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We present a method for finding the condensate distribution at the nucleation of superconductivity for arbitrary
polygons. The method is based on conformal mapping of the analytical solution of the linearized Ginzburg-Landau
problem for the disk and uses the superconducting gauge for the magnetic potential proposed earlier. As a
demonstration of the method’s accuracy, we calculate the distribution of the order parameter in regular polygons
and compare the obtained solutions with available numerical results. As an example of an irregular polygon,
we consider a deformed hexagon and prove that its calculation with the proposed method requires the same
level of computational efforts as the regular ones. Finally, we extend the method over samples with arbitrary
smooth boundaries. With this, we have made simulations for an experimental sample. They have shown perfect

agreement with experimental data.
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I. INTRODUCTION

Recent capabilities of creating nano-sized samples provide
the possibility to study vortex matter at the nanoscale. The
coherent length of order parameters for the known super-
conductor materials is typically of this order of magnitude.
At this scale, theory predicted new superconducting vortex
states, like the giant vortex [1] and antivortex [2], created
by the confinement of the condensate. This makes the ability
to simulate the superconducting order parameter in samples
of general shapes important, as is usually the case with
experimental samples.

The linearized Ginzburg-Landau (LGL) equation describes
the distribution of the superconducting order parameter
(W) close to the normal-superconducting phase boundaries,
T.(H.»),1.e., at the nucleation point, as function of temperature
and magnetic field [3,4]. Besides, it was shown that the
solutions of this equation can be used to solve the nonlinear
Ginzburg-Landau (GL) problem [5,6].

The LGL problem is defined by the equations

1 - -
—(—ihV = 2e A’V = oV, (1)
2m

(—ihV — 2eA)|yp ¥ =0, )

where A is the vector potential corresponding to the ap-
plied magnetic field (IjI =V x A), W is the superconduct-
ing order parameter, « is the condensation energy density
(which in the linearized Ginzburg-Landau is an eigenvalue
to be determined), and n.b. means normal to the boundary.
Equation (1) looks like a Schrodinger equation for a particle
in the magnetic field. Equation (2) is the boundary condition
for superconductivity which differs from the one of particle
in the box problem (or quantum billiard) for which W = 0 at
the boundary. The boundary condition (2) plays an important
role for mesoscopic superconductors, like loops [7], disks [1],
triangles [8], squares [2], and rectangles [9].

The most common method to solve the GL problem in
superconductivity (the linearized GL equation, nonlinear GL
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equation, the GL equation coupled with the magnetic field
equation, the time-dependent GL, and the two-component GL)
is the finite difference method [10—-14]. However, comparison
with analytical and semianalytical methods applied to the LGL
equation have shown that the finite difference method needs
a great number of points (with grids of at least 201 by 201
points [15]) to become sufficiently accurate to obtain vortex
features like an antivortex in a square [2]. Still, analytical
and semianalytical methods are only applicable, to the best of
our knowledge, to a few bounded geometries like the circle
[16-18], square [2,19], rectangle [9], and equilateral triangle
[8] and annular [20] geometries.

Most of the newly accessible bounded geometries by
semianalytical methods were solved by a superconducting
gauge method [21,22]. In this method, the boundary condition
of the LGL problem, Eq. (1), is simplified to the Neumann
boundary condition, V|, ¥ = 0, by fixing the gauge of the
vector potential, A [nb. = 0. This is called the superconducting
gauge [21]. In the superconducting gauge approach, the gauge
function, S(7), is found from the condition

V0nb.S = —Aolub., 3)

A=Ay + VS, 4)

where Ao = %ITI x 7and H isa homogeneous magnetic field
applied normally to the surface of polygons. To find the gauge
function §, an analytical method was developed in previous
publications [21,22]. An ansatz for S, expressed in the polar
coordinates, was used,

S(@r,0) = R(r)sin(N6), (5)

where N is the number of vertices in the polygon. With this
ansatz, Eq. (3) becomes a first-order differential equation in
R(6). By solving it and analytically expanding the solution,
R(r) is obtained. This method provides for the triangle and
square simple explicit analytical expressions for the vector
potential. A general expression was deduced for arbitrary
regular polygons. After simplifying the boundary condition,
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Egs. (3) and (4), the eigenfunctions of the Laplacian operator
(a particle in the box problem) were used as basis to solve
the LGL equation (1). The solutions of the LGL equation can
afterwards form a basis to solve the full nonlinear Ginzburg-
Landau problem. The advantage of this approach over the finite
element method is the use of a few low-lying eigenfunctions
of the Laplacian operator in the LGL problem and only a few
of the low-lying LGL solutions to represent the solution of the
full GL problem.

