals with the highly
correlated multiple system of the original model. Although a
part of our results overlapped with the known properties via the
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replica method and gauge transformation as we recovered, our
analyses were directly performed on the distribution function
without replica method and related the averaged quantities as
the performed work and free energy to the KL divergence.
In this sense we believe that our analyses should be valuable
for providing a different perspective to the understanding of
nonequilibrium and critical behaviors for spin glasses.

ACKNOWLEDGMENTS

The author is grateful for the fruitful discussions with Yuki
Sughiyama, Tomoyuki Obuchi, Koji Hukushima, Jun-ichi
Inoue, and Hidetoshi Nishimori. This work was supported by
MEXT in Japan, Grant-in-Aid for Young Scientists (B) No.
24740263.

APPENDIX A: CROOK’S FLUCTUATION THEOREM

We here demonstrate the Crooks fluctuation theorem [1]
of the performed work employing derivation by use of the
large-deviation principle as done for the long-time behaviors
by Lebowitz and Spohn [7]. Instead of the long-time obser-
vation (T 
 1), we consider the large number of components
(N 
 1) in the present study.

We assume that the detailed balance condition is satisfied
as

Pt (St+1|St ,{τij })
Pt (St |St+1,{τij }) = P t

eq(St+1|{τij })
P t

eq(St |{τij }) . (A1)

Then the product over all steps can be expressed by

T −1∏
t=0

Pt (St+1|St ,{τij })
Pt (St |St+1,{τij }) =

T −1∏
t=0

P t
eq(St+1|{τij })
P t

eq(St |{τij })

= exp

[
−

T −1∑
t=0

δX(St+1,St |{τij })
]
, (A2)

where we defined the discretized pseudo heat as
δXt (St+1,St |{τij }) = βtH (St+1|{τij }) − βtH (St |{τij }).
The (pseudo) heat is given by

X({St },{τij }; 0 → T ) =
T −1∑
t=0

δXt (St+1,St |{τij }). (A3)

Then we confirm the first law of thermodynamics as

Y ({St },{τij }; 0 → T ) + X({St },{τij }; 0 → T )

= βT H (ST |{τij }) − β0H (S0|{τij }). (A4)

Therefore we reach a relation between the original process and
its inverse one starting from the equilibrium states as

T −1∏
t=0

Pt (St+1|St ,{τij })e−Y ({St },{τij };0→T )

=
T −1∏
t=0

Pt (St |St+1,{τij })e−βT H (ST |{τij })+β0H (S0|{τij }). (A5)

As a result, we find the following relation:

T −1∏
t=0

Pt (St+1|St ,{τij })P 0
eq(S0|{τij })

= Z(βT ; {τij })
Z(β0; {τij })

T −1∏
t=0

Pt (St |St+1,{τij })P T
eq(ST |{τij })eNy.

(A6)

This relation yields Eq. (22).
The rate function is given by the Legendre transformation

of the generating function as

I (y; {τij },0 → T ) = sup
r

{ry − �y(r; {τij },0 → T )}. (A7)

On the other hand, the rate function for the inverse process is
also defined as

I (y; {τij },T → 0) = sup
r

{ry − �y(r; {τij },T → 0)}. (A8)

By use of the relation (22), we find

I (y; {τij },0 → T )

= sup
r

{(r + 1)y − �y[−(r + 1); {τij },T → 0]}

− y − 1

N
[log Z(βT ; {τij }) − log Z(β0; {τij })]

= I (−y; {τij },T → 0)

− y − 1

N
[log Z(βT ; {τij }) − log Z(β0; {τij })]. (A9)

This symmetry of the rate functions yields the well-known
fluctuation theorem for the distribution functions of the
performed work as

P (y; {τij },0 → T )

P (−y; {τij },T → 0)
= exp{N [y − �0→T (βf )]}. (A10)

This is the Crooks fluctuation theorem [1].

APPENDIX B: GAUGE TRANSFORMATION

We demonstrate the manipulation of the gauge transfor-
mation to obtain Eq. (25) from Eq. (24). The quantity in the
second line of Eq. (24) can be written as

[eN�y (r;{τij },0→T )]βp
=

∑
{τij }

∏
〈ij〉 e

βpτij

(2 cosh βp)NB
eN�y (r;{τij },0→T ).

(B1)

The gauge transformation yields

[eN�y (r;{τij },0→T )]βp
=

∑
{τij }

∏
〈ij〉 e

βpτij σiσj

(2 cosh βp)NB
eN�y (r;{τij },0→T ).

(B2)

Thus we sum over all possible configurations of {σi} and obtain

2N [eN�y (r;{τij },0→T )]βp
=

∑
{τij }

Z(βp; {τij })
(2 cosh βp)NB

eN�y (r;{τij },0→T ).

(B3)
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Similarly, we can evaluate the quantity in the third line of Eq. (24) as

2N [eN�y (r;{τij },0→T )]βp
=

∑
{τij }

Z(βT ; {τij })
Z(β0; {τij })

Z(βp; {τij })
(2 cosh βp)NB

eN�y[−(r+1);{τij },T →0]. (B4)

Therefore we reproduce Eq. (25).
In addition, the quantity in the second line of Eq. (27) is

[eN�y (r;{τij },T →0)]βp
=

∑
{τij }

∏
〈ij〉 e

βpτij

(2 cosh βp)NB
eN�y (r;{τij },T →0). (B5)

The gauge transformation yields

[eN�y (r;{τij },T →0)]βp
=

∑
{τij }

∏
〈ij〉 e

βpτij σiσj

(2 cosh βp)NB
eN�y (r;{τij },T →0). (B6)

The summation over all possible configurations of {σi} yields

2N [eN�y (r;{τij },T →0)]βp
=

∑
{τij }

Z(βp; {τij })
(2 cosh βp)NB

eN�y (r;{τij },T →0). (B7)

The same analysis can be applied to the third line of Eq. (27) as

2N [eN�y (r;{τij },T →0)]βp
=

∑
{τij }

Z(β0; {τij })
Z(βT ; {τij })

Z(βp; {τij })
(2 cosh βp)NB

eN�y [−(r+1);{τij },0→T ]. (B8)

When βp = βT , we find Eq. (28).
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