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Specific heats of quantum systems with symmetric and asymmetric double-well potentials have been calculated.
In numerical calculations of their specific heats, we have adopted the combined method, which takes into
account not only eigenvalues of εn for 0 � n � Nm obtained by the energy-matrix diagonalization but also their
extrapolated ones for Nm + 1 � n < ∞ (Nm = 20 or 30). Calculated specific heats are shown to be rather different
from counterparts of a harmonic oscillator. In particular, specific heats of symmetric double-well systems at very
low temperatures have the Schottky-type anomaly, which is rooted to a small energy gap in low-lying two-level
eigenstates induced by a tunneling through the potential barrier. The Schottky-type anomaly is removed when an
asymmetry is introduced into the double-well potential. It has been pointed out that the specific-heat calculation
of a double-well system reported by Feranchuk, Ulyanenkov, and Kuz’min [Chem. Phys. 157, 61 (1991)] is
misleading because the zeroth-order operator method they adopted neglects crucially important off-diagonal
contributions.
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I. INTRODUCTION

Double-well (DW) potential models have been employed
in a wide range of fields, including physics, chemistry, and
biology (for a recent review on DW systems, see Ref. [1]).
We may classify quantum DW models into three categories:
exactly solvable, quasi-exactly solvable, and approximately
solvable models [2]. In the exactly solvable model, we can
determine the whole spectrum analytically by a finite number
of algebraic steps. In contrast, we can determine a part of
the whole spectrum in the quasi-exactly solvable model. In
other models, eigenvalues are obtainable only by approximate,
analytical, or numerical method. Examples of exactly solvable
models include the double square-well potential and the
Manning potential [3]. The Razavy potential [4,5] expressed
by hyperbolic functions belongs to the quasi-exactly solvable
models. In this paper, we pay attention to two types of
approximately solvable models with a quartic potential [6–9]
and a quadratic potential perturbed by a Gaussian barrier
[10,11], which are hereafter referred to as model A and
model B, respectively. These models have been commonly
adopted for studies of tunneling and stochastic resonance
in DW systems. It is, however, curious that studies on their
thermodynamical properties are scanty [12–15]. Feymann and
Kleinert applied the path-integral method to a calculation
of an effective classical partition function of DW systems
[12,13]. Okopińska studied the effective potential, employing
the optimized and mean-field expansions of a path-integral
representation for the partition function [14]. The specific heat
of a DW system was calculated by Feranchuk, Ulyanenkov,
and Kuz’min (FUK) [15] with the use of the zeroth-order
operator method (ZOM) [16]; a related discussion is given in
Sec. IV.

It is the purpose of the present paper to study the specific
heat of quantum systems with symmetric and asymmetric DW
potentials. Various kinds of analytical and numerical methods
for approximately solvable DW models have been proposed to
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evaluate their eigenvalues [6–12,14–16]. In the present study,
we evaluate them by a numerical diagonalization of the energy
matrix with a finite size Nm (= 20 and 30). Eigenvalues εn for
0 � n � Nm are sufficient for a study of thermal properties
of DW systems at very low temperature near T = 0 K.
However, they are insufficient for describing thermodynamical
properties at elevated temperatures, as explicitly shown shortly
(Figs. 3 and 9). In order to overcome this deficit, we adopt the
combined method, in which we include additional eigenvalues
ε′
n, extrapolating to a larger n (Nm + 1 � n < ∞), such that

they lead to results consistent with classical statistical calcu-
lations. Taking into account both extrapolated eigenvalues as
well as those obtained by the energy-matrix diagonalization,
we may obtain reasonable specific heats at both low and high
temperatures.

The paper is organized as follows. In Sec. II, we will
describe the adopted combined method for the energy-matrix
diagonalization and extrapolated eigenvalues. In Sec. III, the
combined method is applied to DW systems with a quartic
potential (model A), a quadratic potential with Gaussian
barrier (model B), and the DW potential adopted by FUK
(FUK model) [15]. In Sec. IV, we critically examine a validity
of the specific heat calculated by FUK [15] with the use of
ZOM [16]. Specific heats of the triple-well system are studied
also. Section V is devoted to our conclusion.

II. THE COMBINED METHOD

A. Classical statistical calculation

We consider a system whose Hamiltonian is given by

H = p2

2m
+ U (x), (1)

where m and U (x) are a mass of a particle and a DW potential,
respectively. The classical partition function is given by

Z(β) = 1

h

∫ ∞

−∞

∫ ∞

−∞
e−βH dp dx =

√
m

2πh̄2β
Zx(β), (2)
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with

Zx(β) =
∫ ∞

−∞
e−βU (x) dx, (3)

where β (= 1/kBT ) denotes an inverse temperature. From the
calculated partition function Z(β), we obtain the specific heat
C and entropy S by

C = dE

dT
, (4)

S = 1

T
(E − F ), (5)

where

E = −∂ ln Z(β)

∂β
, (6)

F = − 1

β
ln Z(β). (7)

