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Vortex interaction on curved surfaces
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The vortex-excitation energy on a sphere can be obtained by using the stereographic projection. By applying
this method, we calculate the energy needed to create a vortex on a surface with a constant negative curvature.
It is found that the energy is a linear function of the radius of the vortex. In accordance with this result, the
interaction energy between a pair of vortices is also found to change linearly with the vortex separation distance.
Explicit vortex configurations are obtained numerically with this interaction.
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I. INTRODUCTION

There is growing interest in topological defects on curved
surfaces. One classical example is the Thomson problem,
which addresses the question of how to configure charges
on a sphere with minimal energy [1]. A spherical virus cell
having subcellular structures on its surface can be viewed
as a biological counterpart of the Thomson problem. The
orientational order of liquid crystal molecules in a curved sheet
provides another example of the interaction between defects
and curvature [2]. This system can be formulated as an XY

spin model where the curvature term enters the Hamiltonian
in a very similar way to that of the magnetic vector potential
in the theory of type-II superconductors (see, for detailed
discussions, Ref. [3] and references therein). Owing to the
obvious ubiquity of spherical shapes, the physics of defects
on a surface with positive Gaussian curvature is relatively
well understood [4] and a number of experiments have been
performed to check the theoretical understanding [5].

We have been interested in XY -type models on a surface
with negative curvature [6,7]. Hyperbolic geometry on such a
surface is also an important model of non-Euclidean geometry
[8], and, in physical contexts, a negatively curved surface
has been introduced as a conceptual tool to understand
disordered systems without intrinsic randomness [9,10]. To our
knowledge, however, it is not entirely clear how the interaction
between topological defects, or vortices, depends on distance
in the case of negatively curved surfaces. For example, the
potential was predicted to be short ranged in Ref. [11], while
the generalized Gauss law predicts it to be very long ranged [3].
Roughly speaking, the main difference between these two
alternatives can be traced to whether or not the curvature
appears as a source term in Gauss’s law:∮

∂V

E · dS =
∫

V

σdV, (1)

where V is a volume enclosed by a boundary surface ∂V .
Gauss’s law states that the surface integral of field E over
∂V should match with the volume integral of source terms
distributed with density σ . An important fact is that a circle
on a negatively curved surface has an exponentially growing
boundary as the radius increases. As a consequence, if only
a fixed amount of defects contributes to the source term, the
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field strength should decay exponentially. If the curvature also
serves as a source term, however, Eq. (1) describes competition
between the surface and volume, both of which increase in the
same exponential manner as the length scale of V grows, so the
field strength never vanishes no matter how far away one gets
from the vortex core. Although theoretical predictions about
the XY model on a curved surface are mainly based on the
former scenario [9,11], a numerical study suggests that a finite
temperature is needed to unbind vortex-antivortex pairs on a
curved surface [6]. It implies that energy should be able to
compete with entropy in creating vortices, which will increase
logarithmically with the volume of the system, meaning that
the vortex interaction cannot decay so fast with distance.

In this work, we directly calculate the excitation energy
using the stereographic projection method and verify that the
latter case is the correct alternative. This work is organized as
follows: Sec. II reviews the stereographic projection applied to
the spherical case, which is intended to be a mild introduction
to the basic formalism. We then proceed to the case of negative
curvature in Sec. III, where we also present numerically
obtained vortex configurations based on the potential form.
We conclude this work in Sec. IV.

II. UNIT SPHERE

We start with reviewing how defects interact on a unit
sphere, i.e., a surface with a constant positive curvature.
The outline of this calculation has already been explained
in Ref. [12] and the purpose of this section is to present
the general method before proceeding to the case of negative
curvature.

Let us define coordinates (u,v) = (θ,φ) and (u′,v′) = (z,z̄)
related by the stereographic projection. As clearly seen in
Fig. 1, the projection maps the original spherical coordi-
nate (θ,φ) onto a complex variable, z = 2 tan θ

2 eiφ , and its
complex conjugate, z̄ = 2 tan θ

2 e−iφ . In this spherical coor-
dinate, a point on the sphere is expressed as P = (X,Y,Z) =
(sin θ cos φ, sin θ sin φ, cos θ ) and the length of a line element,
ds, is given by ds2 = g00dθ2 + (g01 + g10)dθdφ + g11dφ2 =
dθ2 + sin2 θdφ2. This defines the metric tensor as

g̃ =
(

g00 g01

g10 g11

)
=

(
1 0
0 sin2 θ

)
.

On the other hand, we want to work with the other coordinate
system (u′,v′), and the metric tensor g′ in the new coordinate
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FIG. 1. Stereographic projection of a unit sphere onto a plane. A
point P on a sphere, specified by (θ,φ), is projected onto z = reiφ

with r = 2 tan θ

2 .

(u′,v′) is transformed to g by g̃ = UT · g̃′ · U with the Jacobian
matrix

U ≡
(

∂u′
∂u

∂u′
∂v

∂v′
∂u

∂v′
∂v

)
=

(
sec2 θ

2 eiφ 2i tan θ
2 eiφ

sec2 θ
2 e−iφ −2i tan θ

2 e−iφ

)
.

