
PHYSICAL REVIEW E 86, 061103 (2012)

Momentum relaxation of a relativistic Brownian particle
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The momentum relaxation of a relativistic Brownian particle immersed in a fluid is studied on the basis of
the Fokker-Planck equation for the relativistic Ornstein-Uhlenbeck process. An analytical expression is derived
for the short-time relaxation rate. The relaxation spectrum has both discrete and continuum components. It is
shown that the Fokker-Planck equation under consideration is closely related to the Schrödinger equation for the
hydrogen atom. Hence it follows that there is an infinite number of discrete states. The momentum autocorrelation
function is calculated numerically for a strongly relativistic particle.
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I. INTRODUCTION

It was shown by Uhlenbeck and Ornstein [1] that the
Langevin description of the motion of a nonrelativistic free
Brownian particle is equivalent to a linear Fokker-Planck
equation for the conditional probability distribution of velocity
[2]. The fundamental solution of the linear Fokker-Planck
equation is Gaussian. From the Gaussian distribution of
velocity Uhlenbeck and Ornstein derived the corresponding
Gaussian conditional distribution of position. At long times
this tends to the Gaussian solution of the diffusion equation,
as found by Einstein.

In some situations in high-energy physics, plasma physics,
and astrophysics it is necessary to consider relativistic veloci-
ties. The relativistic generalization of the Ornstein-Uhlenbeck
theory was formulated by Debbasch et al. [3]. It is based
on a nonlinear Fokker-Planck equation for the conditional
distribution of momentum. At long times the distribution tends
to the thermal equilibrium distribution derived by Jüttner [4]
as a generalization of the nonrelativistic Maxwell-Boltzmann
distribution.

The theory of relativistic Brownian motion on the basis
of the Langevin description was discussed by Dunkel and
Hänggi [5,6]. They showed that only a particular treatment
of the multiplicative noise leads to a Fokker-Planck equation
consistent with the Jüttner equilibrium distribution. However,
their Fokker-Planck equation differs from that derived by
Debbasch et al. [3]. The difference corresponds to a different
dependence of the generalized friction tensor on momentum.
The theory has been reviewed by Dunkel and Hänggi [7,8].

Recently Debbasch et al. [9] have studied thermal relax-
ation of a relativistic particle diffusing in a fluid at equilibrium
via a numerical solution of an Ornstein-Uhlenbeck-type
Fokker-Planck equation in one dimension. From a Fourier
analysis of the numerical solution of the equation with
imaginary time variable, they concluded that the relaxation
spectrum has both discrete and continuum components.

In the following we study momentum relaxation in the
three-dimensional relativistic Ornstein-Uhlenbeck process on
the basis of the thermal momentum autocorrelation function.
An exact expression is derived for the short-time rate of
relaxation. We show that the Fokker-Planck equation is
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closely related to the Schrödinger equation for the hydrogen
atom. The relation shows that there is an infinite number
of discrete modes, corresponding to the bound states of the
hydrogen atom, and a continuous spectrum corresponding to
the scattering states. For a strongly relativistic particle the
relaxation at intermediate and long times is dominated by the
discrete states with the smallest relaxation rates. The relaxation
function is studied on the basis of an approximation involving a
numerical solution of the dominating discrete states, hydrogen
atom bound-state wave functions for the discrete states with
larger rates, and a Padé-type approximation to the contribution
from the continuous spectrum.

II. FOKKER-PLANCK EQUATION

We consider a Brownian particle of rest mass m0 immersed
in a viscous fluid consisting of much lighter particles. Due
to collisions between the Brownian particle and the parti-
cles of the fluid the momentum of the Brownian particle
varies stochastically in time. The probability distribution of
momentum P ( p,t) is assumed to satisfy the Fokker-Planck
equation [3]

∂P

∂t
= D

∂

∂p
·
(

∂P

∂p
+ ∂U

∂p
P

)
, (2.1)

with momentum diffusion coefficient D, and dimensionless
energy

U (p) = βc
√

p2 + q2, q = m0c, (2.2)

where c is the velocity of light, and β is a measure of inverse
temperature. It follows from the H theorem [10] that in the
course of time the distribution function P ( p,t) tends to the
equilibrium distribution