B. Quantum statistical calculation

In order to make a quantum statistical calculation, it is
necessary to evaluate eigenvalues of a given Hamiltonian of
Eq. (1), for which the Shrödinger equation is given by[

− h̄2

2m

d2

dx2
+ U (x)

]
�(x) = E�(x), (8)

�(x) and E standing for eigenfunction and eigenvalue,
respectively. Various approximate analytical and numeri-
cal methods have been proposed to solve the Schrödinger
equation [6–11]. We evaluate eigenvalues, treating the
Hamiltonian H as

H = H0 + U (x) − U0(x) = H0 + V (x), (9)

with

H0 = p2

2m
+ U0(x), (10)

V (x) = U (x) − U0(x), (11)

U0(x) = mω2
0x

2

2
, (12)

where ω0 denotes the frequency of a harmonic oscillator.
Eigenfunction and eigenvalue for H0 are given by

φn(x) = 1√
2nn!

(
mω0

πh̄

)1/4

exp

(
−mω0x

2

2h̄

)
Hn

(√
mω0

h̄
x

)
,

(13)

E0n =
(

n + 1

2

)
h̄ω0, (14)

where Hn(x) stands for the Hermite polynomials. Expanding
the eigenfunction �(x) in terms of φn(x)

�(x) =
∞∑

n=0

cnφn(x), (15)

we obtain the secular equation for {cn} expressed by

E cm =
∞∑

n=0

Hmncn, (16)

with

Hmn = E0n δmn +
∫ ∞

−∞
φm(x)V (x)φn(x) dx, (17)

where cn denotes an expansion coefficient. The method
mentioned above is not new, and equivalent or similar ones
have been adopted in Refs. [6–9]. It is possible to calculate Hmn

by MATHEMATICA [17]. We may diagonalize Eq. (16) to
obtain eigenvalues εn (n = 0 to Nm), and evaluate the quantum
partition function given by

Z(β) = Tr e−βH ∼=
Nm∑
n=0

e−βεn , (18)

where Nm stands for the maximum eigenvalue.
As will be shown shortly (Figs. 3 and 9), eigenvalues for

0 � n � Nm (Nm � 20 − 30) are sufficient for a study of
low-temperature thermodynamical quantities, but insufficient
for high-temperature ones. We adopt the combined method in
which we include not only eigenvalues εn for 0 � n � Nm

obtained by energy-matrix diagonalization but also their
extrapolated ones for n > Nm given by

ε′
n = A nr h̄ω0 for Nm + 1 � n < ∞, (19)

with parameters A and r . An exponent r is chosen such that
the high-temperature specific heat calculated with combined
eigenvalues is consistent with the classical specific heat as
follows. A simple calculation of the partition function with
Eq. (19) in the high-temperature limit leads to

Z(β) →
∫ ∞

0
exp[−βAzr ] dz = (βA)−1/r 


(
1 + 1

r

)
,

(20)

yielding the specific heat

C =
(

1

r

)
kB, (21)

which should be in agreement with the classical specific heat
obtained by Eqs. (4) and (6). A prefactor A in Eq. (19) is chosen
such that ε′

n for n � Nm + 1 becomes a good extrapolation of
eigenvalues εn for 0 � n � Nm evaluated by the energy-matrix
diagonalization. Then the resultant quantum partition function
is given by

Z(β) =
Nm∑
n=0

e−βεn +
∞∑

n=Nm+1

e−βε′
n , (22)

where the first and second terms express contributions from
eigenvalues {εn} derived by the energy-matrix diagonalization
and from extrapolated eigenvalues {ε′

n}, respectively.

III. APPLICATIONS TO MODEL POTENTIALS

A. A quartic DW potential (model A)

1. The symmetric case

First we apply our combined method to model A with the
symmetric DW potential given by

U (x) = mω2
0

8x2
0

(
x2 − x2

0

)2
, (23)
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FIG. 1. (Color online) The symmetric quartic potential [Eq. (23)]
(solid curve) and asymmetric ones [Eq. (28)] with d = 0.01 (chain
curve) and d = −0.01 (double chain curve) of model A, the dashed
curve expressing the harmonic potential [Eq. (12)].

which has stable minima at x = ±x0 and an unstable maximum
at x = 0. The height of the potential barrier is � = U (0) −
U (±x0) with U (0) = mω2

0x
2
0/8 and U (±x0) = 0. For a later

purpose of an energy-matrix calculation, we have chosen
U ′′(±x0) = mω2

0, such that the potential U (x) has the same
curvatures at the minima as the harmonic potential U0(x)
given by Eq. (12). For numerical calculations, we assume
m = 1.0, ω0 = 1.0, and x0 = 3.5 [17], for which U

′′
(x0) =

U
′′
0 (0) = 1.0 and � = 1.531. The symmetric DW potential in

model A is plotted by the solid curve in Fig. 1, where the
harmonic potential given by Eq. (12) is shown by the dashed
curve: chain and double-chain curves will be explained later
[Eq. (28)].