Recently, a numeric method [23] was developed to solve
the LGL problem for bounded geometries using the finite
element method and the superconducting gauge approach. The
solutions for this problem were found for different geometries,
including some highly symmetric geometries, like the square,
triangle, pentagon, and five-pointed star. This approach is more
efficient than the finite difference method; however, it lacks
the compactness and spacial resolution of the semianalytical
methods.

As already mentioned, the quantum billiard problem is
equivalent to the LGL problem in a zero magnetic field
with Dirichlet boundary conditions. This problem was solved
by various methods [24-28]. Some of these methods [26]
showed that conformal mapping is an important tool to find
eigenfunctions of the Laplacian operator with Dirichlet bound-
ary conditions. The main reason is that this transformation
leaves invariant the form of the Laplace equation, i.e., the
mapped solution of the Laplace equation in a given geometry
is the a solution of the Laplace equation in the mapped
space. Another important feature is that these transformations
preserve the angles, which means that a function compliant
with the Neumann boundary condition is mapped into a new
function compliant with the same boundary conditions, in the
new geometry. This makes the conformal mapping a perfect
tool to solve the LGL problem with Neumann boundary
conditions.

In this paper, we present a new method to solve the LGL
equation for general polygons based on conformal mapping.
Equation (3) defined in the polygon was mapped into the circle
and solved there analytically. The solutions for the disk of
the LGL with an out magnetic field then were mapped into the
polygon and used as a basis set to solve the LGL equation. The
solutions for some regular polygons were calculated in order to
compare with the previous numerical solutions and assess the
accuracy. These solutions share a very close correspondence
between them. Some of the regular polygons have already
known solutions [2,8,23] for the LGL equation. These were
also applied to better test the quality of the algorithm.

The conformal map used in our method is the a variant
of the Schwartz-Christoffel (SC) transformation [29]. A
straightforward modification of the original mapping makes
this go from the interior of a circle into a general polygon. The
modified SC transformation from a circle is obtained by the
following function:

N Ct,'*l
M@:C/TIC—?) dz + B, (6)
i=0 !

w=ux-+1iy, (7
z=u-+1iv, (8)
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where C and B are complex constants (related with the size
and position of the polygon, respectively), z; is the point in
the circumference that is mapped into the vertex i of the
polygon, «; is the angle of the polygon’s vertex i, x and y
are Cartesian coordinates of the problem space (polygon),
and u and v are Cartesian coordinates of the auxiliary space
(circle). This expression can be simplified in the case of regular
polygons. We have used the Schwartz-Christoffel toolbox
[30] (an open-source MATLAB package) to compute the SC

mapping.

II. DESCRIPTION OF THE METHOD

We propose to solve the LGL problem in a generic
polygon with the eigenfunctions of the Laplacian operator
(with Neumann boundary condition), defined on the circle,
as basis functions. We also propose to fix the gauge of the
vector potential, which reduces the boundary condition of the
Ginzburg-Landau problem to the Neumann boundary condi-
tion, by solving Laplace equation with a general Neumann
boundary condition (which can be found by the Dini integral
formula [31]).

In the development of this method, we started by calculating
the eigenfunctions of the Laplacian operator in the circle (with
Neumann boundary condition). These well-known solutions
are

Wy (r,0) = Tiuf e, Ty, =0, ©)

where uél’n) is the n zero of the / Bessel function derivative
and Jl(uél’n)r) is the [/ Bessel function rescaled to match the
Neumann boundary conditions. The solutions for the circle
(auxiliary space) are mapped to the general polygon (original
space) by the SC mapping Eq. (6). We have represented
the functions with a mesh in the original space. Afterwards,
this set of functions was orthogonalized via the Lowding
orthogonalization process [32]. The new functions then were
used as a basis for the LGL problem. To apply the functions
as a basis for the LGL equation, the superconducting gauge
needs, first, to be fixed using the condition (3).