It is now straightforward to obtain g′ using the inverse matrix

U−1 =
(

1
2 cos2 θ

2 e−iφ 1
2 cos2 θ

2 eiφ

1
4i

cot θ
2 e−iφ − 1

4i
cot θ

2 eiφ

)
,

resulting in

g̃′ = (U−1)T · g̃ · U−1 = 1

2
cos4 θ

2

(
0 1
1 0

)

= 1

2 (1 + zz̄/4)2

(
0 1
1 0

)
=

(
g′

00 g′
01

g′
10 g′

11

)
= (gzz̄) . (2)

Note that the equality between the first and second lines follows
from zz̄ = 4 tan2 θ

2 = 4(sec2 θ
2 − 1). Equation (2) means that

a line element on the projected plane will be expressed as

ds2 = (dz dz̄ )

(
g′

00 g′
01

g′
10 g′

11

)(
dz

dz̄

)

= 1

[1 + (x2 + y2)/4]2
(dx2 + dy2), (3)

if one writes z = x + iy. Hence, we can say that the de-
terminant of the metric tensor in the (x,y) plane is g ≡
det g̃ = [1 + (x2 + y2)/4]−4. Integrating the area over the
whole complex plane therefore yields

∫
dS = ∫∫ √

gdxdy =∫ ∞
0 2πr

(
1 + r2/4

)−2
dr = 4π , which is exactly the surface

area of the unit sphere. Also note that the inverse metric tensor
is given by

g̃−1 =
(

g00 g01

g10 g11

)
= 2(1 + zz̄/4)2

(
0 1
1 0

)
,

where we omit the prime (′) to indicate (u′,v′) for brevity.
When ds = w(z)|dz|, the Gaussian curvature K is given by
the following formula [8]:

K = − 4

w2(z)

[
∂2

∂z∂z̄
ln w(z)

]

= − 4

w2(x,y)

[
1

2

(
∂

∂x
− i

∂

∂y

)]

×
[

1

2

(
∂

∂x
+ i

∂

∂y

)]
ln w(x,y)

= − 1

w2(x,y)

(
∂2

∂x2
+ ∂2

∂y2

)
ln w(x,y). (4)

By substituting Eq. (3) here, we find K = 1 for the unit sphere
as expected.

We have so far studied the fundamental property of the
surface. The next step is to place physical objects on it. Let us
consider a vector field m(x) = cos γ (x)e1(x) + sin γ (x)e2(x)
on the surface. In tracing out its changes, however, it should
be taken into account that the coordinate system [e1(x),e2(x)]
itself depends on the position x. A new vector field called the
connection, or spin connection, enters here, which is derived
from the given coordinate system by A(x) = e1(x) ·∇e2(x)
[13]. On the unit sphere, the most natural coordinate sys-
tem would be obtained by differentiating P, i.e., eθ =
(cos θ cos φ, cos θ sin φ, − sin θ ) and eφ = (− sin φ, cos φ,0).
We express the connection in the (z,z̄) coordinate as (Az,Az̄) =
(eθ · ∂eφ/∂z,eθ · ∂eφ/∂z̄), and it is fairly straightforward to see
that Az = eθ · ∂eφ/∂z = − cos θ (∂φ/∂z). The cosine part can
be easily expressed in the new coordinate system, since cos θ =
2 cos2 θ

2 − 1 = 1−zz̄/4
1+zz̄/4 . And it follows from z = reiφ that φ =

Im ln z = 1
2i

(ln z − ln z̄), so we find that ∂φ/∂z = (2iz)−1 and
∂φ/∂z̄ = −(2iz̄)−1. In short, we obtain the connection as

Az = − 1

2iz

(
1 − zz̄/4

1 + zz̄/4

)
= Āz̄. (5)

Let us now consider the contribution to the free energy due to
the curvature of the surface, which is usually called the Frank
free energy. In the one-constant approximation, that is, if three
elastic constants associated with splay, twist, and bend are of
an equal size [14], the Frank free energy assumes the following
form:

F = KA

2

∫∫
dxαdxβ

√
ggαβ

(
∂γ

∂xα

− Aα

) (
∂γ

∂xβ

− Aβ

)
,

(6)

with the Frank constant KA. On a flat surface, the connection
A can be set as zero and the remaining part describes the
usual Goldstone mode. In Eq. (6), putting γ = 0 automatically
introduces one defect at θ = 0 and another at θ = π . This is
argued in Ref. [12] by pointing out that

Az −→
{

− 1
2iz

if z → 0,

+ 1
2iz

if z → ∞.

