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Continuum percolation thresholds in two dimensions
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A wide variety of methods have been used to compute percolation thresholds. In lattice percolation, the most
powerful of these methods consists of microcanonical simulations using the union-find algorithm to efficiently
determine the connected clusters, and (in two dimensions) using exact values from conformal field theory for
the probability, at the phase transition, that various kinds of wrapping clusters exist on the torus. We apply this
approach to percolation in continuum models, finding overlaps between objects with real-valued positions and
orientations. In particular, we find precise values of the percolation transition for disks, squares, rotated squares,
and rotated sticks in two dimensions and confirm that these transitions behave as conformal field theory predicts.
The running time and memory use of our algorithm are essentially linear as a function of the number of objects
at criticality.
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I. INTRODUCTION

For more than 50 years, percolation theory has been used
to model static and dynamic properties of porous media and
other disordered physical systems [1–3]. Most natural systems
correspond to continuum percolation, yet most analytical and
numerical work has focused on lattice percolation. This is
reasonable since continuum and lattice percolation lie in the
same universality class. For properties that are nonuniversal,
however, such as the location of the threshold, one has to
study discrete and continuum models individually, and it is also
satisfying to confirm universality experimentally by measuring
critical exponents and crossing probabilities.

In this contribution we discuss an algorithm to compute
the location of the transition in continuum percolation models.
The algorithm works in arbitrary dimensions and for arbitrarily
shaped objects; here we focus on two-dimensional percolation
with disks, squares that are aligned or randomly rotated, and
randomly rotated sticks (see Fig. 1). Our algorithm is an
adaption of the union-find algorithm of Newman and Ziff [4],
the fastest known algorithm for lattice percolation. We show
that it can be adapted to continuum percolation with the aid
of some simple additional data structures, and we back up our
claim by computing numerical values of the transition points
that extend the accuracy of previously known values by several
orders of magnitude.

In two-dimensional continuum percolation, a number n of
penetrable objects are thrown at random in a square of size L2.
If the mean density ρ = n/L2 is finite as n and L go to infinity,
the spatial distribution of the objects’ centers is a Poisson point
process with density ρ. The system percolates if there exists a
cluster of overlapping objects that spans the square. We follow
Ref. [4] in using periodic boundary conditions and focusing
on clusters that wrap around horizontally, vertically, or both.
These wrapping clusters display better finite-size effects than
crossing clusters on open boundary conditions.
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If each object has area a, then the probability that a
percolating cluster exists in the limit L → ∞ clearly depends
only on the product η = ρa. This dimensionless quantity is
called the filling factor. It also gives the total fraction φ of the
plane covered by the objects,

φ = 1 − e−η. (1)

While we expect continuum percolation to be in the same
universality class for any fixed shape, the location of the
transition, i.e., the critical filling factor ηc, depends on the
shape of the objects. We write η◦

c , η�
c , η♦

c , and η×
c for

the percolation of disks, aligned squares, randomly rotated
squares, and randomly rotated sticks, respectively. In defining
η, we treat sticks of length � as if they have area a = �2.

Table I lists the most accurate numerical values for ηc from
previous work and the work presented here. The best previous
results on disk percolation are due to Quintanilla, Torquato,
and Ziff [5] who varied the density of the Poisson process as a
function of position and kept track of the front of the connected
cluster. The best previous results on aligned squares are due to
Torquato and Jaio [7], who rescale an initial set of particles so
that its density is close to rigorous bounds. The best previous
results on rotated squares are due to Baker et al. [6]. The
best previous results on sticks are due to Li and Zhang [8],
who used an approach similar to ours but with open boundary
conditions.