In the future we are also planning to expand the method to
the second Ginzburg-Landau equation. The Coulomb gauge is
the typical gauge for the second Ginzburg-Landau equation. If
we want to satisfy (3) while keeping the Coulomb gauge, the
function S must be a solution of the problem

AS =0 (10)
V0nbS = —Alnp., (11)

where A is a general vector potential. In general, this problem
is only solvable when

/ Alnp. =0, (12)
boundary

where the integration is made over the boundary. This
condition is fulfilled if the original vector potential is in the
Coulomb gauge, V-A=0, i.e., the superconducting gauge
condition, A|n,b_ = 0, is complemented by the Coulomb gauge.
To solve the new problem, we have mapped the equation back
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FIG. 1. (Color online) Plots of the vector potential with the
superconducting gauge fixed by the method described in the text.

to the auxiliary space (circle), making it

AS(u,v) =0, (13)
VS, )b, = —|w'(2)] AW, 0)lnb., (14)
where
N z a—1
w'@l=]] (1 - —) : (15)
i=0 <

This can be done because the Laplace equation is invariant
under conformal mappings. For the circle there is a general
analytical solution for the Laplace problem with generic
Neumann boundary condition. That solution is given by the
Dini integral formula [31]

2

R >
S(u(r,0),v(r,0)) = e /450 —|w'@)] A, v)lap.

log (r> — 2rR cos (8 — ¢) + R*)/R*d¢, (16)

for the unitary circle, i.e., R = 1, where ¢ is an integration
angle. This method makes it possible to fix the superconducting
gauge for any magnetic field distribution, such that the vector
potential is tangential to the boundary. Figure 1 shows the
vector potential with the fixed gauge for the triangle, square,
pentagon, and hexagon and Fig. 6 below presents the vector
potential with the fixed gauge for a deformed polygon.

III. SOLUTIONS FOR REGULAR POLYGONS

As atestfor our approach, we have calculated the lower state
of the LGL equation for the regular polygons: triangle, square,
pentagon, and hexagon. As a basis set, 45 functions were
used for each irreducible representation of the polygons [22],
taken from Eq. (9). The solutions for the triangle and square
geometries can be compared to the previous publications.

The analytical solution for the circle geometry was also
calculated to be compared with the regular polygon solutions.

PHYSICAL REVIEW E 86, 056709 (2012)

FIG. 2. (Color online) Plots of the curvilinear coordinates lines
of the Schwartz-Christoffel mapping. The deformed circular lines are
the result of the mapping of equally space circular lines defined in a
circle geometry onto to polygons. The radial lines are the result of
the mapping of equally spaced radial lines, defined in the circle, onto
the polygons.

This analytical solution is given by [17]
, —NR
U(r,0) = e REANEZ exp (—2 )

x M[—n(L,N),L +1,NR?], (17)

where n defines the nucleation boundary transition and must
satisfy the following equation:

(L—-N)M(—n,L+1,N)
2nN
L+1

where N = © /Py, O is the magnetic flux, @y is the magnetic
flux quantum, R = r/rg, ry is the radius of the circle, M is
the first Kummer function, and L is the vorticity of the state.
Figure 2 shows a graphical representation of the mapping for
the different geometries. In this representation, some polar
coordinate lines of the circle (i.e., lines with fixed radius and
lines with fixed angle), regularly spaced, are mapped into the
polygons.

Figure 3 shows the T-H nucleation curves for the regular
polygons and disk. As usual, cusps are observed in all curves.
As the number of vertices in the polygon becomes higher, the
critical temperature becomes lower for a fixed magnetic field.
Each phase boundary domain between two cusps corresponds
to a definite vorticity. Figure 4 shows the vortex patterns for the
states of vorticity 1 to 6 for the different geometries. It can be
seen that the results for the triangle, square, and pentagon are in
agreement with the already known results [2,8,23], indicating
that the present method is a natural extension of the previously
reported superconducting gauge method [22]. From Fig. 4 we
can see the simulation results as the number of vertices (N,)

M(-n+1,L+2,N)=0, (18)