The Poincaré-Brouwer theorem dictates that the sum of defects
on a closed surface should be equal to the Euler characteristic
χ by

χ = 1

2π

∫
KdS = 1

2π

∮
[∇ × ∇θ (x)] · dS, (7)

since ∇ × ∇θ (x) = mδ2(x) for a defect with charge m

[13]. The Euler characteristic is related to the genus g of
the surface, i.e., the number of handles, by χ = 2 − 2g. A
sphere therefore has χ = 2, which is of course consistent
with the two defects that we have now, and the vector field
given above connects these defects by geodesics. Additional
discussion on Eq. (6) and two-dimensional electrostatics is
presented in Appendix A. Since AzAz̄ = 1

4zz̄
( 1−zz̄/4

1+zz̄/4 )2, the
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calculation reduces to

F = KA

2

∫∫ √
ggαβAαAβdxαdxβ

= KA

2

∫
1

(1 + r2/4)2
× 4(1 + r2/4)2

× 1

4r2

(
1 − r2/4

1 + r2/4

)2

2πrdr

= πKA

∫
1

r

(
1 − r2/4

1 + r2/4

)2

dr.

Let us compute the energy inside a hemisphere, which
corresponds to r < 2 tan π

4 = 2 (see Fig. 1), assuming that
a defect has a very small core radius, ε � 1. The answer is

F

2
= πKA

∫ 2

ε

1

r

(
1 − r2/4

1 + r2/4

)2

dr ≈ πKA

(
ln

2

ε
− 1

)
,

and thus the Frank free energy over the whole sphere is given
as F = 2πKA(ln 2

ε
− 1). Alternatively, one may carry out the

integration over [ε,4/ε] as

F = πKA

∫ 4/ε

ε

1

r

(
1 − r2/4

1 + r2/4

)2

dr ≈ 2πKA

(
ln

2

ε
− 1

)
,

since the boundary of the defect at θ = π is projected onto a
circle of radius 4/ε on the complex plane. Having dealt with a
highly symmetric configuration as above, we may try a slightly
more general case. We replace the defect at z = 0 by another
one at z = z0 by setting γ = −Im ln z + Im ln(z − z0) and this
leads to

∂γ

∂z
− Az = − 1

2iz
+ 1

2i(z − z0)
+ 1

2iz

(
1 − zz̄/4

1 + zz̄/4

)

= 1

2i(z − z0)
− 1

2iz

(
2zz̄/4

1 + zz̄/4

)

and ∣∣∣∣∂γ

∂z
− Az

∣∣∣∣
2

= 1

4|z − z0|2 + |z|2/4

4(1 + |z|2/4)2

− |z|2 − (zz̄0 + z̄z0)/2

4|z − z0|2(1 + |z|2/4)
.

Let us denote the distance of this defect from the origin of the
complex plane as |z0| ≡ ρ. From Fig. 1, we see that the image
of the defect at θ ranges over 2 tan θ±ε

2 ≈ 2 tan θ
2 ± ε sec2 θ

2 =
ρ ± ε(1 + ρ2/4) by a simple expansion and therefore the
projected defect will have a radius of ε′ ≡ ε(1 + ρ2/4). We
calculate the corresponding Frank free energy

F = KA

2

∫∫
1

|z − z0|2 dzdz̄ + KA

8

∫∫ |z|2
(1 + |z|2/4)2

dzdz̄

− KA

2

∫∫ |z|2 − (zz̄0 + z̄z0)/2

|z − z0|2(1 + |z|2/4)
dzdz̄, (8)

and the first term is evaluated as πKA ln 4
εε′ when ρ ∼

O(1) (Appendix B). The second term is obtained as
KA

8

∫ 4/ε

ε
r2(1 + r2/4)−22πrdr ≈ 2πKA(2 ln 2

ε
− 1), and the

last one is −2πKA ln 4
εε′ (Appendix C). Summing them up,

X

Z

Q

P

r 1-1

FIG. 2. Projection of a unit hyperboloid onto the Poincaré disk
on the complex plane. The disk is represented by the thick solid line
at Z = 0.

we find that

F = 2πKA

(
ln

2

ε

√
1 + ρ2/4 − 1

)

= 2πKA

(
ln

2

ε cos θ
2

− 1

)
.

In the case where two vortices are present, their configuration
with minimizing the energy is therefore found at ρ = 0, where
they are located at exactly opposite sides of the sphere.

III. UNIT PSEUDOSPHERE

In order to deal with a surface having negative cur-
vature, first we draw a hyperboloid by rotating a hyper-
bola around its semi-major axis. The three-dimensional
shape is described by X2 + Y 2 − Z2 = −1. After param-
eterizing a point on the hyperboloid by P = (X,Y,Z) =
(sinh θ cos φ, sinh θ sin φ, cosh θ ), one may consider a pro-
jection onto a plane, Z = 0, in viewing the hyperboloid
from Q = (0,0,−1) (Fig. 2). By simple algebra, we find that
the resulting point on the plane can be written as (x,y) =
(r cos φ,r sin φ) with r = tanh θ

2 . Therefore, we have two
coordinate systems, i.e., (u,v) = (θ,φ) and (u′,v′) = (z,z̄) =
(tanh θ