We have calculated the classical specific heat, which is
shown by the chain curve in Fig. 2. The calculated specific
heat in the high-temperature limit of T → ∞ reduces to

C = (
1
2 + 1

4

)
kB = 3

4 kB, (24)

because we obtain C(T )/kB = 0.690, 0.7293, 0.7434, and
0.7473 for kBT /h̄ω0 = 10.0, 100.0, and 1000.0, respectively.
The first (1/2) and second (1/4) terms in Eq. (24) express
contributions from momentum (p) and coordinate (x), respec-

FIG. 2. (Color online) Temperature dependencies of classical
(chain curve) and quantum specific heats (solid curve) of model A
with the symmetric DW potential [Eq. (23)], dashed curve expressing
quantum specific heat of a harmonic oscillator (HO). The inset shows
an enlarged plot of the quantum specific heat at very low temperatures
with the Schottky-type anomaly.

tively, the latter being due to the quartic power of the potential.
Indeed, in a system with a quartic potential of U (x) = x4/4, the
coordinate contribution to the classical specific heat becomes
(1/4)kB (the Virial theorem).

For a special case of the DW potential

U (x) = x4

4
− x2

2
, (25)

we obtain the analytical expression for Zx(β),

Zx(β) =
(

π

2

)
eβ/8

[
I− 1

4

(
β

8

)
+ I 1

4

(
β

8

)]
, (26)

which yields C(T )/kB = 0.7236, 0.7416, 0.7473 for T = 10,
100, and 1000, respectively, In(z) denoting the modified Bessel
function of the first kind.

Matrix elements Hmn of Eq. (17) are finite for pairs of
|m − n| = 0, 2 and 4. Figure 3(a) shows eigenvalues {εn}
obtained for Nm = 20 (open circles) and 30 (filled circles).
Eigenvalues for n < 20 are almost the same for Nm = 20
and 30. Calculated eigenvalues εn for n = 0, 1, 2, and 3 are
0.476188, 0.478131, 1.2695, and 1.3514, respectively, with
Nm = 30. Eigenvalues of ε0 = 0.476188 and ε1 = 0.478131
originate from two eigenvalues of E00 = 0.5 in Eq. (14) at two

FIG. 3. (Color online) (a) The n dependence of eigenvalues εn

of model A with the symmetric DW potential [Eq. (23)] obtained
by the energy-matrix diagonalization for 0 � n � Nm (circles) and
by an extrapolation given by ε ′

n = 0.25 n4/3 h̄ω0 for n > Nm (dashed
curve), the inset showing eigenvalues obtained by the energy-matrix
diagonalization with Nm = 20 (open circles) and Nm = 30 (filled
circles). (b) The temperature dependence of the quantum specific
heat calculated with eigenvalues εn for 0 � n � Nm with Nm = 20
(chain curve) and Nm = 30 (dashed curve), the solid curve expressing
the result with combined eigenvalues shown by the dashed curve
in (a).
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minima with symmetric and antisymmetric wavefunctions.
They are quasidegenerated states with a small gap given by
δ ≡ ε1 − ε0 = 0.001943, which is induced by the tunneling
effect through the potential barrier. Similarly, eigenvalues for
n = 2 and 3 are also quasidegenerated as given by ε3 − ε2 =
0.0819.

Specific heats calculated with the use of these eigenvalues
εn for 0 � n � Nm with Nm = 20 and 30 are plotted by
dashed and chain curves, respectively, in Fig. 3(b). They
are in good agreement at kBT /h̄ω0 < 0.5 but significantly
different at kBT /h̄ω0 > 1.0. This implies that eigenvalues for
0 � n � Nm (= 20 and 30) are insufficient for a study of the
specific heat at elevated temperatures of kBT /h̄ω0 > 1.0.

We adopt the combined method with extrapolated eigen-
values given by

ε′
n = 0.25 n4/3 h̄ω0 for Nm + 1 � n < ∞, (27)

where an exponent of r = 4/3 chosen by C/kB = 1/r = 3/4
in Eqs. (21) and (24) is consistent with the WKB type analysis
for n 	 1. Extrapolated eigenvalues given by Eq. (27) are
plotted in Fig. 3(a). The quantum specific heat of model A
calculated with combined eigenvalues is shown by the solid
curve in Fig. 2 [or Fig. 3(b)] [18]. The quantum specific heat is
rather different from the classical one at low temperatures
as expected. A closer inspection of the quantum specific
heat reveals that C(T ) has an anomalous peak at very low
temperature at kBT /h̄ω0 � 0.001 ∼ δ/2, as shown in the inset
of Fig. 2. It is the Schottky-type specific heat arising from
low-lying two-level eigenvalues of ε0 and ε1 whose energy gap
is induced by a mixing through a tunneling. Although quantum
and classical specific heats do not well agree at kBT /h̄ε0 ∼ 10
in Fig. 2, both reduce to (3/4)kB in the high-temperature limit

For a comparison, we show the quantum specific heat
of a harmonic oscillator by the dashed curve in Fig. 2.
The quantum specific heat of model A is not dissimilar to
that of a harmonic oscillator at low temperatures except for
the Schottky-type anomaly. However, the high-temperature
specific heat of model A given by C = (3/4)kB is different
from CHO = kB of a harmonic oscillator.

