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Localization transition of stiff directed lines in random media
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We investigate the localization of stiff directed lines with bending energy by a short-range random potential.
Using perturbative arguments, Flory arguments, and a replica calculation, we show that a stiff directed line
in 1 + d dimensions undergoes a localization transition with increasing disorder for d > 2/3. We demonstrate
that this transition is accessible by numerical transfer matrix calculations in 1 + 1 dimensions and analyze the
properties of the disorder-dominated phase. On the basis of the two-replica problem, we propose a relation
between the localization of stiff directed lines in 1 + d dimensions and of directed lines under tension in 1 + 3d

dimensions, which is strongly supported by identical free energy distributions. This shows that pair interactions
in the replicated Hamiltonian determine the nature of directed line localization transitions with consequences for
the critical behavior of the Kardar-Parisi-Zhang (KPZ) equation. Furthermore, we quantify how the persistence
length of the stiff directed line is reduced by disorder.
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Directed lines (DLs) in random media or the more general
problem of random elastic manifolds are one of the most
important model systems in the statistical physics of disordered
systems [1]. DLs in random media are related to important
nonequilibrium statistical physics problems such as stochastic
growth, in particular, the Kardar-Parisi-Zhang (KPZ) equation
[2], Burgers turbulence, or the asymmetric simple exclusion
model (ASEP) [3]. Furthermore, there are many applications
such as kinetic roughening [3], pinning of flux lines [4,5],
random magnets, or wetting fronts [1].

DLs in D = 1 + d-dimensional random media exhibit a
disorder-driven localization transition for dimensions d > 2,
which has been studied numerically for dimensions up to d = 3
[6–9]. In the context of the KPZ equation, it is a long-standing
open question whether there exists an upper critical dimension,
where the critical behavior at the localization transition is
modified (for a recent discussion, see, e.g., [10]). We will
address this question from a new perspective by revealing a
relation between DLs in 1 + 3d dimensions and stiff directed
lines (SDLs) in 1 + d dimensions in a random medium, which
we validate for d = 1 by numerical simulations. We define
SDLs as lines with preferred orientation and no overhangs
with respect to this direction, but a different elastic energy
penalizing curvature instead of stretching (cf. Fig. 1). We
investigate their disorder-induced localization transition and
the scaling properties of conformations in the disordered
phase. Because the proposed relation between DLs and SDLs
is based on return probabilities of pairs of replicas, our
results suggest that the critical properties of DLs in a random
potential and, thus, of the KPZ equation are determined by the
corresponding two replica problem.

Model of the stiff directed line. The configuration of
a directed line, i.e., one without overhangs or loops and
without inextensibility constraint, can be parametrized by
(x,z(x))(0 � x � L) with a d-dimensional displacement z(x)
normal to its preferred orientation. Each configuration of a
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SDL is associated with an energy

H =
∫ L

0
dx

{
κ

2

[
∂2
x z(x)

]2 + V (x,z(x))
}
, (1)

where the first term is the bending energy (to leading order
in z). The second term is the disorder energy with a Gaussian
distributed quenched random potential V (x,z(x)) with zero
mean V = 0 and short-range correlations V (x,z)V (x ′,z′) =
g2δd (z − z′)δ(x − x ′).1

The SDL model (1) is an approximation to the so-called
wormlike chain or Kratky-Porod model [11,12] HWLC =∫ L

0 ds{ κ
2 [∂2

s r(s)]2 + V [r(s)]} which is a common model for
semiflexible polymers, such as DNA or cytoskeletal filaments
like F-actin. The chain is parametrized in arc length, leading
to a local inextensibility constraint |∂sr(s)| = 1, which is hard
to account for, both numerically and analytically [13,14]. The
approximation (1) only applies to a weakly bent semiflexible
polymer on length scales below the so-called persistence
length, which is2 Lp = (D − 1)κ/2T for thermally fluctuating
semiflexible polymers [14]. Above the persistence length, a
semiflexible polymer loses orientation correlations and starts
to develop overhangs. Also, in a quenched random potential the
SDL model describes semiflexible polymers in heterogeneous
media, only as long as tangent fluctuations are small such
that overhangs can be neglected, which is the case below
a disorder-induced persistence length, which we will derive
below.