2 eiφ, tanh θ
2 e−iφ), and the unit disk on the complex plane

covered by this projection is called the Poincaré disk. We
want this hyperboloid to be considered as a sort of sphere,
so we define a dot product between two vectors I = (I1,I2,I3)
and J = (J1,J2,J3) as I · J ≡ I1J1 + I2J2 − I3J3. We can then
simply describe the hyperboloid by P · P = −1. According to
this dot product, the line element in terms of (θ,φ) is given by

ds2 =
(

∂P
∂θ

· ∂P
∂θ

)
d2θ +

(
∂P
∂φ

· ∂P
∂φ

)
d2φ

= d2θ + sinh2 θd2φ, (9)

which defines the metric tensor as

g̃ =
(

g00 g01

g10 g11

)
=

(
1 0
0 sinh2 θ

)
.

Note from Eq. (9) that θ directly represents the radial distance
in this metric. By using the Jacobian matrix

U ≡
(

∂u′
∂u

∂u′
∂v

∂v′
∂u

∂v′
∂v

)
=

(
1
2 cosh−2 θ

2 eiφ i tanh θ
2 eiφ

1
2 cosh−2 θ

2 e−iφ −i tanh θ
2 e−iφ

)
,
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one can express the metric tensor in the (u′,v′) coordinate as

g̃′ = (U−1)T · g̃ · U−1 = 2 cosh4 θ

2

(
0 1
1 0

)

= 2

(1 − zz̄)2

(
0 1
1 0

)
=

(
g′

00 g′
01

g′
10 g′

11

)
= (gzz̄) , (10)

since zz̄ = tanh2 θ
2 = 1 − cosh−2 θ

2 . If one writes z = x + iy,
this new metric means that

ds2 = (dz dz̄ )

(
g′

00 g′
01

g′
10 g′

11

)(
dz

dz̄

)

= 4

[1 − (x2 + y2)]2
(dx2 + dy2), (11)

so we find that
√

g = 4[1 − (x2 + y2)]−2 on the complex
plane. By using Eq. (4) together with Eq. (11), one can
readily confirm that K = −1. For a circle of radius R =
tanh θ∗

2 on the projected plane, the area inside the cir-

cle will be
∫

dS = ∫∫ √
gdxdy = ∫ R

0 4(1 − r2)−22πrdr =
4πR2(1 − R2)−1 = 4π sinh2 θ∗

2 , while it is simply πθ∗2 on
the Euclidean plane.

By differentiating the position vector P, we obtain basic
unit vectors to define a coordinate system on this sur-
face, i.e., eθ = (cosh θ cos φ, cosh θ sin φ, sinh θ ) and eφ =
(− sin φ, cos φ,0). Since Az = eθ · ∂eφ/∂z = − cosh θ

∂φ

∂z
and

cosh θ = 2 cosh2 θ
2 − 1 = 1+zz̄

1−zz̄
, the connection is obtained as

Az = − 1

2iz

(
1 + zz̄

1 − zz̄

)
= Āz̄. (12)

We again consider a vector field m(x) = cos γ (x)eθ (x) +
sin γ (x)eφ(x). It is notable that m · m = 1 is satisfied at any
x with our new dot product as well. The simplest possible
configuration would be to set γ = 0 to introduce a defect at
(X,Y,Z) = (0,0,1). The Frank free energy is then written as

F = KA

2

∫∫ √
ggαβAαAβdxαdxβ

= KA

2

∫
4

(1 − r2)2
× (1 − r2)2 × 1

4r2

(
1 + r2

1 − r2

)2

2πrdr.

Assuming a very small defect core radius ε � 1, the integra-
tion up to R = tanh θ∗

2 yields

F ≈ πKA

(
2R2

1 − R2
+ ln

R

ε

)

= πKA

(
2 sinh2 θ∗

2
+ ln

tanh θ∗
2

ε

)
.

Note that the first term is proportional to the total area and
the second term corresponds to the Coulomb potential on the
pseudosphere [15]:

FC = πKA ln tanh
θ∗

2
. (13)

In fact, we can remove the vortex at the center by assuming
γ = −Im ln z since there is no such restriction as Eq. (7) on
the total sum of defects on this surface which is not closed. In

this case, we observe

F0 = KA

2

∫ R

0
4

r2

(1 − r2)2
2πrdr

= 2πKA

[
R2

1 − R2
+ ln(1 − R2)

]

≈ 2πKA

(
sinh2 θ∗

2
− θ∗

)
.