Temperature dependencies of classical and quantum en-
tropies of model A are shown by chain and solid curves,
respectively, in Fig. 4, where the quantum entropy of a
harmonic oscillator is plotted by the dashed curve. With
decreasing the temperature, the quantum entropy decreases
but seems to remain at 0.69 (� ln 2). The inset of Fig. 4 shows
that it furthermore decreases below kBT /h̄ω0 � 0.002 and
approaches zero at vanishing temperature, which is consistent
with the third thermodynamical law. This rapid change of the
entropy is related with the Schottky-type specific heat shown
in the inset of Fig. 2.

2. The asymmetric case

Next we apply the combined method to model A with the
asymmetric DW potential given by

U (x) = mω2
0

8x2
0

(
x2 − x2

0

)2 − d

(
x3

3
− x2

0x

)
, (28)

FIG. 4. (Color online) Temperature dependencies of classical
(chain curve) and quantum entropies (solid curve) of model A with the
symmetric potential [Eq. (23)] and the quantum entropy of a harmonic
oscillator (HO) (dashed curve), the inset showing an enlarged plot of
the quantum entropy at very low temperatures.

where d signifies a degree of the asymmetry. Locally stable
minima of the potential locate at x = ±x0 and an unstable
maximum is at xu = d (2x2

0/mω2
0) with

U (±x0) = ± 2dx3
0

3
, (29)

U (xu) = mω2
0x

2
0

8
+ d2x2

0

mω2
0

− 2d4x4
0

3m3ω6
0

, (30)

�U = U (x0) − U (−x0) = 4dx3
0

3
. (31)

The asymmetry parameter d is assumed to be given by

−dc < d < dc = mω2
0

2x0
, (32)

for which xu locates at −x0 < xu < x0. We obtain dc = 1/7
for adopted parameters of m = 1.0, ω0 = 1.0, and x0 = 3.5. In
the limit of d = 0, U (x) in Eq. (28) reduces to the symmetric
DW potential given by Eq. (23).

Table I shows potential values of U (−x0), U (xu), U (x0), and
�U as a function of d. When a sign of d is changed, those of
U (−x0), U (x0), and �U are changed, but U (xu) is unchanged.
With increasing |d|, |�U | is gradually increased. Chain and
double-chain curves in Fig. 1 show U (x) for d = 0.01 and
−0.01, respectively, for which a difference of |�U | is about
30% of the potential barrier of |U (xu) − U (−x0)|.

Matrix elements Hmn of Eq. (17) are not vanishing for pairs
of |m − n| � 4. Eigenvalues for n = 0 and 1 are quasidegener-
ated for d = 0.0 as mentioned before. This quasidegeneracy is
removed with an introduction of d: δ (= ε1 − ε0) is increased
with increasing |d| as shown in Table I. Eigenvalues εn

for d = 0.0 (circles), 0.005 (triangles), and 0.01 (squares)
evaluated by the energy-matrix diagonalization with Nm = 30
are plotted as a function of n in Fig. 5, where an increase in δ

with increasing d is clearly realized.
Figure 6 shows quantum specific heats calculated with

asymmetric potentials for various d values [18]. The specific
heat for d = 0.0 has the Schottky-like anomaly at very low
temperature of T � 0.001 (see the inset). When a small
asymmetry of d = 0.001 (or 0.002) is introduced, the position
of the Schottky-type peak moves to higher temperature because
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TABLE I. Potential values at locally stable minima (±x0), an unstable maximum position (xu), �U [=U (x0) − U (−x0)], and the energy
gap δ (=ε1 − ε0) as a function of the asymmetry d of model A with the asymmetric potential U (x) [Eq. (28)] (Nm = 30).

d U (−x0) U (xu) U (x0) �U δ

0.0 0.0 1.53125 0.0 0.0 0.001943
±0.001 ∓0.02858 1.53140 ±0.02858 ±0.057166 0.053123
±0.002 ∓0.05716 1.53185 ±0.05716 ±0.11433 0.10619
±0.003 ∓0.08575 1.53260 ±0.08575 ±0.16184 0.15927
±0.004 ∓0.11433 1.53337 ±0.11433 ±0.22867 0.21235
±0.005 ∓0.14292 1.53500 ±0.14292 ±0.28583 0.26542
±0.01 ∓0.28583 1.54624 ±0.28583 ±0.57167 0.53070

of an increased gap of δ. For d = 0.005, the Schottky-type
peak almost disappears and its trace is realized as a shoulder
at kBT /h̄ω0 ∼ 0.1. When we adopt a negative d, �U changes
its sign but δ does not (Table I). The temperature dependence
of C(T ) for a negative d with �U < 0 is the same as that
for a positive |d| with �U > 0. Although the asymmetry has
appreciable effects on the specific heat at low temperatures,
it has no effects at higher temperatures of kBT /h̄ω0 � 1.0 for
adopted asymmetry parameters.

