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Shortest-path fractal dimension for percolation in two and three dimensions
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We carry out a high-precision Monte Carlo study of the shortest-path fractal dimension dy;, for percolation in
two and three dimensions, using the Leath-Alexandrowicz method which grows a cluster from an active seed site.
A variety of quantities are sampled as a function of the chemical distance, including the number of activated sites,
a measure of the radius, and the survival probability. By finite-size scaling, we determine d;, = 1.13077(2)
and 1.3756(6) in two and three dimensions, respectively. The result in two dimensions rules out the recently
conjectured value d,;, = 217/192 [Deng et al., Phys. Rev. E 81, 020102(R) (2010)].
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I. INTRODUCTION

As a standard model of disordered systems [1,2], perco-
lation has been intensively studied over the last 50 years
and applied to many other fields due to its richness in both
mathematics and physics. The nature of the phase transitions in
percolation has been well established. In particular, within the
two-dimensional (2D) universality class, there are only a few
critical exponents left to be expressed exactly, among which is
the shortest-path fractal dimension dy,;,, defined by [2—4]

(€) ~ pmn, (1)

where r is the Euclidean distance between two sites belonging
to the same cluster, and £ is the shortest path.

The shortest path £ between two sites in a cluster is the
minimum number of steps on a path of occupied bonds or sites
in the cluster, and was first studied independently by several
groups in the early 1980s [5-9]. The length £ is also called
the chemical distance [10]. A related quantity is the spreading
dimension d, [11], which describes the scaling of the mass A/
of a critical cluster within a chemical distance £ as A/ ~ £%,
and is related to the fractal dimension d; of the cluster by
dy = df/dmin'

In percolation, the shortest path naturally occurs during
epidemic growth or burning algorithms. Previous measure-
ments of dpi, in 2D include dp,;, = 1.18(4) [6], 1.118(15) [7],
1.15(3) [10], 1.102(13) [12], 1.132(4) [13], 1.130(2) [14],
1.1307(4) [3], 1.1306(3) [15], and 1.1303(8) [16]. A summary
of the early work is given in Ref. [13].

In 1984, Havlin and Nossal [10] conjectured that dp, =
df —1/v =91/48-3/4 =55/48 = 1.145833, which was
soon shown to be too large [13,14]. In 1987 Larsson [17]
speculated that dp,;, could be 17/16 or even 1, but these are
both excluded. In 1988 Herrmann and Stanley [14] conjectured
that dmin = 2 — dp + dieq, Where dieg = 1/v =3/4 is the
“red”’-bond dimension and dp is the backbone dimension.
Using Deng, Blote, and Neinhuis’s result dp = 1.6434(2)
[18] (see also [19,20]), we find that this prediction gives
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dmin = 2 — 1.6434(2) + 0.75 = 1.1066(2), which is too small.
In 1989, Tzschichholz, Bunde, and Havlin [21] considered
dmin = 53/48 = 1.1041666. . ., which is also below mea-
sured values. In 1992, Grassberger [3] conjectured that d,, =
26/23 = 1.130434783 ... based upon numerical results, and
consistent with existing measurements.

In 1998, Porto et al. [22] conjectured that dyyy, is related to
a pair-connectivity scaling exponent g; by dnin = g1 + B/v
where 8 = 5/36 for 2D. However, g; was later shown to
have the exact value g; = 25/24 [15,23], which implies
dmin = 55/48 = 1.145 833, identical to Havlin and Nossal’s
earlier conjecture [10].

In 2010, one of us (Y.D.) and coauthors conjectured an
exact expression [16] of dp, for the 2D critical and tricritical
random-cluster model: dmin = (g + 2)/(g + 18)/32g, where
g is the Coulomb-gas coupling constant, related to the
random-cluster fugacity g by g = (2/m)cos~!(¢/2 — 1). This
conjecture is numerically correct up to the third or fourth
decimal place for all values of ¢ studied in Ref. [16]. For the
g — 1 limit—i.e., standard bond percolation—the predicted
value dpyin = 217/192 = 1.130208 was consistent with the
numerical results in previous works [6,7,10,12—15]. In addi-
tion, the conjectured formula exhibits other good properties. It
reproduces the exact results for the critical uniform spanning
tree (¢ — 0) as well as for the tricritical ¢ — 0 Potts model;
at the tricritical ¢ — 0 point, the derivative with respect to g
is also correct.