Our results are consistent with the rigorous bounds

1.127 � η◦
c � 1.12875

(2)
1.098 � η�

c � 1.0995,

computed with 99.99% confidence by Balister, Bollobás,
and Walters [9] using a Monte Carlo estimate of a high-
dimensional integral. On the other hand, it is a little sad
to dash the hope—which one might have entertained after
reading Refs. [6,7], and which is just barely consistent with
Eq. (2)—that φ�

c is exactly 2/3.
In the following sections, we review the union-find algo-

rithm of Ref. [4], how it finds wrapping clusters in periodic
boundary conditions, and how we extend it to the continuous
case. We show that the running time of our algorithm is
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FIG. 1. (Color online) Continuum percolation with disks, ran-
domly rotated sticks, and aligned or rotated squares. In each example,
the wrapping cluster is marked by color.

essentially linear in the number of objects, i.e., linear in
L2. In addition to estimating the threshold, we also measure
the finite-size exponent ν, giving strong evidence that these
continuum models are in the same universality class as lattice
percolation. Finally, we find that the probability of a wrapping
cluster at criticality is precisely that predicted by conformal
field theory.

II. THE ALGORITHM

We will simulate percolation in the microcanonical en-
semble, i.e., where the number n of objects in the square is
fixed. In each trial, we add one object at a time, stopping as
soon as a percolating cluster appears. Following Ref. [4], we
keep track of the connected components at each step using
the union-find data structure. In union-find, each cluster is
represented uniquely by one of its members. We have access
to two functions: find(i), which finds the representative r(i) of
the cluster to which object i belongs, and merge(i,j), which
merges i’s cluster and j ’s cluster together into a single one
with the same representative.

Internally, union-find works in a very simple way. Each
object i is linked to a unique “parent” p(i) in the same
cluster, except for the representative which has no parent.
When we call find(i), it follows the links from i to its parent
p(i), its grandparent p[p(i)], and so on, until it reaches i’s
representative r(i). Similarly, merge(i,j) uses find(i) and find(j)
to obtain r(i) and r(j ) and declares one of them to be the parent
of the other, unless r(i) = r(j ) and they are already in the same
cluster.

The running time of find(i) is proportional to the length of
the path from i to r(i). If merge(i,j) sensibly links the smaller
cluster to the larger one, setting p[r(i)] = r(j ) whenever i’s
cluster is smaller than j ’s, a simple inductive argument shows
that these paths never exceed log2 n in length. However, we
can make these paths even shorter using a trick called path
compression. Since r(i) is the representative of every object j

along the path from i to r(i), we can set p(j ) = r(i) for all of
them, linking them directly to their representative so that find
will work in a single step the next time we call it.

As a result, the amortized cost of the find and merge
operations—that is, the average cost per operation over the
course of many operations—is nearly constant. Specifically, it
is proportional to α(n), when α is the inverse of the Ackermann
function [10]. The Ackermann function grows faster than any
primitive recursive function, i.e., any function that can be
computed with a fixed number of for-loops: faster than an
exponential, an iterated tower of exponentials, and so on [11].
As a consequence, α(n) grows incredibly slowly, and the
smallest value of n such that α(n) > 4 is so large that it can
only be written with exotic notation. Thus, the total running
time for n objects is essentially O(n).

In our implementation, we employ a form of path compres-
sion that is faster and almost as effective: we link each object
j on the path to its grandparent, setting p(j ) = p[p(j )]. This
is known as path splitting, since it turns a path of length � into
two paths of length �/2, or (� + 1)/2 and (� − 1)/2 if � is odd,
as shown in Fig. 2. It has the advantage of requiring only one
pass along the path, and it takes just one line of code (e.g.,
(Ref. [4], Appendix A)). Like path compression, it guarantees
an amortized running time of O[α(n)] [12].

For lattice percolation as in Ref. [4], each time we add a
new occupied site, we can check which of its neighbors are
occupied, and merge them together with the new site. In the
continuous case, we have more work to do: if we add a new
disk, say, we have to find which nearby disks it intersects.
To do this efficiently, we divide the plane into square bins as
shown in Fig. 3. Each disk belongs to whichever bin its center
lies in. The width of each bin is the diameter of the disks, so

TABLE I. Numerical values of critical filling factors ηc and area factors φc = 1 − e−ηc in continuum percolation for disks, aligned squares,
randomly rotated squares, and randomly rotated sticks. Previous estimates are from Refs. [5–8].