B. A quadratic DW potential perturbed by Gaussian
barrier (model B)

We will apply our combined method to model B with a
symmetric quadratic potential perturbed by a Gaussian barrier
given by [10,11]

U (x) = U0(x) + a e−bx2 + c, (33)

U0(x) = mω2
0x

2

2
, (34)

where a and c are parameters. The potential given by Eq. (33)

has stable minima at x = ±
√

ln(2ab/mω2
0)/b ≡ ±x0 and an

unstable maximum at x = 0.0. For our numerical calculations,
we assume m = 1.0, ω0 = 1.0, a = 9.0, b = 1.0, c = −1.945,
and x0 = 1.700, which yield U (x0) = 0.0, U (0) = 7.055,
U

′′
(x0) = 5.78, and � = U (0) − U (x0) = 7.055. The adopted

potential is plotted by solid curve in Fig. 7, where dashed curve
expresses the harmonic potential given by Eq. (34).

FIG. 5. (Color online) The n dependence of eigenvalues εn of
model A with the asymmetric DW potential [Eq. (28)] for various d:
d = 0.0 (circles), 0.005 (triangles), and 0.01 (squares) with Nm = 30,
dashed curves being plotted to guide the eye.

We have numerically calculated the classical partition
function to obtain the classical specific heat and entropy. The
calculated classical specific heat plotted by chain curve in
Fig. 8 is not in good agreement with CHO of a harmonic
oscillator at kBT /h̄ω0 � 10, although both reduce to C = kB

in the high-temperature limit. The calculated classical entropy
will be explained shortly (Fig. 10).

For quantum statistical calculation, we have numerically
evaluated eigenvalues by the energy-matrix diagonalization.
Matrix elements Hmn of Eq. (17) are finite for any pair of even
|m − n|. Then the energy-matrix diagonalization for model B
is more time consuming than that for model A. Eigenvalues
εn calculated for Nm = 20 and 30 are plotted in the inset of
Fig. 9(a). Eigenvalues for n < 20 are almost the same for Nm =
20 and 30. Eigenvalues εn for n = 0, 1, 2, and 3 are 1.13021,
1.13332, 3.1931, and 3.21918, respectively, with Nm = 30. ε0

and ε1 are quasidegenerated with a small gap of δ ≡ ε1 − ε0 =
0.00311. We note that eigenvalues εn of model B in the inset
of Fig. 9(a) are similar to but slightly different from those of
model A in the inset of Fig. 3(a).

FIG. 6. (Color online) The temperature dependence of the quan-
tum specific heat C(T ) of model A with the asymmetric potential
[Eq. (28)] for various d: d = 0.0 (bold solid curve), 0.001 (chain
curve), 0.002 (dashed curve), 0.003 (double-chain curve), 0.004
(dotted curve), and 0.005 (solid curve), curves being successively
shifted upward by 0.25 for clarity of figure. The inset shows an
enlarged plot of C(T ) with d = 0.0 at 0 < kBT/h̄ω0 < 0.01. Note
that the temperature dependence of C(T ) for a negative d is the same
as that for a positive |d|.
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FIG. 7. (Color online) The symmetric DW potential of model
B [Eq. (33)] (solid curve) and the harmonic potential [Eq. (34)]
(dashed curve).

Quantum specific heats calculated with the use of eigen-
values εn for 0 � n � Nm with Nm = 20 and 30 are plotted
by dashed and chain curves, respectively, in Fig. 9(b). Both
results with Nm = 20 and 30 are in good agreement each other
at kBT /h̄ω0 � 2 but significantly different at kBT /h̄ω0 � 4.
We assume that extrapolated eigenvalues are given by

ε′
n = (

n + 1
2

)
h̄ω0 for Nm + 1 � n < ∞. (35)

The combined eigenvalues are shown by the dashed curve
in Fig. 9(a). The quantum specific heat calculated with the
combined eigenvalues is shown by the solid curve in Fig. 8
[or Fig. 9(b)]. The quantum specific heat has the Schottky-type
peak at very low temperature at kBT /h̄ω0 � 0.0015 ∼ δ/2, as
shown in the inset of Fig. 8. An increase of the quantum
specific heat with raising the temperature from zero is slower
than that of the harmonic oscillator plotted by the dashed
curve in Fig. 8. This is due to the fact that the curvature of
U (x) at the locally stable point is larger than that of U0(x):
U

′′
(x0) (=5.78) > U

′′
0 (0) (=1.0), which is realized in Fig. 7.

A comparison between Figs. 8 and 2 shows that although
C(T ) of model B is similar to that of model A at very low
temperatures (kBT /h̄ω0 � 0.02), they are rather different at

FIG. 8. (Color online) Temperature dependencies of classical
(chain curve) and quantum specific heats (solid curve) of model B
with the symmetric DW potential [Eq. (33)], dashed curve expressing
quantum specific heat of a harmonic oscillator (HO). The inset shows
an enlarged plot of the quantum specific heat at very low temperatures
with the Schottky-type anomaly.