The main goal of the present work is to carry out a high-
precision Monte Carlo test of the conjecture in Ref. [16] in the
context of 2D percolation. A numerical estimate of d,,;, for
3D percolation is also provided. Some preliminary results of
this work were reported in a recent paper on biased directed
percolation [24].

II. SIMULATION AND SAMPLED QUANTITIES

We simulate bond percolation on the square and the simple-
cubic lattice by the Leath-Alexandrowicz algorithm [6,25],
which grows a percolation cluster starting from a seed site.
For each neighboring edge of the seed site an occupied bond
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is placed with occupation probability p, and the neighboring
site is activated and added into the growing cluster. After all
the neighboring edges of the seed site have been visited, the
growing procedure is continued from the newly added sites.
This proceeds until no more new sites can be added into the
cluster (the procedure dies out) or the initially set maximum
time step £max 1S reached.

The above procedure is also called breadth-first growth, and
£ is equal to the shortest-path length between the seed site and
any activated sites at time step £. We set £ = 1 for the beginning
of the growth, and measure the number of activated sites N (£)
as a function of £. In addition, we record the Euclidean distance
r; of each activated site i to the seed site, and define a radius
by

0 if N =0,
R(t) = 2
© { SN2 if N@ > 1. @

The statistical averages N'(£) = (N(£)) and R(£) = (R?*(¢))!/?
and the associated error bars are calculated.! We also sample
the survival probability P(£) that at time step £ the growing
procedure still survives.

At criticality, one expects the scaling behavior

N@ ~ eV, R ~ ", Py~ ¢, (3)

where the critical exponents Yp, Yy, and Yy are related to 8,
v, and dpi, by
Y B

- 1’ YP = )
Vdmin

y +2v

Yy =
Vdmin

Vdmin

2¥p =

withy = dv — 2 and d equal to the spatial dimensionality. In
terms of exponents of epidemic processes [26], these quantities
correspond to § = Yp, n =Yy, and 1/z — n/2 = Yg.

To eliminate the unknown nonuniversal constants in front
of the scaling behaviors (3), we define the ratio Qp(f) =
028)/0%) for O = N, R, and P. In the £ — oo limit, one
has

Yy =1logy(Qn). Yr =1logy(Qr), Yp = —logy(Qp). (5)

In 2D, one has the exactly known exponents 8 = 5/36,
v=4/3,andy = 43/18[1,27-30]. In 3D, the exact values are
unknown, and are numerically found to be /v = 0.4774(1)
and v = 0.8764(7) [31-35].

III. INITIAL ESTIMATE OF d,,;, FOR 2D

We first carried out simulations at the critical point p = 1/2
for bond percolation on the square lattice with time step up
t0 £max = 1024 and the number of samples about 2 x 10°.
The asymptotic behavior of the observables A/, R, and P is
expected to follow the form

O) = " (ag + b1 0" + byt ™), (6)

'The definition of R here is different than that of Ref. [24], where
simply the average of R was used. We found that by using the average
square radius, a better estimate of d,,;, was obtained.
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FIG. 1. (Color online) Plot of P£¥? — 0.045¢~" versus £~ ! in 2D.
The Yp value is obtained via Eq. (4) by setting dyni, at 1.1302, 1.1304,
1.1306, 1.1308, 1.1310, and 1.1312, following the arrow.

where higher-order corrections are neglected and the critical
exponent Y is given by Eq. (3). The leading finite-size
correction exponent is known to be y; = —0.96(6) ~ —1 [24].
A least-squares criterion was used to fit the data assuming the
above form. With y; being fixed at —1, the fit of P gives
dmin = 1.1308 & 0.0002 and b; = 0.045(5), and the fit of A/
yields dyin = 1.1308 & 0.0002.