35 OO

0 2 4 6 8 10
BB,

FIG. 3. Plot of the nucleation curve in the - H space for different
geometries: triangle, square, pentagon, hexagon, and circle. A, £(T),
®, and P, denote the area of the sample, the coherence length of the
superconducting condensate, the magnetic flux passing thought the
sample, and the magnetic flux quantum, respectively.
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FIG. 4. (Color online) Plots of the distribution of the superconducting order parameter|\V |, in the natural logarithmic scale, for the triangle,
square, pentagon, hexagon, and circle geometries for different vorticities L = 0, 1, 2, 3, 4, 5, and 6 (counting from left to right), where
the magnetic field in magnetic flux quanta is &/ Py, = 1, 3, 4, 5.5, 7, 8, 9, respectively. The color scale goes from red (dark gray) where
superconductivity is strong, through yellow (light gray) to blue (dark gray). This color scheme is present in all figures that show the density of
the superconducting condensate. The vortices appear as blue (dark gray) spots in the middle of the sample. Figure 5 shows the zooms from the

areas of the present figure enclosed by white dashed boxes.

increases (equally spaced) from 1 to 6 and to infinite (circle).
We can see that the patterns of the polygons approach the
pattern of the circle as the number of vertices increases. This
happens quite rapidly with the number of vertices. For the
hexagon geometry, almost all the patterns have a central giant
vortex just like in the circle, except for the vorticities 5 and 6
(which equals N, — 1 and N,, respectively).

The Meissner states at different geometries also indicate
a tendency for the superconducting condensate to become
stronger near the corners of the polygon. Thus, one can see
from Fig. 4 that, for the triangle geometry in this supercon-
ducting state, the superconductivity begins to nucleate strongly
around the vertices (it is the place where it nucleates strongly
even compared with the middle of the sample). For the square
geometry, the condensate is already weaker in the corners than
in the middle of the sample.

Figure 4 shows that all considered regular polygons have
patterns with one antivortex in the center. These patterns are
always associated with the states with a vorticity number equal
to the number of vertices minus 1 [2,8]. Since the equation
solved is linear, all states must be symmetry compliant. In
the states with vorticity equal to the number of vertices (N,)
minus 1, it seems that having one antivortex in the middle
and N, vortices around it is energetically more favorable
than having a central giant vortex. Figure 5 shows a zoom

of the antivortex patterns, where the antivortex appears in the
center of the panels. The state with vorticity N, has always N,
vortices dispatched along each radial line that passes through
the vertices of the polygon.

IV. IRREGULAR POLYGONS

As an example of an irregular polygon analyzed by use of
the presented method, we decided to solve the problem for
a deformed hexagon. First, the superconducting gauge was
fixed with the method described above. Figure 6 shows the
vector potential, with the gauge adjusted to match the boundary
conditions. Afterwards, we calculated the lowest state of the

440800

FIG. 5. (Color online) Zoom of the superconductor order param-
eter patterns with antivortices shown in Fig. 4 by dashed boxes.
The color scale differs from the one in the respective panels of
the Fig. 4. The patterns correspond, from left to right, to the pairs
(geometry, number of vortices, vorticity number): (triangle, 3, 2);
(triangle, 6, 5); (square, 4, 3); (pentagon, 5, 4); (hexagon, 6, 5).
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FIG. 6. (Color online) Vector potential with the superconducting
gauge fixed so the vector potential lines become parallel to the
boundary, as described in the text.

LGL equation for the different vorticities, as shown in Fig. 7.
A basis set of 190 functions given by Eq. (9) (for 10 different
n and for 19 different /) was used.

In the Meissner state L = 0 (Fig. 7), one can observe a
stronger nucleation of superconductivity at the boundary. This
is strongly correlated with the vertices angles of the polygon.
In Fig. 7, one can also see that the vortex positions different
markedly from those of the hexagon. There are no giant vor-
tices or antivortices in the patterns, and these tend to be aligned
along the line between the left bottom vertex and the top right
vertex, as corresponding to the largest length in the sample.

V. GENERAL SMOOTH BOUNDARY

To calculate the nucleated condensate density distribution
in a general selected shape, for example, of an experimental
sample, we can surround this shape by a polygon and then
use the vertices of the polygon as control points to match an
interior angular coordinate line [i.e., w(Rse?) for a constant
R, < 1in the auxiliary domain] with the shape.