FIG. 9. (Color online) (a) The n dependence of eigenvalues εn of
model B obtained by the energy-matrix diagonalization for 0 � n �
Nm (circles) and by an extrapolation given by ε ′

n = (n + 1/2)h̄ω0

for n > Nm (dashed curve), the inset showing eigenvalues obtained
by the energy-matrix diagonalization with Nm = 20 (open circles)
and Nm = 30 (filled circles). (b) The temperature dependence of the
quantum specific heat calculated with eigenvalues εn for 0 � n � Nm

with Nm = 20 (chain curve) and Nm = 30 (dashed curve), the solid
curve expressing the result with combined eigenvalues shown by the
dashed curve in (a).

higher temperatures (kBT /h̄ω0 � 0.5). In the limit of T → ∞,
we obtain C(T ) = kB in model B while C(T ) = (3/4)kB in
model A.

The temperature dependence of the classical and quantum
entropies of model B are shown by chain and solid curves,
respectively, in Fig. 10, where the quantum entropy of a
harmonic oscillator is plotted by the dashed curve for a
comparison. The inset of Fig. 10 shows the quantum entropy
at very low temperatures. With raising the temperature from
zero, the entropy is rapidly developed to 0.69 (� ln 2) at
kBT /h̄ω0 � 0.005, which is related with the Schottky-type
specific heat at very low temperatures shown in the inset
of Fig. 8.

C. An asymmetric DW potential (FUK model)

The specific heat of a DW system was calculated by FUK
[15] with the use of ZOM [16], which is explained in the
Appendix. FUK adopted an asymmetric DW potential given
by

UFUK(x) = 1
2x2 − λx3 + γ x4, (36)

with

|λ| > λm = 4
3

√
γ , (37)
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FIG. 10. (Color online) Temperature dependences of classical
(chain curve) and quantum entropies (solid curve) of model B, and
the quantum entropy of a harmonic oscillator (HO) (dashed curve),
the inset showing an enlarged plot of the quantum entropy at very
low temperatures.

which has locally stable minima at x = 0 and xs = (3λ/8γ )
[1 +

√
1 − 16γ /9λ2] and an unstable maximum at xu =

(3λ/8γ )[1 −
√

1 − 16γ /9λ2]. Note that a prefactor of x2 in
UFUK(x) is positive, which is required for an application of
ZOM [16], while that of the quartic DW potential given by
Eq. (28) is negative. The DW potential given by Eqs. (36)
and (37) becomes symmetric with respect to xu with
UFUK(xs) = UFUK(0) = 0 and UFUK(xu) = 1/64γ for

λ = λc =
√

2γ , xu = 1

2λ
, xs = 1

λ
. (38)

For this symmetric case, a change of a variable x with u =
1/2λ leads to

UFUK(x + u) = (8γ x2 − 1)2

64γ
, (39)

which is equivalent to U (x) of model A in Eq. (23).
We have applied our combined method to a DW system

with UFUK(x) given by Eq. (36) with necessary modifica-
tions. We have chosen potential parameters of γ = 0.002
and various λ after FUK (see below). The solid curve in
Fig. 11 expresses UFUK(x) for γ = 0.002 and λ = √

2γ

(= λc � 0.063246), which is symmetric with respect to x =
7.9057 (=xu = xs/2) with UFUK(xs) = UFUK(0) = 0.0 and
UFUK(xu) = 7.8125. When λ is varied for a fixed value of
γ = 0.002, the potential difference between the two minima,
�U ≡ UFUK(xs) − UFUK(0), changes: �U > 0 (�U < 0) for
λ < λc (λ > λc), as shown in Table II. UFUK(x) for λ =
0.06310 and 0.06340 are plotted by dashed and chain curves,
respectively, in Fig. 11, whose inset expresses �U as a function
of λ.

By using the energy-matrix diagonalization, we have
evaluated eigenvalues of {εn} for various λ with γ = 0.002 for
0 � n < Nm (=30). Table II shows that the calculated energy
gap of δ (=ε1 − ε0) is minimum for λ = λc and it is increased
with increasing |λ − λc|. By using obtained eigenvalues, we
have calculated specific heats for various λ whose results
are plotted in Fig. 12. For λ = λc � 0.063246 (solid curve)
with �U = 0, the peak of the Schottky-type specific heat
locates at T � 0.05 ∼ δ/2. With decreasing λ from λc, both
�U and δ are increased, and then the peak position of the

FIG. 11. (Color online) The DW potential UFUK(x) given by
Eq. (36) for λ = 0.06310 (dashed curve), 0.063246 (solid curve),
and 0.06340 (chain curve) with γ = 0.002, the inset showing �U

[=UFUK(xs) − UFUK(0)] as a function of λ (×100).