As an illustration, we plot P£¥» —0.045¢~! in Fig. 1 and
N~ in Fig. 2, both vs £~!, where the dp;, value is set at
a series of values in the range [1.1302,1.1312] in steps of
0.0002, including the above estimate d,;, = 1.1308. The term
—0.045¢~! is included in Fig. 1 to remove the overall slope
seen in the data of P; we did not do this to the A/ data (Fig. 2),
and there the slope is evident. The values of Yp and Yy are
obtained from Eq. (4), using the exactly known values of S
and v. Because the leading corrections have been subtracted
in Fig. 1, it is expected that the curve for the correct dy;,
value should asymptotically become flat and reach a constant.
Figure 1 shows that as ¢ increases, the curve for the conjectured
value 217/192 ~ 1.1302 is bending up while the curve for
1.1312 is bending down. This implies that the correct dp;,
value should fall somewhere in between. A similar behavior
is seen in Fig. 2, where the curve for 1.1308 is approximately
straight while those for 1.1302 and 1.1312 are bending down
and up, respectively.

1.68
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FIG. 2. (Color online) Plot of N¢~*¥ versus £~! in 2D. The Yy
value is obtained via Eq. (4) by setting dy,;, at 1.1302, 1.1304, 1.1306,
1.1308, 1.1310, and 1.1312, following the arrow.
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TABLE 1. Results for d,;, from Q, Ox, and Qp in 2D.

¢ sy g g
12 1.112 909(3) 1.102 251(2) 1.099 42(3)
16 1.117 007(4) 1.109 204(2) 1.106 44(3)
24 1.121 303(4) 1.116 112(2) 1.114 18(3)
32 1.123 540(4) 1.119 588(2) 1.118 10(3)
48 1.125 835(4) 1.123 109(2) 1.122 14(3)
64 1.127 007(4) 1.124 902(2) 1.124 20(3)
96 1.128 215(4) 1.126 743(2) 1.126 32(3)
128 1.128 826(4) 1.127 685(2) 1.127 38(3)
192 1.129 445(4) 1.128 647(2) 1.128 44(3)
256 1.129 755(4) 1.129 140(2) 1.128 99(3)
384 1.130 083(4) 1.129 653(2) 1.129 57(3)
512 1.130 251(4) 1.129 914(2) 1.129 83(3)
768 1.130 42(2) 1.130 180(6) 1.130 15(9)
1024 1.130 49(2) 1.130 317(6) 1.130 36(9)
1536 1.130 58(2) 1.130 455(7) 1.130 33(9)
2048 1.130 63(2) 1.130 532(7) 1.130 27(9)
3072 1.130 70(3) 1.130 61(2) 1.130 5(2)
4096 1.130 68(3) 1.130 62(2) 1.130 6(2)
6144 1.130 72(7) 1.130 65(4) 1.130 9(5)
8192 1.130 80(7) 1.130 72(4) 1.130 8(5)

IV. FURTHER SIMULATIONS FOR 2D

Although the conjectured number 217/192 seems to be
ruled out by the data shown in Figs. 1 and 2, a more
careful analysis is still desirable. The above analysis makes
an assumption that the leading correction is governed by £,
but the physical origin of this term is unclear as the leading
irrelevant thermal scaling field has exponent y; = —2. It is
conceivable that more slowly convergent corrections exist
but are not detected by the simulations up to £y,.x = 1024.
In particular, percolation can be regarded as a special case
of biased directed percolation with the symmetry between
spatial and temporal directions restored [24]. In this case,
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FIG. 3. (Color online) Plot of d.;, versus £ in 2D, deduced
from Q, and Q. The inset shows d,;, versus £~!. The solid and
dashed horizontal lines correspond to dyi, = 1.13077 and 217/192,
respectively. The red (upper) and blue (lower) curves are obtained
from the fits.
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TABLE II. Fitting results of d,,;, in 2D, for various cutoffs £,.
“DOF” stands for “degrees of freedom.”