Peq(p) = exp[−U (p)]/Z(β), Z(β) =
∫

exp[−U (p)]dp,

(2.3)
where Z(β) is the normalization factor [4]. The width of the
Jüttner distribution Peq(p) is characterized by the dimension-
less parameter χ = βcq. For χ � 1 the distribution tends
to the Maxwell-Boltzmann distribution. In this nonrelativistic
limit Eq. (2.1) describes an Ornstein-Uhlenbeck process [1]
with D = ζ/β = kBT ζ , where kB is Boltzmann’s constant, T
is the absolute temperature, and ζ is the friction coefficient.
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We consider in particular the initial distribution func-
tion P ( p,0) = Peq(p) + f ( p,0)Peq(p) with a chosen factor
f ( p,0). We write the time-dependent distribution as

P ( p,t) = Peq(p) + f ( p,t)Peq(p). (2.4)

The function f ( p,t) satisfies the equation

∂f

∂t
= Lf, (2.5)

with adjoint Fokker-Planck operator

L = D

(
∂

∂p
− ∂U

∂p

)
· ∂

∂p
. (2.6)

Consider in particular the initial value f ( p,0) = pz. The
relaxation of momentum may be characterized by the mean
value

C(t) =
∫

pzf ( p,t)Peq(p) dp. (2.7)

This may be expressed as

C(t) = 〈
p2

z

〉
G(t),

〈
p2

z

〉 =
∫

p2
zPeq(p) dp, (2.8)

with dimensionless autocorrelation function G(t) with initial
value G(0) = 1. The mean relaxation time

τM =
∫ ∞

0
G(t)dt (2.9)

may be expressed as

τM = −〈pzL−1pz〉/
〈
p2

z

〉
. (2.10)

We introduce spherical coordinates (p,θ,ϕ) in momentum
space. Then pz = p cos θ , and it follows from isotropy that
the factor f ( p,t) takes the form f ( p,t) = g(p,t) cos θ with
a spherically symmetric function g(p,t). We write this in the
form

g(p,t) = ψ(p,t)

p
exp[U (p)/2]. (2.11)

By substitution into Eq. (2.5) we find that ψ(p,t) satisfies
the equation

∂ψ

∂t
= D

[
∂2ψ

∂p2
− V (p)ψ

]
, (2.12)

with

V (p) = 2

p2
− U ′

p
+ 1

4
U ′ 2 − 1

2
U ′′, (2.13)

where the prime denotes differentiation with respect to p.
The equation is similar to a radial Schrödinger equation for a
particle in a central potential. The first term is the centrifugal
part due to the angular dependence of the distribution. It is
easy to show that V (p) is positive, diverges as 2/p2 as p → 0,
and tends to

V∞ = χ2

4q2
= 1

4
β2c2 (2.14)

as p → ∞. In Fig. 1 we plot the reduced potential V (p)/V∞
for χ = 1, q = 1 as a function of p/q. For intermediate values
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FIG. 1. Reduced potential V (p)/V∞ for q = 1, χ = 1 as a
function of p/q (solid curve). We also plot the function 8q2/p2 −
4q/p + 1 corresponding to the potential of the hydrogen atom
(dashed curve).

of p/q the function shows a potential well with reduced values
less than unity, but larger than zero.

III. TIME DEPENDENCE

The time dependence of the autocorrelation function G(t)
can be expressed in terms of the solution ψ(p,t) of Eq. (2.12).
The equation can be interpreted as a diffusion-reaction equa-
tion describing diffusion on the half line p > 0 and absorption
in proportion to the potential V (p). We consider the initial
value

ψ(p,0) = p2 exp[−U (p)/2]. (3.1)

Then the autocorrelation function can be expressed as

G(t) =
∫ ∞

0
ψ(p,0)ψ(p,t) dp

/ ∫ ∞

0
ψ(p,0)2 dp. (3.2)