The net contribution from creating the vortex is therefore

�F = F − F0 ≈ πKA

(
ln

tanh θ∗
2

ε
+ 2θ∗

)
. (14)

Since the magnitude of ln tanh x becomes very small as x

increases, the above expression is approximated as �F ≈
2πKAθ∗ at any moderate distance. Interestingly, it is a
logarithmic function of the area occupied by the vortex as in the
planar case. It is reasonable to guess that the same functional
form as in Eq. (14) describes the interaction potential E

between two vortices separated by a hyperbolic distance θ∗,

E(θ∗) ≈ −Jq1q2θ
∗, (15)

where J ≈ 2πKA means strength of the interaction, and q1 and
q2 mean charges of the two vortices, respectively. The overall
sign in Eq. (15) is chosen so that a vortex repels (attracts)
another vortex with the same (different) sign. If we consider
the energy of a system containing two vortices, it can be written
as H ≈ E(θ∗) + E0, where E0 is due to the creation of the
vortices at given positions, usually given as an integral over
the whole system. However, E0 may be roughly approximated
as constant for a large system since spins far away from the
vortex pair will not be much affected by small variations in
their separation θ∗. Therefore, we expect that the dominant
behavior to the total energy comes from the interaction term,
i.e., Eq. (15), while E0 only adds an offset.

We can actually insert two vortices into this system, with
one at the origin and the other away from the origin. A subtle
part is that points at infinity, i.e., at |z| = 1, should be equally
treated since there is no reason to distinguish them. It is
plausible that each field line should meet a point at infinity
at a right angle, as does a field line emitted from a defect
at the origin, since the exact vortex configuration near the
origin will be irrelevant at infinity. This boundary-condition
problem is indeed equivalent to that of an electric charge
inside a conducting cylinder and one can solve this by
introducing an image charge beyond infinity [16]. That is,
for a charge at z0 with |z0| < 1, its image charge should
be located at z′

0 = z̄0
−1 in order to make every field line

equally perpendicular to the boundary at infinity. So we need
γ = Im ln(z − z0) − Im ln(z − z′

0) to insert the second vortex
at z = z0, and this leads to∣∣∣∣∂γ

∂z
− Az

∣∣∣∣
2

=
∣∣∣∣ 1

2i(z − z0)
− 1

2i(z − z′
0)

+ 1

2iz

(
1 + zz̄

1 − zz̄

)∣∣∣∣
2

.

(16)

Integrating this over a disk of radius R < 1, we indeed find
that F ≈ −2πKAθ∗ + C0, where θ∗ is the hyperbolic distance
between the vortices and C0 is a system-dependent parameter
(Appendix D). It agrees with the functional form in Eq. (15).
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(a) (b)

(c) (d)

FIG. 3. Configurations of defects on a surface of a constant
negative curvature with the periodic boundary condition, represented
on the Poincaré disk. (a) When there exist two repulsive defects
for smetic-C order, they are located at the maximum distance.
(b) For hexatic order, there are 12 defects interacting via the potential
given by Eq. (15). (c) This pattern forms when the Coulomb potential
[Eq. (13)] solely comes into play. (d) Every defect has seven nearest
neighbors when the potential is short ranged with a characteristic
hyperbolic distance.

The sign in front of θ∗ is negative due to the repulsive
interaction since we are concerned with an analogy to the
vortex lattice in the theory of type-II superconductors. To sum
up, the interaction energy between two vortices is a linear
function of the hyperbolic distance between them unless they
are very close.

Before concluding this work, we briefly consider a variant
of the Thomson problem, i.e., the Thomson problem on
a pseudosphere. We can construct a periodic boundary as
suggested in Ref. [17] in such a way that we merge every pair
of opposite sides of the octagon in Fig. 3. The resulting closed
surface has genus g = 2, and therefore χ = 2 − 2g = −2.
The distance from one defect to another is determined by the
shortest one among all the periodic images. Since this octagon
is surrounded by 48 identical octagons, this means that we
generally have 49 possible cases to check for determining
the distance. Once the distance between every pair is found,
it is straightforward to compute the total energy by using a
predefined potential function and to find energy minima by
applying the Metropolis algorithm. In terms of liquid crystals,
in the smetic-C phase, the molecules are tilted when measured
relative to the surface normal and therefore described by a
usual vector field. Since χ = −2, according to Eq. (7), the
surface should have two defects, each of which has charge −1,
or one dipole with charge −2. The former case is depicted
in Fig. 3(a), where we find that the two repulsive defects are
located at the largest possible distance. The hexatic phase,
on the other hand, contains sixfold orientational order and
the surface has 12 defects with charge −1/6 each [12]. This
situation is shown in Fig. 3(b), where the defects are observed

as pairs. Up to this point, we have used the potential given in
Eq. (15). But we may also ask ourselves what happens with the
potential shape is altered. For example, if only the Coulomb
interaction [Eq. (13)] is present, a different pattern appears as
shown in Fig. 3(c). In addition, Fig. 3(d) shows another case,
where the interaction potential is assumed to have a certain
“penetration depth” λ, i.e., roughly given as exp(−θ∗/λ) with
hyperbolic distance θ∗ between a pair of defects. In Fig. 3(d),
the defects form a regular structure where each of the 12
defects has a coordination number k = 7 according to the
Euler-Poincaré relation and the Gauss-Bonnet theorem (see
Ref. [18] for details).