As an application for general boundaries, we have used the
border of an experiment sample displayed as N1 in Fig. 3 of

»000
000

FIG. 7. (Color online) Distribution of the superconducting order
parameter, in the natural logarithmic scale, in the deformed hexagon
for vorticities L =0, 1, 2, 3, 4, 5, and 6 (counting from left to right,
from top to bottom), where the magnetic field in magnetic flux quanta
is /Py =1,3,4,55,7, 8,9, respectively. The vortices appear as
blue (dark gray) spots in the middle of the sample.
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FIG. 8. (Color online) Plots of the experimental sample border
defined as N1 in Fig. 1 of Ref. [33], the adjusted curve (created by
the method described in the text for the value of R, = 0.95) and the
associated polygon, displayed by a thick light green (light gray) line,
a full black line (on top of the thick line) and a dotted line (with
squares on the corners), respectively.

Ref. [33]. In Fig. 8, the border of experimental sample can
be seen as a gray thick line (light green). A smooth curve
approximating the boundary of the sample is defined by a
circular coordinate line (black solid line), where R; = 0.95
plotted on top of the experimental border, with the associated
polygon (that defines this curve) surrounding it (dotted black
line). To define the number of points of the polygon and
its location, a small piece of code was developed on top of
the Schwartz-Christoffel toolbox [30] software (this already
allows us to change, by hand, the number of points and their
locations) that draws the angular coordinate line, on top of the
experimental border, for a chosen R; in real time.

We have used again the Bessel functions as basis functions,
but now they have been rescaled to match the Neumann
boundary condition on the corresponding circular coordinate
line of the auxiliary domain, i.e., J/(u , Rs) = 0. We then
orthonormalized this basis by use of the Léwing orthogonaliza-
tion process, as in the previous sections. The orthonormal basis
can be used to express the LGL equation in a matrix form and

FIG. 9. (Color online) Plot of the vector potential of corre-
sponding to a homogeneous perpendicular magnetic field in the
superconducting gauge for the shape defined in Fig. 8.
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its diagonalization gives us the solutions of the equation, but, VI. APPLICATION TO EXPERIMENTAL EXAMPLES
first, we need to put the vector potential in the superconducting
gauge. .

To fix the appropriate gauge, i.e., Al,p. =0, we must
calculate the normal projection (to the boundary) of the
magnetic field. We can do this by calculating the normal vector
with the conformal map that defines the boundary. The normal
vector becomes

In this section, we analyze the simulations made for the
shape defined in the previous section and compare them
with the experimental data from Ref. [33]. The experimental
samples described in that publication are very thin (10 to 8
atomic layers), which puts them in the extreme type II regime.
Therefore, the screening currents can be ignored in these
samples. This allows for a direct application of our method.
The experimental data from Fig. 4 of Ref. [33] are reproduced

/
= M, ii = (Re(),Im(#1)), (19) in the left panel of Fig. 10. Figure 10 (bottom right) displays
lw'(z)z] distributions of the order parameter calculated for different
values of the field by use of the method mentioned in the
where Re and Im denote the real and imaginary parts,  previous section. In the top-right corner of Fig. 10, the location

respectively. We note that the normal vector in previous  of experimental and theoretical values on the - H diagram are
expression is defined in the problem space as function of shown. For these simulations we used 190 basis functions (10
a point given in the auxiliary space. Then, solving the Dini different n times 19 different /).

equation (16) with R = Ry, one can calculate the function § We will now contrast the simulations in Fig. 10 with
and then fix the gauge via, i.e., Eq. (3). Figure 9 shows the  the experimental data in the same figure. The condensate
vector potential in the superconducting gauge for the shape  distributions (scanning tunneling microscopy measurements

defined in Fig. 8. at zero-bias conductance) in the sample (the top-left sample
(12.53)  (3,5.05) (5.8.0)
(L, ®/®g) = (0,1.2) (2,3.73) | (4,6.26) (6,9.0)
35
30 Ajusted Exp. /
Experjmental /
25