Schottky-type specific heat moves upward. For λ � 0.06315,
the peak of the Schottky specific heat disappears, merging with
the bump. On the other hand, with increasing λ from λc, �U

becomes negative as shown in Table II. We note in Fig. 12
that temperature dependencies of C(T ) for λ = 0.06330 (bold
double-chain curve), λ = 0.06335 (bold dashed curve), and
λ = 0.06340 (bold chain curve) are nearly the same as those
for λ = 0.06320 (double chain curve), λ = 0.06315 (dashed
curve), and λ = 0.06310 (chain curve), respectively. Thus,
C(T ) of the FUK model is nearly symmetric with respect
to λ = λc. This is similar to the case of model A (Fig. 6),
where C(T ) is symmetric with respect to a degree of the
asymmetry d.

IV. DISCUSSION

A. A comparison between the results of FUK and ours

The specific heat calculated for the FUK model shown in
Fig. 12 has been compared with CFUK(T ) reported in Fig. 3
of Ref. [15]. A comparison between the two results shows
that they are quite different in the following points: (i) The
Schottky-like anomaly of CFUK(T ) locates at much higher
temperature with wider width than ours, (ii) CFUK(T ) has
more complicated temperature dependence than ours, and (iii)
the temperature dependence of our specific heat is almost

TABLE II. Potentials values at an unstable position (xu) and
a stable position (xs), the potential difference �U [=UFUK(xs) −
UFUK(0)] and the energy gap δ (=ε1 − ε0) as a function of λ with
γ = 0.002 for UFUK(x) [Eq. (36)] (Nm = 30).

λ UFUK(xu) UFUK(xs) = �U δ

0.06340 7.7370 − 0.61721 0.59848
0.06335 7.7613 − 0.41593 0.41286
0.06330 7.7857 − 0.21605 0.23789
0.063246 (=λc) 7.8125 0.0 0.11705
0.06320 7.8351 0.17948 0.20636
0.06315 7.8600 0.37514 0.37524
0.06310 7.8852 0.56939 0.55407
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FIG. 12. (Color online) Temperature dependencies of the quan-
tum specific heat of a DW system with UFUK(x) [Eq. (36)] for
γ = 0.002 with various λ: λ = 0.06310 (chain curve), 0.06315
(dashed curve), 0.06320 (double chain curve), 0.063246 (solid curve),
0.06330 (bold double-chain curve), 0.06335 (bold dashed curve), and
0.06340 (bold chain curve), curves being successively shifted upward
by 0.25 for clarity of figure.

symmetric with respect to λ = λc, but CFUK(T ) is not. As
for the item (i), we suppose that it arises from a neglect of
off-diagonal term Hod in ZOM [see Eq. (A2) in the Appendix].
Among matrix elements of the Hamiltonian, Hmn, given by

Hmn = 〈m|H |n〉 = 〈n|Hd |n〉δmn + 〈m|Hod |n〉(1 − δmn),

(40)

only the first diagonal term is included in ZOM [15], whereas
both diagonal and off-diagonal terms for 0 � n,m � Nm are
taken into account in our numerical diagonalization method
[Eqs. (16) and (17)]. We should note that the off-diagonal term
plays an essential role in yielding a gap between two stable
states in the DW potential. Indeed, if off-diagonal contributions
are neglected in our calculation, we cannot obtain the Schottky-
type specific heat.

As for item (ii), FUK claimed that the calculated, com-
plicated T dependence of CFUK(T ) originates from the
temperature-dependent energy gap [15]. This arises from the
fact that optimum parameters of ω, u, and ν given by Eq. (A11)
in ZOM are determined at each temperature and then φ(ω,u,ν)
in Eq. (A10) is temperature dependent in general. It is natural
that CFUK(T ) is different from the Schottky-type specific heat,
which is obtained for the constant (temperature-independent)
energy gap.

Related to item (iii), FUK pointed out that CFUK(T ) has a
singularity when �U changes its sign [15]. Such a result is,
however, not realized in our calculation. As mentioned before,
our λ-dependent C(T ) is almost symmetric with respect to λ =
λc. On the contrary, the temperature dependence of CFUK(T )
for λ > λc is quite different from that for λ < λc.

FUK [15] reported the specific-heat calculation also for
a different set of parameters of λ = 0.01 and γ = 0.002 for
which UFUK(x) has a single-minimum structure because they
do not satisfy the condition given by Eq. (37) (λm = 0.0596
for γ = 0.002). We have realized that CFUK(T ) for these
parameters (see Fig. 2 of Ref. [15]) is in agreement with the

specific heat obtained by our calculation (related results not
shown). It is suggested that although ZOM is not applicable to
DW systems, it may provide reasonable results for single-well
systems where off-diagonal contributions are expected to be
unimportant. This is consistent with the fact that ZOM yields
good results for systems with the anharmonic potential [16]
and the Morse potential [19].