IV. SUMMARY

In summary, we calculated the vortex-excitation energy on
curved surfaces by means of the stereographic projection. It
was shown that the interaction energy is a linear function of
the distance between vortices in the case of a negatively curved
surface. This confirmed that the curvature should appear in the
source term of the generalized Gauss law. We also explicitly
obtained defect configurations minimizing the energy as a
variant of the Thomson problem.
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APPENDIX A: RELATION TO
TWO-DIMENSIONAL ELECTROSTATICS

Let us consider the Frank free energy, given by Eq. (6),
which has the following form throughout this work:

F = 2KA

∫∫
dzdz̄

(
∂γ

∂z
− Az

) (
∂γ

∂z
− Az̄

)
. (A1)

For L ≡ ( ∂γ

∂z
− Az)(

∂γ

∂z
− Az̄), the Euler-Lagrange equation

with respect to γ is written as

0 = ∂L
∂γ

− ∂

∂z

∂L
∂
(

∂γ

∂z

) − ∂

∂z̄

∂L
∂
(

∂γ

∂z̄

)
= 2

∂2γ

∂z∂z̄
− ∂Az̄

∂z
− ∂Az

∂z̄
. (A2)

Substituting Az and Az̄ for the unit sphere [Eq. (5)] here, we
see that the last two terms vanish and we are left with

∂2γ

∂z∂z̄
= 1

4

(
∂2

∂x2
+ ∂2

∂y2

)
γ (x,y) = 0, (A3)

which is Laplace’s equation in two dimensions. Therefore,
for a given defect configuration, the vector field satisfying
the equivalent electrostatic problem is the one that minimizes
Eq. (A1) over spin waves. The same can be shown to be true on
the Poincaré disk as well by substituting Eq. (12) into Eq. (A2).

APPENDIX B: INTEGRATION OF THE FIRST
TERM IN EQ. (8)

Here we evaluate T1 = ∫∫
D

|z|−2dzdz̄, where D is defined
as a disk of |z − z0| < R containing the singularity at the
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origin. First, we begin with Green’s theorem:∮
C

Ldx + Mdy =
∫∫

D

(
∂M

∂x
− ∂L

∂y

)
dxdy,

where L and M are functions of (x,y), and C is the boundary of
D. We want to find a vector field F = (Fx,Fy,Fz) = (L,M,Fz)
such that (∇ × F)z = ∂M

∂x
− ∂L

∂y
= (x2 + y2)−1. Represent-

ing this in the cylindrical coordinate, we have F = Fr r̂ +
Fφφ̂ + Fzẑ, and rewrite the above expression as (∇ × F)z =
1
r
[ ∂
∂r

(rFφ) − ∂Fr

∂φ
] = r−2. Letting Fr = Fz = 0, this yields

F = r−1(ln r + c)φ̂ = r−2(ln r + c)(−r sin φ,r cos φ,0) with
a constant c. In addition, we have the following identity [19]:∮

C

(M + iL)dz =
∮

C

(Mdx − Ldy) + i

∮
C

(Ldx + Mdy).

The first part indeed vanishes for L and M above, since∮
C

(Mdx − Ldy) = −
∫∫

D

(
∂L

∂x
+ ∂M

∂y

)
dxdy

= −
∫∫

D

(∇ · F)dxdy = 0,

which follows from ∇ · F = 1
r

∂
∂r

(rFr ) + 1
r

∂Fφ

∂φ
+ ∂Fz

∂z
= 0.

Therefore, if we define a complex function F (z) = L + iM

as a counterpart of F, it leads to M + iL = iF̄ and∮
C

F̄ dz =
∮

C

(Ldx + Mdy) =
∫∫

D

(∇ × F)z dxdy

=
∫∫

D

|z|−2dzdz̄.

Since F̄ = r−2(ln r + c)(−r sin φ − ir cos φ) = r−2(ln r + c)
(y + ix) = r−2(ln r + c)iz̄, the equation we are going to
evaluate turns out to be∮

C

F̄ dz = −
∮

C

r−2(ln r + c)iz̄dz

= −
∮

C

iz−1

(
1

2
ln zz̄ + c

)
dz.

If the contour C is given as zz̄ = R2 by z0 = 0, then the integral
becomes − ∮

C
iz−1 (ln R + c) dz = 2π (ln R + c) by Cauchy’s

integral formula. Let us exclude a small disk S of radius δ � 1
around the origin to remove the constant c. The integral on the
area between D and S is therefore 2π ln R

δ
. In the case where

z0 is away from the origin, we assume that it is on the positive
real axis without loss of generality. In other words, we simply
have z0 = ρ with 0 < ρ < R − δ. The contour C is now given
as (z − ρ)(z̄ − ρ) = R2, or z̄ = (ρz + R2 − ρ2)(z − ρ)−1. By
inserting this, we get∮

C

F̄ dz = −
∮

C

i

z

[
1

2
ln z + 1

2
ln(ρz + R2 − ρ2)

− 1

2
ln(z − ρ) + c

]
dz ≡ G(ρ).