>]/ / o
/ Simulatipn

v
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3
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FIG. 10. (Color online) Experimental distributions and simulations to the experimental sample referred in the text, and also an indicative
H-T diagram showing the points of the experimental measurements and simulations. (Bottom left) The experimental data from the left panel
of Fig. 4 in Ref. [33]. these experimental data are composed of four scanning tunneling microscopy measurements at zero-bias conductance for
the magnetic fields indicated inside these measurements. The vortices cores appear as small bright spots. (Bottom right) The simulation patterns
with the respective vorticity next to each. The simulated patterns that can be compared with the experimental patterns are to the near right of
the corresponding patterns. The simulation patterns are in the natural logarithmic scale that goes from red (dark gray) to yellow (light gray) to
blue (dark gray). In the patterns is possible to see the center of the vortices as small blue (dark gray) spots in the center of the samples. (Top
right) The 7-H diagram showing the superconductivity nucleation curve (in black), the experimental line (red), and the adjusted experimental
line (see main text, dashed blue line). On top of these lines, small squares and open circles, with the same colors of the respective lines, indicate
the points corresponding to the simulations and the experimental distributions. Dashed vertical lines indicate the magnetic flux of the simulated
patterns. The vorticity and magnetic flux values of the simulated patterns were added on the top of the dashed lines.
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of each experimental measurement in the figure) for the
vorticites L = 2,3,4 are shown in the bottom-left panel of
Fig. 10, and to their right we can find the simulated dis-
tributions for the adjusted values of ®/®, (see below). We
must keep in mind that the experimental data were taken at
T = T./20 and the simulation was made near the nucleation
boundary, T = T,.(H), as can be seen in the top-right plot of the
same figure. For this sample, the nucleation point in the T-H
diagram corresponding to T = T, /20 is given by a magnetic
flux of ¢ /¢y =~ 6.3 (estimated from Fig. 3 of Ref. [33] and
Fig. 1 of the Supplemental Materials for this publication),
which corresponds to A/£% & 19.9. The red line in the plot
shows the temperature of the measurements (marked with red
squares). The points of the measurements are not coherent with
the nucleation curve, e.g., the experimental point ®/ Py = 3.1
has vorticity L = 2 but the theoretical nucleation of L = 2 is
only at 3.4. An error in the estimation of the area can account
for this discrepancy. An adjustment of the size of the sample
by 20%, as shown by the blue line in Fig. 10, can bring the
experimental values back into the respective vorticity areas of
the diagram.

We can see from Fig. 10 that the experimental point with
L =4 is near nucleation, making it more comparable to
simulation. We also note that the vortex distribution in the
nucleation defines a lower bound for the vortex distances. Since
the experimental data are not taken at the same temperature,
we are only going to look to the vortex arrangement and not to
the condensate density distribution. We note that the simulated
condensate density distributions in Fig. 10 are in the log scale,
in order to observe the vortex locations more easily.

We can see that the vortex patterns appear to be remarkably
similar to the experimental ones for all values of the magnetic
field. In simulations for squares and circles done previously [2],
by lowering the temperature the vortex patterns maintain
a similar vortex arrangement to A/&2 A 20. Lowering the
temperature further, the symmetry of some of the patterns
breaks. For some of the patterns, e.g., L = 4 in a square, the

PHYSICAL REVIEW E 86, 056709 (2012)

vortex arrangement remains the same as at nucleation. This
could be the explanation for the excellent agreement with the
experimental data.

VII. CONCLUSIONS

The proposed method extends naturally the previously
developed superconducting gauge method. The use of basis
functions that already satisfy the boundary conditions is a
key element present in the original method and the extended
one. These basis functions differ for each of these methods,
but only few basis functions are needed to get a very good
approximation of the solution in both methods. These methods
were compared for the case of the triangle and the square
geometries. The solutions of the extended method match the
previous ones for these geometries.

With this new method, new geometries are now accessible
to semianalytical treatment. The application of the latter in the
present work allowed us to observe certain common features
shared by the solutions of LGL equation calculated for regular
polygons. We have applied also the method to a deformed
hexagon and found that the solutions for this geometry differ
markedly from the solutions for the regular hexagon. We have
then extended the method to boundaries with smooth curves
and applied this to an experimental sample. The results of the
simulations were compared to the experimental distributions
and have shown remarkable agreement.

The solutions of the LGL equation for different polygons
presented here have demonstrated that the proposed method is
efficient (uses only a few basis functions) and fairly accurate.
Moreover, it can be equally applied to irregular polygons and
smooth closed boundaries with comparable efficiency.
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