We consider the SDL model also in the thermodynamic
limit beyond this persistence length, because we find evidence
for a relation to the important problem of DLs in a random
medium in lower dimensions. This relation is based on
replica pair interactions and shows that pair interactions
also determine the nature of the DL localization transition.
Moreover, this relation can make the DL transition in high

1X denotes the quenched disorder average over realizations of V ,
whereas 〈X〉 denotes thermal averaging.

2We use energy units kB ≡ 1.
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FIG. 1. (Color online) Paths with lowest energy for given ending
states (top, globally optimal path thicker) for the (a) stiff and (b)
tense directed lines (right). The dots mark favorable regions of the
Gaussian random potential V [realizations of the quenched disorder
are not identical in (a) and (b)].

dimensions computationally accessible. We will now outline
the idea behind this relation.

Relation to directed lines. The difference between SDLs and
DLs [1] is the second derivative in the first bending energy term
in Eq. (1) for SDLs, which differs from the tension or stretching
energy ∼ ∫

dx [∂xz(x)]2 of DLs. This results in different types
of energetically favorable configurations (see Fig. 1): large
perpendicular displacements z are not unfavorable as long
as their “direction” does not change. Displacements z are
characterized by the roughness exponent ζ , which is defined by
〈z2(L)〉 ∼ L2ζ . The thermal roughness is ζth,τ = 1/2 for DLs
and ζth,κ = 3/2 for SDLs. Here and in the following we use
subscripts τ (tension) and κ (bending stiffness) to distinguish
between the two systems.

Although typical configurations are quite different, a SDL
subject to a short-ranged (around z = 0) attractive potential
V (z) can be mapped onto a DL in high dimensions d ′ = 3d [15,
16]. This equivalence is based on the probability that a free line
of length L starting at [z(0) = 0] “returns” to the origin, i.e.,
ends at z(L) = 0. This return probability is characterized by
a return exponent χ : Prob [z(L) = 0] ∼ L−χ . For DLs, which
are essentially random walks in d transverse dimensions, the
return exponent is χτ = d/2 [17], whereas it is χκ = 3d/2
for a SDL (after integrating over all orientations of the end)
[18]; they are related to the roughness exponents by χ = ζd

[16]. The return exponent governs the binding to a short-range
attractive potential or, equivalently, the binding of two lines
interacting by such a potential [15–17]. The relation χτ (3d) =
χκ (d) implies that the binding transition of two DLs in 3d

dimensions maps onto the binding transition of two SDLs in
d dimensions.

In the replica formulation of line localization problems
such as (1), the random potential gives rise to a short-range
attractive pair interaction (see below). Furthermore, the critical
temperature Tc,τ for a DL in a random potential is believed to
be identical to the critical temperature T2,τ for a system with
two replicas [9,19]. One aim of this work is to generalize
this conjecture by demonstrating that the d → 3d analogy
between DLs and SDLs in a random potential holds for
the entire free energy distribution. Because this analogy is
rooted in the binding transition of replica pairs, we can
conclude that critical properties of the localization transition

disorder dominated

thermal

gc
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FIG. 2. Sketch of the phase diagram as implied by Flory-type
arguments. The arrows indicate the flow of the disorder “strength” g

under renormalization.

are determined by pair interactions in the replicated Hamilto-
nian, which has been previously suggested in Refs. [20,21].
Moreover, it has been proposed that pair interactions can be
used to formulate an order parameter of the disorder-driven
localization transition of DLs in terms of the overlap q ≡
limL→∞ 1

L

∫ L

0 dx δ [z1(x) − z2(x)] [22–24], i.e., the average
number of sites per length, that two lines in the same realization
of the disorder have in common. Localization by disorder gives
rise to a finite value of the pair overlap q.