η◦
c η�

c η♦
c η×

c

Previous 1.128085(2) 1.0982(3) 0.9819(6) 5.63726(2)
Our work 1.12808737(6) 1.09884280(9) 0.9822723(1) 5.6372858(6)

φ◦
c φ�

c φ♦
c φ×

c

Previous 0.6763475(6) 0.6665(1) 0.6254(2) 0.99643738(7)
Our work 0.67634831(2) 0.66674349(3) 0.62554075(4) 0.996437475(2)
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FIG. 2. When we call find(i), we split and shorten the path from
i to its representative r(i) by setting the parent of each object along
the path to be its grandparent. This turns a path of length � into two
paths of length �/2.

that a disk in a given bin can only intersect with other disks in
that bin or the eight bins in its neighborhood.

On average, the number of disks in each bin is a constant
proportional to ρ, so we can find all the disks intersecting with
each new one in constant time. We use the same approach for
the other shapes; for rotated squares of width �, the bins need
to have width

√
2�. A similar approach for rotated sticks was

used in Ref. [8].
If we wished to detect crossing clusters—those that connect,

say, the top and bottom edges of the square—we could add
two special objects to the union-find data structure, which are
connected by fiat to all the disks in the bins along the top or
bottom edge. We would then check, at each step, whether these
two objects are in the same cluster. However, as discussed
below and in Ref. [4], the finite-size scaling is much better

FIG. 3. (Color online) We divide the plane into square bins whose
width equals the diameter of the disks. Each disk in a given bin
(dashed) can only intersect with other disks in the same bin or in the
eight neighboring bins.
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FIG. 4. Average CPU time T for a single realization of an L × L

lattice up to the percolation transition. T is measured on a laptop with
Intel Core 2 Duo 2.53 GHz CPU with 3 MB cache. The dashed lines
T ∝ L2 are guides for the eye. The slope increases when the cache
memory is exhausted, forcing the computer to switch to regions of
memory with slower access; however, the running time remains linear
in n ∝ L2.

if we use periodic boundary conditions instead and look for
clusters that wrap around the torus horizontally or vertically.

We detect these wrapping clusters using a technique
originally used for detecting crossing clusters in the Potts
model [13]. We associate a vector with each object in the union-
find data structure, recording the displacement between it and
its parent. In principle, this displacement is real-valued, but
it suffices to record an integer vector giving the displacement
between their respective bins. When we compress and splint
a path, we sum these vectors to get the total displacement
between each object on the path and its new parent.

Now suppose that merge(i,j) finds that two overlapping
disks i and j are already in the same cluster. Object i now
has two paths to its representative; one that goes through its
own parent and another that consists of hopping to j and then
going through j ’s parents. We sum the displacement vectors
along both these paths. If these sums are the same, then the
cluster is simply connected. But if they differ by ±L in either
coordinate, then the cluster has a nontrivial winding number
around one or both directions on the torus.

Like the union-find algorithm itself, the time it takes to sum
these vectors is proportional to the length of the paths from i

and j to their representative. As Fig. 4 shows, the total running
time of our entire algorithm—the time it takes to carry out a
trial on a lattice of size L, adding objects one at a time until a
wrapping cluster appears—is essentially linear in the number
n of objects at criticality, or equivalently linear in L2. It slows
down somewhat when the computer is forced to switch to
parts of its memory with slower access, but this only affects
the leading constant.

III. ANALYSIS AND RESULTS

If in each trial we stop at the first n where a wrapping
cluster appears, then the estimated probability PL(a,n) that a
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wrapping cluster exists in the microcanonical ensemble with n

objects of area a, is the fraction of trials that stop on or before
the nth step. To obtain the probability RL(η) of percolation
in the grand canonical ensemble with filling fraction η, we
convolve PL with the Poisson distribution with mean λ =
ρL2 = ηL2/a:

RL(η) = e−λ

∞∑
n=0

λn

n!
PL(a,n). (3)

To avoid numerical difficulties where the numerator and
denominator are both very large, we compute Poisson weights
wn ∝ λn/n! inductively in two sequences wn̄−k and wn̄+k to
the left and right of the peak at n̄ = �λ�, where we define
wn̄ = 1:

wn̄−k =
{

1 for k = 0
n̄−(k−1)

λ
wn̄−(k−1) for k = 1,2, . . .

and

wn̄+k =
{

1 for k = 0
λ

n̄+k
wn̄+k−1 for k = 1,2, . . .