Lwin x> DOF Ain by by »
dl(n/}Q 16 13 15 1.130759(5) —0.206(2) 0.1512) —0.961(3)
24 12 14 1.130764(6) —0.202(4) 0.12(3) —0.957(5)
32 12 13 1.130763(8) —0.204(6) 0.13(6) — 0.958(7)
48 11 12 1.130766(10) —0.20(1) 0.1(2) —0.95(1)
64 7 11 1.130780(12) —0.18(2) 0.4(3) —0.93(2)
dr(nﬁ) 24 20 14 1.130776(4) —0.265(2) —0.19(2) —0.918(2)
32 13 13 1.130771(4) —0.270(3) —0.14(3) —0.922(2)

48 12 12 1.130768(5) —0.273(5) —0.08(7) —0.925(4)

64 10 11 1.130772(7) —0.266(7) —0.2(2) —0.920(5)
d® 16 8 15 1.13067(4) —0.392)  0.41(9) —0.99(1)
24 8 14 1.13066(5) —0404)  0.5(3) —0.99(2)
32 8 13 1.13066(6) —041(5)  0.6(5) —0.99(3)
48 8 11 1.13065(7) —0.4(1) 0.8(11) —1.00(5)
64 8 11 1.13064(8) —0.4(2) 12) —1.01(8)

multiplicative and/or additive logarithmic corrections can
occur in principle such that the scaling behavior of AV, R,
and P is modified as

O() ~ [log(€/ o)™ " (1 + 1/[log(£/€)]™), )

where £ and £; are constants, and y,, and y. are the associated
correction exponents. Corrections of the log log £ form are also
possible. We note that due to cancellation between nominator
and denominator, the multiplicative logarithmic correction will
not explicitly appear in the ratio Q¢ (O = N,R,P), for which
the scaling behavior is modified as

Qo(0) = 2" {1 + 1/[log(£/£1)1}, (8)

where y. can be equal to y. or |yn|, depending on the relative
amplitudes of the terms associated with them.

To investigate this, we carried out more extensive sim-
ulations up to £.x = 16384. The number of samples was
4.5 x 10'° for £ < 1024, 5 x 10° for 1024 < £ < 4096, 10°
for 4096 < ¢ < 8192, and 3 x 108 for ¢ > 8192.

TABLE III. Results for dy,;, from O, Ox, and Qp in 3D.

¢ sy di dyn
12 1.364 7(2) 1.358 44(8) 1.357 6(4)
16 1.365 4(2) 1.363 14(8) 1.359 7(4)
24 1.366 8(2) 1.367 22(8) 1.363 1(4)
32 1.367 9(2) 1.369 01(9) 1.365 6(4)
48 1.369 4(2) 1.370 69(9) 1.368 4(4)
64 1.370 4(2) 1.371 52(9) 1.369 9(4)
96 1.371 6(2) 1.372 42(9) 1.371 8(4)
128 1372 3(2) 1.372 94(9) 1.372 8(4)
192 1.373 1(2) 1.373 50(9) 1.373 8(4)
256 1.373 5(2) 1.373 78(9) 1.374 4(4)
384 1.374 1(2) 1.374 19(9) 1.375 0(4)
512 1.374 4(2) 1.374 49(9) 1.375 3(4)
768 1.374 6(2) 1.374 7(2) 1.375 4(5)
1024 1.374 6(3) 1374 7(2) 1.376 0(5)
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TABLE IV. Fitting results of dy;, in 3D.

emin X 2 DOF dmin bl b2 Y1
d% 8 6 11 13761(3) —0.062(7) 0.50(5) —0.57(4)
12 3 10 1.3757(3) —0.08(2) 0.72) —0.64(6)
16 2 9 1.3756(4) —0.09(3) 0.93) —0.68(8)
24 2 8 1.37544) —0.12(6) 1.409) -0.7(2)
32 2 7 1.3753(4) —0.2(1) 2(2) -0.8(2)
d® 8 7 11 1.3754(2) —0.045(4) —1.99(3) —0.60(3)
12 2 10 1.3757(3) —0.035(5) —1.13(7) —0.53(5)
16 2 9 1.37583) —0.033(6) —1.2(2) —0.51(6)
24 2 8 137574) —-0.03(1) -—-1.13) —0.5209)
32 2 7 13757(4) —0.042) —-0.9(6) —0.6(2)
A7 8 7 11 13766(4) —0.194)  1.02) —0.80(6)
12 4 10 13765(5) —0238)  13(5) —0.8(1)
16 3 9 1.375(5) -0.2(1) 1.39) —-0.8(2)
24 3 8 1.3765(7) —0.2(2) 12)  —0.8(3)