Scaling analysis. We start with a scaling analysis of
SDL behavior in disorder by a Flory-type argument. For
displacements ∼ z the bending energy in Eq. (1) scales as Eb ∼
κz2L−3, which also leads to 〈z2〉 ∼ L3/Lp and the thermal
roughness exponent ζth,κ = 3/2. The disorder energy in Eq.
(1) scales as Ed ∼ g

√
Lz−d . Using the unperturbed thermal

roughness in the disorder energy we get Ed ∼ L(2−3d)/4, from
which we conclude that the disorder is relevant below a
critical dimension d < dc,κ = 2/3. For d > dc,κ = 2/3 and,
thus, in all physically accessible integer dimensions, the SDL
should exhibit a transition from a thermal phase for low g

to a disorder-dominated phase above a critical value gc of the
disorder (see Fig. 2). In the disorder-dominated phase, the SDL
becomes localized and assumes a roughened configuration (see
Fig. 1).

Balancing the Flory estimates Eb ∼ Ed gives the roughness
z ∼ LζFl , if disorder is relevant. This leads to ζFl,κ = 7/(4 + d),
which is applicable below the critical dimension d < dc,κ ,
where ζFl,κ > ζth,κ . Above the critical dimension, the Flory
result would give ζFl,κ < ζth,κ , which contradicts a roughening
of the SDL as it adjusts to the random potential. Furthermore,
the exponent ω related to the energy fluctuations via 	F ∼ Lω

would be negative, since the scaling of the energy implies
a general scaling relation ω = 2ζκ − 3 (note that we do not
subscript ω as we believe ωτ = ωκ ; see below). An exponent
ω < 0 contradicts the existence of large disorder-induced free
energy fluctuations in the low-temperature phase [25,26], for
which there is also strong numerical evidence [7–9]. We
conclude that this kind of argument is not applicable above
the critical dimension. The same problems occur in Flory
arguments for DLs for d > dc,τ = 2 as well as in, for example,
functional renormalization group analysis [27] for d � 2.5. We
conclude that, in contrast to DLs, it is sufficient to study 1 + 1-
dimensional SDLs in numerical transfer matrix calculations in
order to explore the properties of their localization transition
such that we focus on this case in the following.

Variation in replica space. To go beyond scaling arguments
we use the replica technique [28] following the treatment of
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directed manifolds [29], the results of which we summarize
briefly in the following. We write the averaged and repli-
cated partition function as Zn = ∏

α(
∫
Dzα) exp (−βHrep)

with the replica Hamiltonian in Fourier space Hrep =
1

2L

∑n
α=1

∑
k(κk4+μ)z2

α− βg2

2

∑n
α,β=1

∫ L

0 dx fλ(z2
αβ), where

zαβ ≡ zα − zβ and with an attractive potential fλ(z) of range
λ. As mentioned before, Hrep is related to a pair bind-
ing problem: in the limit λ ≈ 0 the second term becomes
− βg2

2

∑
α,β

∫ L

0 dx δ(zα − zβ).
Using variation in replica space we find one-step replica

symmetry breaking for d > dc,κ and can show that there
is no localized solution unless the potential strength g and
correlation length λ are above finite values. We interpret this
as an indication for the existence of a critical disorder strength
or a critical temperature for d > dc,κ .

Numerical results. More progress is possible by extensive
numerical studies using the transfer matrix method [1,30] both
for T = 0 (see Fig. 1) and for T > 0. The transfer matrix
element for a segment of a SDL with length 	L = 1 starting at
z with orientation dz/dx = v and ending at z′ with v′ follows
from a discretization of (1) as 	E = κ/2(v − v′)2 + V (z′),
where we have chosen z′ = z + v′ to simplify the transfer
matrix. For the sake of simplicity we choose g = 1 and vary
the temperature.

In order to test the relation between DLs and SDLs, we
compare free energy fluctuations for DLs in 1 + 3 and SDLs
in 1 + 1 dimensions. Previous direct numerical studies of DLs
in 1 + 3 dimensions found an exponent ω ≈ 0.18 [8,9] in the
low-temperature phase; the most precise value from kinetic
roughening studies is ω ≈ 0.186 [31]. We compare these
values with our own numerical transfer matrix calculations
for SDLs in 1 + 1 dimensions. We determine the exponent
ω directly by fitting 	F = (F 2 − F 2)1/2 ∝ Lω, which gives
values ω ≈ 0.16 for DLs in 1 + 3 dimensions, or by studying
the distribution of the free energy shown in Fig. 3(a), which
is obtained by computing the free energy for every sample
and rescaling to zero mean and unit variance, GF (x) =
Prob[(F − F )/	F = x]. The asymptotic behavior of the