It is a bit cumbersome to directly evaluate the complex
logarithms. We alternatively differentiate it with ρ and arrive at

∂G

∂ρ
= −i

∮
C

[
z − 2ρ

2z(ρz + R2 − ρ2)
+ 1

2z(z − ρ)

]
dz. (B1)

The first term has only one pole at z = 0 while the
second has two at z = 0 and z = ρ, respectively. Applying
Cauchy’s integral formula once again, it is found that
∂G/∂ρ = −2πρ(R2 − ρ2)−1. It is straightforward now to
have G(ρ) = − ∫

2πρ(R2 − ρ2)−1dρ = π ln(1−ρ2/R2)+ c′
with a new constant c′. However, we already know
G(ρ = 0) = 2π (ln R + c), which determines c′. Furthermore,
we exclude S as before from the integration range. The final
result thus becomes

T1 = 2π ln
R

δ
+ π ln(1 − ρ2/R2) = 2π ln

R

δ

√
1 − ρ2/R2.

(B2)

If ρ = R − δ, for example, this formula yields T1 ≈ π ln 2R
δ

,
which can be cross checked by integrating∫ 2R

δ

1

r2
2φrdr =

∫ 2R

δ

2

r
cos−1

(
r

2R

)
dr

=
∫ 1

δ
2R

2

y
cos−1 ydy ≈ π ln

2R

δ
,

if we note that the circle centered at (R,0) with radius R

is described as r = 2R cos φ in the (r,φ) coordinate. As
long as R � ρ, however, one can approximate Eq. (B2)
simply as 2π ln R

δ
, and inserting R = 4/ε and δ = ε′ gives

the result in the main text. What happens if ρ > R? Then the
origin goes out of the contour and z = (ρ2 − R2)/ρ comes
in instead since ρ − R < (ρ2 − R2)/ρ < ρ + R. It means
that Eq. (B1) now yields ∂G/∂ρ = −2π (ρ2 + R2)[2ρ(ρ2 −
R2)]−1 + 2π (2ρ)−1 = −2πR2[ρ(ρ2 − R2)]−1, so we obtain

G(ρ) = −2π

∫
R2

ρ(ρ2 − R2)
dρ = π ln

1

1 − R2/ρ2
. (B3)

Note that the constant of integration is determined by making
this function vanish at ρ → ∞.

APPENDIX C: INTEGRATION OF THE LAST
TERM IN EQ. (8)

In this Appendix, we evaluate

T3 =
∫∫ |z|2 − (zz̄0 + z̄z0)/2

|z − z0|2(1 + |z|2/4)
dzdz̄.

By rewriting this using z = reiφ and z0 = ρ, we have

T3 =
∫∫

r2 − rρ cos φ

r2 + ρ2 − 2rρ cos φ

(
1

1 + r2/4

)
rdrdφ

=
∫

rdr

1 + r2/4

∫
r2 − rρ cos φ

r2 + ρ2 − 2rρ cos φ
dφ.

We first carry out the integration over φ:∫
dφ

r2 + ρ2 − 2rρ cos φ
=

∫
dφ

r2 + ρ2 − rρ(eiφ + e−iφ)

=
∫

eiφdφ

(reiφ − ρ)(−ρeiφ + r)

= i

ρ2 − r2

∫ (
1

eiφ − ρ/r
− 1

eiφ − r/ρ

)
ieiφdφ

= i

ρ2 − r2

∮ (
1

ζ − ρ/r
− 1

ζ − r/ρ

)
dζ,
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with ζ = eiφ . Note that we have a contour integral around a
unit circle centered at the origin. If ρ/r < 1, then only the first
term contributes, so we get 2π/(r2 − ρ2) by Cauchy’s integral
formula. If r/ρ < 1, on the other hand, then only the second
term contributes and we get 2π/(ρ2 − r2). In short,∫

dφ

r2 + ρ2 − 2rρ cos φ
= 2π

|r2 − ρ2| .

Likewise,∫
cos φdφ

r2 + ρ2 − 2rρ cos φ

=
∫ 1

2 (eiφ + e−iφ)dφ

r2 + ρ2 − rρ(eiφ + e−iφ)

= i

2rρ

∮
eiφ + e−iφ

(eiφ − ρ/r)(eiφ − r/ρ)
ieiφdφ

= i

2rρ

∮
ζ + ζ−1

(ζ − ρ/r)(ζ − r/ρ)
dζ

= π

rρ

(
r2 + ρ2

|r2 − ρ2| − 1

)
.

The integration over φ therefore yields∫
r2 − rρ cos φ

r2 + ρ2 − 2rρ cos φ
dφ = π

(
r2 − ρ2

|r2 − ρ2| + 1

)

=
{

2π if r > ρ

0 if r < ρ
.

Gathering the terms, we see that

T3 = 2π

∫ 4/ε

ρ

rdr

1 + r2/4
= 8π [ln(1 + r2/4)]4/ε

r=ρ

≈ 4π ln
4/ε

ε(1 + ρ2/4)
,

which is the result in the main text.