The sum Eq. (3) only needs to be computed for a finite number
of terms. In one direction, we only need to sum down to the
smallest n where PL(a,n) is nonzero, i.e., the smallest value
of n where we observed a wrapping cluster in at least one
trial. In the other direction, once we pass the largest n where
a wrapping cluster first appeared, then PL(a,n) = 1. At that
point, we sum the remaining terms until they are zero to within
the numerical precision of the computer. We then normalize
the entire sum by dividing by

∑
wn.

Equipped with the data from the microcanonical simula-
tions and this convolution routine, we compute the wrapping
probability functions RL(η) for various system sizes L and
shapes. Like Ref. [4], we look for several kinds of wrapping
in particular. Specifically:

(1) Re
L(η) is the probability of any kind of wrapping cluster.

This is indicated by a winding number that is nonzero in either
coordinate.

(2) Rh
L(η) is the probability of a cluster that wraps horizon-

tally. This is indicated by a winding number that is nonzero in
the first coordinate.

(3) Rb
L(η) is the probability of a cluster that wraps both

horizontally and vertically. This is indicated by a single
winding number that is nonzero in both coordinates or a pair
of winding numbers that are nonzero in the first and second
coordinates, respectively.

(4) R1
L(η) is the probability of a cluster that wraps horizon-

tally but not vertically. This is indicated by a winding number
that is nonzero in only the first coordinate.

For any L and any η, these probabilities obey

Re
L = 2Rh

L − Rb
L = 2R1

L + Rb
L .

We assume here that the torus is square, so that horizontal and
vertical wrapping probabilities are equal.

Note that if the first nonzero winding number observed in
a given trial is nonzero in both coordinates, then a cluster of
type 1 (horizontal but not vertical) does not occur at all in that
trial. Thus, R1

L(η) does not tend to 1 as η increases.

η

R
e L
(η

)

FIG. 5. Wrapping probabilities Re
L(η) for disk percolation and

L = 16,32,64,128,256,512. The dashed line is the exact value of the
critical wrapping probability Re

∞(ηc) from conformal field theory.

In practice, we focused on Re
L and Rb

L. In each run,
we recorded the number of objects nh at which horizontal
wrapping first occurred, and the number nv at which vertical
wrapping first occurred. Then, ne = min(nh,nv) and nb =
max(nh,nv) are our estimates, in that run, of the values of
n at which Re

L and Rb
L jump from 0 to 1.

A beautiful fact is that, even though the percolation
threshold ηc is not known for any of our models, conformal
field theory implies exact values for these probabilities at the
transition in the limit L → ∞ [4,14]. Specifically,

Rh
∞ = 0.521 058 289 248 821 787 848 . . .

Re
∞ = 0.690 473 724 570 168 677 230 . . .

(4)
Rb

∞ = 0.351 642 853 927 474 898 465 . . .

R1
∞ = 0.169 415 435 321 346 889 383 . . .

For each L, and each type of wrapping cluster, we can estimate
the critical filling factor ηL as the solution of the equation

RL(ηL) = R∞. (5)

For instance, Fig. 5 shows Re
L(η) for disks for L ranging up

to 512. The filling factors ηL where these curves cross Re
∞

rapidly converge to ηc.
The rate of convergence is determined by two factors. The

first comes from the fact that the width of the transition window
from RL ≈ 0 to RL ≈ 1 scales as L−1/ν , where ν = 4/3 is a
universal critical exponent for two-dimensional percolation.
This scaling holds even for small systems, as can be seen in
Fig. 6, where we plot the slope of RL at the estimated critical
filling factor ηL. The slope scales perfectly like L3/4.