negative tail of the rescaled free energy distribution for
low temperatures, which is of the form ln GF (x) ∼ −|x|η
(x < 0,|x| � 1), allows us to determine the energy fluctuation
exponent ω via the Zhang argument [1] giving η = 1/(1 − ω).
We get η ≈ 1.23 and therefore ω ≈ 0.19. These values agree
with the literature values for DLs in 1 + 3 dimensions.

For direct comparison of the entire free energy distributions
of a SDL in 1 + 1 and a DL in 1 + 3 dimensions we simulated
both systems and find that the rescaled free energy distributions
in the low-temperature phases have to be considered identical
within numerical accuracy [see Fig. 3(a)]. This strongly
supports the relation between DLs in 1 + 3d dimensions and
SDLs in 1 + d dimensions.

In a third approach, we can calculate ζκ and ω = 2ζκ − 3
by measuring a “local” version of the roughness exponent [32]
2ζ (L) = log5[z2(L)/z2(L/5)]. The data shown in Fig. 3(b)
shows two distinct regimes for high and low temperatures and a
significant “dip” around T = 1.4. For low temperatures, values
2ζκ ≈ 3.11 are consistent with ω ≈ 0.11. As for DLs [33], it
can be argued that ω should vanish at the transition, resulting in
fluctuations of the free energy that scale logarithmically with
L, 	F ∼ ln1/2 L [9], resulting in a roughness exponent ζκ =
3/2. This seems to hold, even though the numerical value for
high temperatures is slightly above ζκ = 3/2, which is strong
evidence for a phase transition at Tc ≈ 1.4. We support this by
studying the difference of quenched and annealed free energies
δF = F − F ann, which should as well scale as δF ∼ ln1/2 L

at the transition. We determined Fann by simulating a system
without disorder and adding the contribution of the annealed
potential, F ann = Fg=0 − Lg2β/2 [see Fig. 3(b)].

Finally, we identify an order parameter of the localiza-
tion transition. For DLs, the disorder-averaged overlap q =
limL→∞ 1

L

∫ L

0 dx δ [z1(x) − z2(x)] of two replicas has been
proposed as order parameter [22,23]. Up to now, it has been
numerically impossible to verify this order parameter for DLs
in d > 2 dimensions where a localization transition exists
because the relevant 2d-dimensional two-replica phase space
is too large. For SDLs, on the other hand, the transition is
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FIG. 3. (Color online) (a) Rescaled GF (X) = P [(F − F )/	F ] free energy distribution for a stiff directed line (SDL) in 1 + 1 dimensions.
We show distributions for T = 0 [light (blue) squares, ground state energy] as well as for three finite temperatures T < Tc (black thin solid
line), T ≈ Tc (red, thicker solid line), and T > Tc (green, light thin solid line). Results for a directed line (DL) in 1 + 3 dimensions are shown
(dark circles). (b) Local (see text) roughness exponent 2ζκ as a function of T . Deviations from the analytical value 2ζκ = 3 at high temperatures
indicate numerical problems, nonetheless there is a clear dip at T ≈ 1.4, which we identify as the critical temperature. For low temperatures,
we find values consistent with ω ≈ 0.11. Inset: Reduced free energy δF = F − F ann rescaled by ln1/2 L for lengths L = 50,60, . . . ,100 as a
function of T . There is a pseudocrossing around T ≈ 1.38. (c) The overlap order parameter q, as a function of T . We estimated q from finite
lengths using a fit qT (L) = a(T )/L + q∞(T ). Inset: Double-logarithmic plot of the overlap q versus Tc − T (with Tc = 1.44); the solid line is
given by q ∼ (Tc − T )−β ′

with β ′ ≈ −1.36.
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FIG. 4. (Color online) Disorder-reduced persistence length Lp

of the SDL for g = 1. Lp matches its thermal value (solid line)
for T > Tc and is reduced and approximately constant for T < Tc.
Inset: Lp at T = 0 versus the potential strength g. The Flory-result
Lp ∼ g−1 (dotted line) matches the data.