We write Eq. (2.12) as

∂ψ

∂t
= −Mψ, (3.3)

with linear operator M. The operator can be decomposed as

M = S + DV∞. (3.4)

We call

S = D

[
− ∂2

∂p2
+ V (p) − V∞

]
(3.5)

the Schrödinger operator. The potential V (p) − V∞ tends to
zero at infinity, and has a negative part. Hence the operator
S has bound states with negative eigenvalues {λbj }, and
scattering states with a continuous spectrum of positive
eigenvalues λf . From Eq. (2.13) we find

V (p) − V∞ = −βc

p
+ O(1/p2) as p → ∞, (3.6)

so that the potential decays slowly for large p, in analogy to
the hydrogen atom. Therefore there is an infinite number of
bound states.

We can write the correlation function as

G(t) =
∞∑

j=0

wbje
−μbj t +

∫ ∞

γ /4
wf (μf )e−μf t dμf , (3.7)
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with the abbreviations

μb = λb + 1
4γ, μf = λf + 1

4γ, γ = Dβ2c2, (3.8)

where {μ} are the eigenvalues ofM and {λ} are the eigenvalues
of S. The weights w follow from the expansion of the initial
value ψ(p,0) in terms of the eigenfunctions of the Schrödinger
operator S,

ψ(p,0)√
N0

=
∞∑

j=0

cbjφbj (p) +
∫ ∞

γ /4
cf (μ)φf (μ,p) dμ, (3.9)

with norm

N0 =
∫ ∞

0
ψ(p,0)2 dp, (3.10)

and normalized eigenfunctions {φ}. In particular, for the bound
states

wbj = c2
bj , cbj =

∫ ∞

0
φbj (p)ψ(p,0) dp/

√
N0. (3.11)

Here we have used the orthonormality relations∫ ∞

0
φbj (p)φbk(p)dp = δjk,

∫ ∞

0
φbj (p)φf (μ,p)dp = 0.

(3.12)
The norm N0 can be evaluated explicitly. It is given by

N0 =
∫ ∞

0
p4e−U (p)dp = q5

∫ ∞

χ

(U 2 − χ2)3/2e−UUdU

= 3q5K3(χ )/χ2, (3.13)

with the modified Bessel function K3(χ ).
It is convenient to define the scalar product

(φ1,φ2) =
∫ ∞

0
φ1(p)φ2(p)dp. (3.14)

Then the correlation function can be expressed as

G(t) = (ψ0,e
−Mtψ0)/N0, N0 = (ψ0,ψ0), (3.15)

with the abbreviation ψ0 = ψ(p,0). Hence the short-time
relaxation rate is given by

γS = −dG

dt

∣∣∣∣
t=0

= (ψ0,Mψ0)/N0. (3.16)

The numerator can be evaluated as in Eq. (3.13). It takes
the value

(ψ0,Mψ0) = D

β3c3

∫ ∞

χ

(U 2 − χ2)3/2e−UdU

= 3Dq3K2(χ )/χ. (3.17)

Hence the short-time relaxation rate is given by

γS = D
χK2(χ )

q2K3(χ )
. (3.18)

For large χ this behaves as

γS = γnr

[
1 − 5

2χ
+ O(χ−2)

]
, (3.19)

where γnr is the nonrelativistic rate coefficient [1]

γnr = Dχ

q2
= Dβ

m0
. (3.20)
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FIG. 2. Ratio γS/γnr = K2(χ )/K3(χ ) as a function of χ .

For small χ the short-time relaxation rate behaves as

γS = γnr

[
1

4
χ − 1

32
χ3 + O(χ5 log χ )

]
. (3.21)

The first term equals DV∞. In Fig. 2 we plot the ratio
γS/γnr = K2(χ )/K3(χ ) as a function of χ . This shows that the
short-time rate coefficient is always less than its nonrelativistic
limit value.

The long- and intermediate-time behavior of the correlation
function G(t) is dominated by the first few terms of the sum in
Eq. (3.7). The first few bound states {φbj (p)} are easily found
numerically by the shooting method, so that the corresponding
weights wbj can be evaluated. We estimate the contribu-
tion from the remaining bound states by approximating the
eigenfunctions by the P states of the hydrogen atom. The
contribution from the scattering states can then be estimated
from the Laplace transform of ψ(p,t) at a few selected values
of the Laplace variable.