From the Q » data, we calculate the d,;, (£) value by Egs. (4)
and (5). Table I displays the resulting values of dy,(€) from
the ratios Qx, Or, and Qp. It can be clearly seen that
for £ < 3072, the dn;, values that derive from A and R
increase monotonically as € increases. Further, by looking
at the d¥¥)(L) or the V(L) data for L = 1024, 2048, 4096,
and 8192, one can safely conclude that the asymptotic value
dmin 1s larger than 1.1307. For clarity, these data are plotted
in Fig. 3. The conjecture dp,i, = 217/192 would mean that the
monotonically increasing curves for dr%) and d'%) must bend
downward as £ becomes larger, and thus a very rapid drop
would occur near the origin (1/¢ — 0) in the inset of Fig. 3,
which seems very unlikely. The d'%) data are less accurate and
not shown in Fig. 3.

We fitted the dpi,(€) data by

dmin(e) = dmin + blgyI + b2£—2, (9)

using a least-squares criterion. The data for small £ < £,
were gradually excluded to see how the residual x> changes
with respect to £,,. Table II lists the fitting results for dﬁ{}g,

d?, and d). From these fits, we obtain d%\) = 1.13077(3),

min

d® =1.13077(2), and d%) = 1.13066(15). Note that to
account for potential systematic errors, the error bars in these
final estimates are taken to be significantly larger than those
statistical ones in Table II. Considering the stability of the
fit results in Table II, we believe that the estimated error
margins are reliable. We note that the coefficient b, cannot
be determined well in the fits for £,,;, > 32. Thus, fits with
b, = 0 were also carried out, and the results agree with our
above estimates of dp;,.

We also simulated critical site percolation on an L x L
triangular lattice with periodic boundary conditions; this sys-
tem is known to have zero amplitude of the leading irrelevant
scaling field with exponent y; = —2. A row of lattice sites was
chosen, and all the occupied sites on this row were assumed to
belong to the same cluster. The Leath-Alexandrowicz method
was then used to grow the cluster. The chemical radius £ of the
completed cluster was measured. From the scaling £ ~ L%in,
we determine dp,i, = 1.1307(1), also ruling out the conjectured
value.
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FIG. 4. (Color online) Plot of d¥¥) and d™® versus £-°7 in 3D.

min min

V. RESULTS FOR 3D

We simulated bond percolation on the simple-cubic lattice
at the central value of the recently estimated critical point
p = 0.248 811 8(1) [35], which is slightly below the previous
value of p = 0.248 812 6(5) [36]. The simulation was carried
Up to £max = 2048, with the number of samples 7 x 10° for £ <
1024 and 2 x 10° for £ > 1024. Analogous to the procedure
on the square lattice, we sampled A, R, and P and studied
the ratios Qx, Qr, and Qp. The values of d'Q) deduced
from these ratios with 8/v = 0.4774(1) are listed in Table III.
The fitting results are shown in Table IV and yield dr(r{}{j) =

1.3756(6), d'RX) = 1.3757(6), d'~) = 1.3765(10), and y; =
—0.7(2). The data for d¥)(¢) and d¥(£) versus £~ are fur-
ther shown in Fig. 4, where the exponent 0.7 reflects the value
of Vi

VI. CONCLUSION

In conclusion, we determined the shortest-path fractal
dimension dy,;, for percolation in 2D and 3D to be 1.13077(2)
and 1.3756(6), respectively. For the 2D value, we use the
result which follows from R(£) and has the smallest error
bars. The precision of these numbers is increased compared
to the current most accurate values that we are aware of.
The conjectured value in 2D, dy, = 217/192 [16], is ruled
out with a high probability. Grassberger’s earlier conjecture
dmin = 26/23 [3] is also ruled out. The 3D result represents
a substantial increase in precision over the previous values of
1.34(1) [14] and 1.374(4) [4].
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