numerically accessible already in 1 + 1 dimensions and we
show that the overlap q is indeed a valid order parameter using
an adaptation of the transfer matrix technique from Ref. [23]
[see Fig. 3(c)]. This involves simulating two interacting SDLs,
therefore we can only use lengths up to L = 30 and 103

samples. For DLs, it has been found that the overlap at
criticality decays as q ∼ L� with � = −2ζ = −(1 + ω) in
d = 3 [22]. This has been extended to finite temperatures
yielding q ∼ |T − Tc|−ν� . Indeed, we find a qualitatively
similar behavior q ∼ |T − Tc|−β ′

with an exponent β ′ ≈
1.3–1.4. Our best estimate for � is � ≈ −0.75. For the
correlation length exponent ν we find values ν ≈ 2 compatible
with the corresponding problem of DLs [6,9,19], such that
our present results deviate from β ′ = ν�. Because of small
simulation lengths L we do not conclude this deviation to be
a definite statement against the renormalization group results
presented in Ref. [22]. Nevertheless, the connection between
DLs and SDLs provides the first system to test the proposed
order parameter in a localization transition numerically and to
determine the otherwise inaccessible exponents β ′ or �.

Disorder-induced persistence length. As stated before, the
model of a SDL in a random potential describes a wormlike
chain in a heterogeneous environment on small length scales
L < Lp such that overhangs can be neglected, which gives
the defining criterion 〈v2〉(L = Lp) = 1 for the persistence
length. The line roughens in the low-temperature phase, which
gives rise to a persistence length decrease as compared to the
thermal persistence length Lp ∼ κ/kBT . At low temperatures,
the Flory result z ∼ (g/κ)2/(4+d)L7/(4+d) leads to Lp ∼

(κ/g)2/(3−d). For d = 1, we determine Lp numerically via
the above defining criterion, and the data presented in Fig. 4
does indeed show an only weakly temperature-dependent
disorder-reduced persistence length for T < Tc. The T = 0
results match the Flory result Lp ∼ κ/g.

Conclusion. We studied stiff directed lines (SDLs) in
1 + d dimensions subject to quenched short-range random
potential analytically and numerically. Using Flory-type scal-
ing arguments and a replica calculation we show that, in
dimensions d > 2/3, a localization transition exists from
a high-temperature phase, where the system is essentially
annealed, to a disorder-dominated low-temperature phase.
The low-temperature phase is characterized by large free
energy fluctuations with an exponent ω > 0, which cannot
be calculated by scaling arguments or replica calculations.
By extensive numerical transfer matrix calculations in 1 + 1
dimensions we find a value ω ≈ 0.18, which is close to the
established value ω ≈ 0.186 for directed lines (DLs) under
tension in 1 + 3 dimensions. Moreover, the rescaled free
energy distributions are identical. Both points suggest that
the nature of the low-temperature phase is very similar, if not
identical.

This strongly supports a relation between DLs in 1 + 3d

and SDLs in 1 + d dimensions, which is based on identical
return exponents χ for two replicas to meet. The validity
of a relation based on properties of a single replica pair
suggests that the critical properties of DLs in a short-range
random potential are governed by replica pair interactions. The
mapping can make DL transitions in high dimensions com-
putationally accessible, which we demonstrated in showing
that the two-replica overlap provides a valid order parameter
across the localization transition of SDLs in 1 + 1 dimensions.
Furthermore, the importance of pair interactions suggests that
the critical temperature for DLs in random potentials is indeed
identical to the temperature below which the ratio of the second
moment of the partition function and the square of its first
moment diverges. The binding transition of DL pairs becomes
discontinuous for d > 4 and, analogously, the binding of SDL
pairs for d > 4/3 [16,34]. Because DLs in random potentials
are equivalent to the KPZ equation [2], the validated relation
to the SDL suggests that the roughening transition of the
KPZ problem could acquire similar discontinuous features for
d > 4 dimensions. Finally, we calculated the reduction of the
persistence length of a stiff directed by disorder.
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