B. Triple-well systems

Finally, we will study the triple-well system with the sextic
potential

U (x) = ax6

6
+ bx4

4
+ cx2

2
, (41)

with parameters a, b, and c, whose quasi-exact eigenvalues
were investigated in Ref. [5]. When we concentrate our atten-
tion to low-lying three states with U (−xs) = U (0) = U (xs),
their eigenvalues are approximately given by

ε0, ε1 = ε0 + δ, ε2 = ε1 + δ, (42)

where x = 0 and ±xs express locally stable positions and
δ denotes energy gap between successive states. At low
temperatures, this energy spectrum yields the Schottky specific
heat whose peak locates at kBT = (3/4) δ. On the other hand,
at high temperatures, the sextic potential leads to the classical
specific heat given by C = (1/2 + 1/6)kB = (2/3)kB . The
sextic potential given by Eq. (41) may be of single-, double-,
and triple-minima type, depending on parameters of a, b, and
c. It would be worthwhile to investigate how thermodynamical
properties of the sextic potential system are changed against
a change of the potential type, whose detailed study is left as
our future subject.

V. CONCLUDING REMARK

We have calculated specific heats of quantum DW systems
with a quartic potential (model A), a quadratic potential
perturbed by Gaussian barrier (model B), and UFUK(x) (FUK
model) [15], by using the combined method in which eigen-
values obtained by finite-size energy-matrix diagonalization
as well as extrapolated ones are included. Specific heat and
entropy in models A and B with symmetric potentials have
the Schottky-type anomaly at very low temperatures, which
arises from low-lying eigenstates with a small gap due to
a tunneling through the potential barrier. This is a quantum
effect characteristic in DW systems, which is sensitive to an
asymmetry in DW potentials. In the high-temperature limit,
specific heats of models A and B reduce to C = (3/4)kB and
C = kB , respectively: the former is different from CHO = kB

of a harmonic oscillator.
Advantages of our numerical combined method are that

the calculation is physically transparent and that it yields
correct results in both low- and high-temperature regions.
We have pointed out that the specific heat of DW systems
calculated with ZOM [15] is incorrect because it neglects
off-diagonal contributions, which play essential roles for a
tunneling in DW potentials. Although analytical methods such
as the path-integral method (PIM) [12–14] and the Gaussian
wavepacket method (GWM) [20] have been proposed to obtain
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the partition function of quantum DW systems, they are not
suited for calculations of their specific heat [21]. The present
calculation has clarified a basic problem on the specific heat of
a DW system expressed by a pedagogical toy model, which is
a basis for a study on more realistic DW systems, for example,
described by system-plus-bath models [22,23].
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APPENDIX: ZEROTH-ORDER OPERATOR METHOD

We will briefly mention ZOM [15,19] in which operators
p and q are transformed by

p = i

√
ω

2
(a† − a), q = 1√

2ω
(a† + a) + u, [a,a†] = 1,

(A1)

with parameters ω and u, a† and a denoting creation and
annihilation operators, respectively. Substituting Eq. (A1) to
Hamiltonian given by Eq. (36), we obtain

H = Hd + Hod, (A2)

where Hd and Hod are diagonal and off-diagonal parts,
respectively, with [Hd,n̂] = 0 and n̂ = a†a. Neglecting the
off-diagonal term Hod, we retain only the diagonal term Hd

in ZOM,

Hd|ψn〉 � En(ω,u)|ψn〉, |ψn〉 � |n〉, a†a|n〉 = n|n〉,
(A3)

where |ψn〉 and En(ω,u) denote approximate eigenfunction
and eigenvalue, respectively, and En(ω,u) are expressed in

terms of ω, u, and n (see Eqs. (6)– (8) in Ref. [15]). The
partition function expressed by

Z(β) =
∞∑

n=0

e−βεn �
∞∑

n=0

〈ψn|e−βH |ψn〉 (A4)

is transformed to [16]

Z(β) = 〈ν|e−R̂|ν〉, (A5)

where operators R̂, k̂, and a state |ν〉 are given by

R̂ = βH + k̂ ln ν + ln N (ν), N(ν) = 1 − ν, (A6)

|ν〉 = N (ν)1/2
∞∑

n=0

νn/2|ψn〉, 〈ν|ν〉 = 1, (A7)

k̂|ψk〉 = k|ψk〉, (A8)

with a parameter ν (∈ [0,1]). By using the Bogoljubov
inequality, Z(β) is approximately calculated by

Z(β) � e−β〈ν|R̂|ν〉 = e−βφ(ω,u,ν) ≡ Z0(β), (A9)

where

−βφ(ω,u,ν) = −βN (ν)
∞∑

n=0

νnEn(ω,u)

− ν

(1 − ν)
ln ν − ln(1 − ν). (A10)

Variational conditions given by

∂φ(ω,u,ν)

∂ω
= ∂φ(ω,u,ν)

∂u
= ∂φ(ω,u,ν)

∂ν
= 0 (A11)

yield self-consistent equations for optimum values of ω, u, and
ν, from which the approximate, optimized partition function
Z0(β) may be obtained. By using ZOM, FUK calculated the
specific heat of a DW system with UFUK(x) [15].
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