The bound-state eigenfunctions of the P -state hydrogen
Schrödinger operator

SH = D

[
− ∂2

∂p2
+ 2

p2
− Z

p

]
(3.22)

are given by

φHj (p) = 1√
NHj

p2e−κpL3
j (2κp), κ = Z

2(j + 2)
,

(3.23)
with associated Laguerre polynomial L3

j (ρ) and normalization
factor

NHj =
∫ ∞

0

[
p2e−κpL3

j (2κp)
]2

dp

= 2

Z5
(j + 1)(j + 2)7(j + 3). (3.24)

The corresponding eigenvalues are

λHj = −D
Z2

4(j + 2)2
, j = 0,1,2, . . . . (3.25)

In addition the operator SH has a continuous spectrum of
positive eigenvalues with corresponding scattering eigenstates.

IV. NUMERICAL RESULTS

To illustrate the calculation of the autocorrelation function
G(t) we consider in particular the value χ = 1. We can choose
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0 10 20 30 40
p q

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

φb0

FIG. 3. Bound-state eigenfunction φb0(p) for q = 1, χ = 1 as a
function of p/q (solid curve). We compare with the 2P -state wave
function of the hydrogen atom (dashed curve).

units such that m0 = 1, c = 1. Then also q = 1. In Fig. 1
we also plot the function 8q2/p2 − 4q/p + 1, corresponding
to the potential of the hydrogen atom. In Figs. 3–5 we
plot the bound-state eigenfunctions corresponding to the
lowest three eigenvalues, and compare with the corresponding
eigenfunctions of SH for Z = 1 and j = 0,1,2. In view of
Fig. 1 it is not surprising that the eigenfunctions are remarkably
similar to those of the hydrogen atom. The comparison of
eigenvalues yields

λ0 = −0.067 41γ, λH0 = −0.062 50DZ2,

λ1 = −0.029 19γ, λH1 = −0.027 78DZ2, (4.1)

λ2 = −0.016 21γ, λH2 = −0.015 63DZ2.

We note that the values of μbj in Eq. (3.8) are positive. The
corresponding weights are calculated from Eq. (3.11) as

wb0 = 0.6327, wb1 = 0.0858, wb2 = 0.0284. (4.2)

The remaining bound-state eigenfunctions and eigenvalues
are approximated by those of the operator SH. This yields for
the remaining weight

Rb =
∞∑

j=3

wbj ≈ 0.042, (4.3)
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FIG. 4. Bound-state eigenfunction φb1(p) for q = 1, χ = 1 as a
function of p/q (solid curve). We compare with the 3P -state wave
function of the hydrogen atom (dashed curve).
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FIG. 5. Bound-state eigenfunction φb2(p) for q = 1, χ = 1 as a
function of p/q (solid curve). We compare with the 4P -state wave
function of the hydrogen atom (dashed curve).

so that the total weight of the bound states is

Wb = wb0 + wb1 + wb2 + Rb ≈ 0.789. (4.4)

The remaining weight Wf = 1 − Wb = 0.211 is con-
tributed by the continuous spectrum of scattering states.

The Laplace transform of the correlation function is defined
as

Ĝ(s) =
∫ ∞

0
e−stG(t)dt. (4.5)

From Eq. (3.7) we find the expression

Ĝ(s) =
∞∑

j=0

wbj

s + μbj

+
∫ ∞

γ /4

wf (μ)

s + μ
dμ. (4.6)

The nature of the potential V (p) suggests that a two-pole
approximation in the complex

√
s + γ /4 plane will be a

good approximation to the contribution from the continuous
spectrum [11]. Thus we approximate∫ ∞

γ /4

wf (μ)

s + μ
dμ ≈ Wf τf

1 + σf

√
(s + γ /4)τf + (s + γ /4)τf

,

(4.7)
with two parameters σf and τf . The expression has been con-
structed such that the contribution Gf (t) from the scattering
states has the initial value Gf (0) = Wf . The two parameters
σf and τf are determined from the requirement that the value
of Ĝ(s) at two selected values of s is correct. We choose in