APPENDIX D: INTEGRATION OF EQ. (16)

Again without loss of generality, we may set z0 = ρ with
0 < ρ < R < 1, where R is the radius of the disk over which
the integration should be performed. Therefore, it follows
that z′

0 = ρ−1 ≡ ρ ′ > 1. The integrand [Eq. (16)] can be then
written as∣∣∣∣ 1

2i(z − ρ)
− 1

2i(z − ρ ′)
+ 1

2iz

(
1 + zz̄

1 − zz̄

)∣∣∣∣
2

= 1

4 |z − ρ|2 + 1

4 |z − ρ ′|2 + 1

4|z|2
(

1 + |z|2
1 − |z|2

)2

− 1

4(z − ρ)(z̄ − ρ ′)
− 1

4(z̄ − ρ)(z − ρ ′)

+ 1

4z̄(z − ρ)

(
1 + |z|2
1 − |z|2

)
+ 1

4z(z̄ − ρ)

(
1 + |z|2
1 − |z|2

)

− 1

4z̄(z − ρ ′)

(
1 + |z|2
1 − |z|2

)
− 1

4z(z̄ − ρ ′)

(
1 + |z|2
1 − |z|2

)
.

The integration of the first term has been already done in
Appendix B:∫∫

|z|<R

dzdz̄

4 |z − ρ|2 = π

2
ln

R

δ

√
1 − ρ2/R2,

where δ � 1 is the radius of a small circle around z0 to be
excluded from the integration. We have also obtained the result
for the second term:∫∫

|z|<R

dzdz̄

4 |z − ρ ′|2 = π

4
ln

1

1 − R2/ρ ′2 = π

2
ln

1√
1 − ρ2R2

since ρ ′ > 1 [Eq. (B3)]. If R ≈ 1, the contribution from these
two terms will be approximately π

2 ln R
δ

, losing the dependence
on ρ. By representing z = reiφ , we see that the third term is a
function of r only and can be integrated directly. However, the
important point is that the result cannot have any dependence
on ρ.

∫ R

δ

1

4r2

(
1 + r2

1 − r2

)2

2πrdr = π

2

(
ln r + 2

1 − r2

)∣∣∣∣
R

r=δ

= π

2

(
ln

R

δ
+ 2

1 − R2
− 2

1 − δ2

)
≈ π

2

(
ln

R

δ
+ 2R2

1 − R2

)
.

The fourth and fifth terms vanish together, which can be shown by a direct integration as follows:∫∫
|z|<R

1

2

[
1

(z − ρ)(z̄ − ρ ′)
+ 1

(z̄ − ρ)(z − ρ ′)

]
dzdz̄ =

∫ R

rdr

∫ π

−π

dφ
r2 + 1 − r cos φ(ρ + ρ ′)

[r2 + 1 − r cos φ(ρ + ρ ′)]2 + r2 sin2 φ(ρ − ρ ′)2

=
∫ R

rdr

{
1

1 − r2
arctan

[
(1 − r2) sin φ

r2 cos φ − r(ρ + ρ ′) + cos φ

]}π

φ=−π

= 0.

We proceed to the sixth and seventh terms. It is these terms that are the most relevant in this calculation since they describe the
interaction between the two defects, with one at the origin and the other at z0 = ρ. Together, they can be expressed as

1

4

[
1

z̄(z − ρ)
+ 1

z(z̄ − ρ)

] (
1 + r2

1 − r2

)
= 1

2

(
1 − ρ

r
cos φ

r2 + ρ2 − 2rρ cos φ

) (
1 + r2

1 − r2

)
.

Recalling Appendix C, we notice that∫ π

−π

1 − ρ

r
cos φ

r2 + ρ2 − 2rρ cos φ
dφ = 2π

|r2 − ρ2| − π

r2

(
r2 + ρ2

|r2 − ρ2| − 1

)
=

{
2π/r2 if r > ρ

0 if r < ρ.
(D1)
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Therefore, the remaining integration of the sixth and seventh
terms over r corresponds to

π

∫ R

ρ

1

r2

(
1 + r2

1 − r2

)
rdr

= π [−r + 2 tanh−1 r]Rr=ρ

= π [−R + 2 tanh−1 R + ρ − 2 tanh−1 ρ]. (D2)

Lastly, the eighth and ninth terms vanish according to Eq. (D1)
since r is always smaller than ρ ′ > 1.

To sum up, the ρ dependence essentially originates from
Eq. (D2). By transforming ρ to the corresponding hyperbolic
distance θ∗ = 2 tanh−1 ρ, we therefore conclude that the Frank
free energy from the integration of Eq. (16) asymptotically
results in

F = 2KA

∫
|z|<R

∣∣∣∣∂γ

∂z
− Az

∣∣∣∣
2

dzdz̄ ≈ −2πKAθ∗ + C0(R,δ),

where C0(R,δ) is a system-dependent parameter.
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