The second factor comes from the fact that RL(η) not only
becomes steeper but also moves upward in the critical region
(see the inset in Fig. 5). To measure the contribution from
this effect, we computed the difference RL(ηc) − Re

∞ using
the previously best known value for ηc from Table I. This
difference scales like L−2, as can be seen from Fig. 7. The
exponent −2 corresponds to the leading irrelevant renormal-
ization exponent yi in the Kac table [15]. Note that the periodic
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FIG. 6. Slope of Re
L(η) at ηL, the estimated critical filling factor.

The line is 0.361L3/4, confirming the universal critical exponent ν =
4/3 for finite-size scaling.

boundary conditions are responsible for this decay. With open
boundary conditions, this factor scales as L−1 [16], leading to
more severe finite-size effects.

These two factors combine to give

ηL − ηc ∼ L−2−1/ν = L−11/4 (6)

for the rate of convergence. Hence, we expect a straight line if
we plot ηL versus L−11/4, and this is exactly what we observe in
Fig. 8. Extrapolating this line to zero then gives our estimates
of ηc shown in Table I.

How do we compute the error bars in our estimates of
ηc? First consider the fluctuations in RL(η). Each of our
microcanonical experiments contributes to our estimate of
RL(η) for all η through the convolution Eq. (3). We can
imagine this as choosing n from the Poisson distribution,
adding n objects, and returning an estimate of RL(η) = 1 or 0,
depending on whether they percolate or not. If we perform N

trials, the number of trials that return 1 is binomially distributed

L

R
e L
(η

° c)
R

e
(η

° c)

FIG. 7. Convergence with increasing system size L of Re
L(η◦

c )
to its known value at L = ∞ for disk percolation. The line is
proportional to L−2, the conjectured convergence of Re

L(ηc).

L 11 4

η
L

FIG. 8. Estimated critical filling factors for continuum percola-
tion of squares, derived from Eq. (5), with Re

L (top) and Rb
L (bottom).

Note the resolution of the η axis.

with mean RL(η)N , and averaging gives an estimate of RL(η)
with standard deviation

σRL
=

√
RL(η) [1 − RL(η)]

N
. (7)

Depending on which kind of wrapping cluster we are looking
for, this is roughly 0.4N−1/2.

When we look for the ηL where RL(η) crosses R∞, the error
on ηL is given by

σηL
= σRL

R′
L(ηL)

.

Since the slope R′
L(ηL) grows as 0.361L3/4 (see Fig. 6) this

gives

σηL
≈ N−1/2 L−3/4.

These are the error bars shown in Fig. 8.
The extrapolated value for ηc is computed from simulations

for D different system sizes L, which in a weighted linear
regression as in Fig. 8 yields an error roughly

√
D times

smaller than the error bars of the underlying data points.
Finally, we average our estimates of ηc from Re

L and Rb
L.

Assuming that these estimates are only weakly correlated
reduces the error bars by another factor of

√
2.

The error bars shown in Table I are the result of simulating
roughly D = 50 system sizes ranging from L = 8 to L =
2048, with sample sizes N ranging from 1010 for the systems
with L � 100, to 109 for 100 < L � 500, to 106 for 500 <

L � 2048.
We ran these simulations in parallel on several computer

clusters with greatly varying computational power. In total, our
simulations would have taken about 400 years if done only on
the laptop on which this paper was written.

IV. CONCLUSIONS

We have shown that the union-find approach to estimating
percolation thresholds introduced by Newman and Ziff [4]
can be applied in the continuous case. With the help of an
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algorithm for estimating ηc that runs in essentially linear
time as a function of the number of objects at criticality,
we have obtained new estimates for ηc in a variety of
continuum percolation models that are several orders of
magnitude more accurate than previous results. In the process,
we have confirmed the predictions of conformal field theory for
these models, both for the finite-size scaling exponent ν and
the probabilities that various kinds of wrapping clusters exist
at ηc on periodic boundary conditions.
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