0 0.2 0.4 0.6 0.8
γ

0

1

2

3

4

5

wf μ

μ

FIG. 6. Weight function wf (μ) for q = 1, χ = 1 as a function of
μ/γ , as given by Eq. (4.10).
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FIG. 7. Autocorrelation function G(t) for q = 1, χ = 1 as a
function of γ t (solid curve), compared with the exponential
exp(−t/τM ) (dashed curve).

particular the values s = 0 and s = −0.1γ . The second value
lies on the negative axis between −μb0 and 0. The value of Ĝ(s)
at these two points is evaluated from the numerical solution of
the Laplace transform of Eq. (2.12),

D

[
∂2ψ̂(p,s)

∂p2
− V (p)ψ̂(p,s)

]
= sψ̂(p,s) − ψ(p,0),

(4.8)
with initial value ψ(p,0) given by Eq. (3.1). The numerical fit
yields for the two parameters

σf = 0.308, τf = 20.43/γ. (4.9)

In Fig. 6 we plot the corresponding approximation to the
weight function wf (μ), given by

wf (μ) = 1

π
Wf σf τf

√
(μ − γ /4)τf

[
1 + (

σ 2
f − 2

)
× (μ − γ /4)τf + (μ − γ /4)2τ 2

f

]
, (4.10)

with integral

Wf =
∫ ∞

γ /4
wf (μ)dμ. (4.11)

From the solution at s = 0 we find for the mean relaxation
time τM , defined by Eq. (2.9), the value τM = 4.7812/γ . The
approximation to Ĝf (s), given by Eq. (4.7), corresponds to the
behavior

Gf (t) = Wf e−γ t/4[A+w(−iy+
√

t/τf ) + A−w(−iy−
√

t/τf )]
(4.12)

with values A± and y± given by

y± = −1

2
σf ± 1

2

√
σ 2

f − 4, A± = ±y±
y+ − y−

. (4.13)

The function w(z) = exp(−z2)erfc(−iz) is related to the
error function of complex argument [12].
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FIG. 8. Autocorrelation function G(t) for q = 1, χ = 1 as a
function of γ t (solid curve), compared with the bound-state con-
tribution Gb(t) (dashed curve).

The correlation function G(t) is the sum Gb(t) + Gf (t),
where the bound-state contribution Gb(t) is given by the sum
in Eq. (3.7), and Gf (t) by the integral. We approximate the
sum by the first three terms plus an infinite sum determined
from hydrogen P eigenfunctions and eigenvalues, as given by
Eqs. (3.14)–(3.16) with DZ2 = γ . In Fig. 7 we plot the ap-
proximate result for the correlation function G(t) and compare
with the exponential exp(−t/τM ). In Fig. 8 we compare the
correlation function G(t) with the bound-state contribution
Gb(t). The scattering states contribute significantly only for
short times.

V. DISCUSSION

We have studied momentum relaxation for a particular form
of the Fokker-Planck equation for the distribution function of
momentum of a relativistic Brownian particle, as given by
Eq. (2.1). The transformation to a Schrödinger-type equation,
and a comparison with the eigenfunctions and eigenvalues of
the hydrogen atom, allowed interesting conclusions on the
nature of the relaxation spectrum.

Clearly the same method can be used for other moments
with different angular dependence of the momentum distri-
bution function. Also it may be applied to different forms of
the Fokker-Planck equation [6] and in one dimension [3,5]. A
quick comparison of different equations can be made on the
basis of the short-time relaxation rate. In the present case this
is given by the analytic expression Eq. (3.18). The method
may also be useful in the mathematical study of the spectral
properties of relativistic diffusion [13].

Both discrete rates, corresponding to bound states, and the
continuum of scattering states contribute to the relaxation
of momentum. The two contributions are characterized by
the weights Wb and Wf = 1 − Wb. Mathematically there is
an interesting connection with the theory of dissociation in
electrolyte solutions [14–16].
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