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Transmission of a p-polarized electromagnetic wave through a two-layer plasma structure with spatially
nonuniform distributions of electron density in the layers is studied. The case, when the electromagnetic wave
is obliquely incident on the structure and is evanescent in both plasma layers, is considered. The conditions for
total transparency of the two-layer structure are found for the thin slab case and when the plasma inhomogeneity
is weak. It is shown that the transmission coefficient of the p-polarized wave can be about unity, even if the
plasma inhomogeneity is large. The effects of plasma inhomogeneity on transparency of the structure are more
important if the slabs are thick, comparing with the case of thin layers.
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I. INTRODUCTION

Interaction of electromagnetic waves with overcritical den-
sity plasmas with ω < ωpe, where ω and ωpe are the wave and
plasma frequencies, respectively, has been intensively studied
for many years [1,2]. The problem is of interest to plasma
diagnostics, plasma heating, radio communications, radar
applications, and photonic technologies such as plasmonic
devices, etc. [1,3–8].

Electromagnetic waves propagation in different plasma
and plasmalike structures, in particular, transmission through
nonuniform plasma have been studied by numerous research
groups [1,9–16] by different methods. In particular, it was
shown that the process of the Raman scattering of a pump
electromagnetic wave on Langmuir oscillations produced
by the signal wave can be effective as a mechanism of
information transfer through a nonuniform plasma layer [17].
In [2,14,18,19], to study propagation of electromagnetic waves
along the gradients of plasma and dielectric permittivities,
exact analytical solutions of the Maxwell equations were used.
Taking into account the cubic nonlinearity, it was shown that,
during the reflectionless transmission of a transverse electro-
magnetic wave through an inhomogeneous plasma containing
large-amplitude, small-scale (subwave-length) structures (in
particular, opaque regions), strong wave field splashes can
occur in certain plasma sublayers [18]. In [20,21], the possibil-
ity of reflectionless tunneling of a transverse electromagnetic
wave through a specially shaped barrier in the case, when the
dielectric permittivity of the barrier is positive, and the barrier
is caused by the inhomogeneous dielectric profile, was studied.

It was shown previously that total transmission of elec-
tromagnetic waves through a slab of dense plasma with
negative permittivity (ε < 0) can be achieved by including
on each side or from one side of the overcritical density
plasma a boundary layer with positive permittivity 0 < ε < 1
[22–25]. In these configurations, the total transmission of
p-polarized electromagnetic waves through a slab of dense
plasma is possible due to resonant excitation of surface waves
at plasma boundaries. Effects of electron temperature and an
external magnetic field on transparency of the overcritical
density layer due to excitation of evanescent waves were
studied in Refs. [24,26]. However, in most of the studies on

transmission of p-polarized electromagnetic waves through
nonuniform plasma, single-layer plasma structures were con-
sidered. The effects of plasma nonuniformity on transmission
of p-polarized electromagnetic waves through two-layer and
three-layer structures were studied by Ramazashvili [23]. In
[23], the case when the boundary-layer plasma with 0 < ε < 1
has the linear dependence on the x coordinate was considered.
It was noticed that a slight inhomogeneity of a boundary slab
does not prevent reflectionless transmission of p-polarized
waves through a dense plasma [23]. However, for arbitrary
electron-density distributions in the plasma slabs, including
the case of the nonuniform dense-plasma layer, the effects
of plasma nonuniformity on transparency of the layered
structures are not well studied.

In this paper, we study the propagation of a p-polarized
electromagnetic wave through a two-layer plasma structure
with rather arbitrary spatially nonuniform distributions of
electron density in the layers. The study is carried out
both analytically and numerically. The conditions for total
transparency of the structure are obtained for the thin slab
case and when the plasma inhomogeneity is weak. Studying
the weak inhomogeneity case, we use the WKB (Wentzel-
Kramers-Brillouin) method [1]. In our numerical study, the
cosinelike distributions of the electron density, which are
typical for most of the laboratory plasmas [27–29], are
considered and the reflection coefficients are calculated for
different widths of the plasma slabs. The analytical results are
obtained for arbitrary spatial distributions of electron density.

II. BASIC EQUATIONS

Let us consider a two-layer plasma structure immersed in
vacuum (air) (see Fig. 1). It is assumed that the spatially
averaged plasma density of the first layer Pl1 is small
(0 < ε1 < 1, where ε1 is the spatially averaged dielectric
permittivity of the layer), while the second slab Pl2 is dense
with ε2 < 0 (here, ε2 is the spatially averaged dielectric
permittivity of the second layer).

An electromagnetic wave is obliquely incident from a
semi-infinite vacuum (air) region V1 at the plasma layer
Pl1 on the left, and the transmitted wave propagates into
a semi-infinite vacuum (air) region V2 on the right. We
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FIG. 1. (Color online) Schematic representation of the propaga-
tion of an electromagnetic wave through the two layers of nonuniform
plasma.

assume that the wave is p polarized with the wave vector
k = kxex + kzez (i.e., the electric field vector E is in the
incidence xz plane). There are incident (with kx > 0) and
reflected (with kx < 0) waves in region V1, excepting for
the case of total transmission. There is no reflected wave
in region V2. In the total transmission case, there are no
reflected waves in a vacuum region. The plasma regions Pl1
and Pl2 have widths a1 and a2, correspondingly, and the
waves are evanescent (with Re kx = 0) there. It is assumed
that the plasma slabs are uniform in y and z directions and
can be nonuniform in the x direction. We neglect the nonlinear
effects [i.e., it is supposed that the electron oscillatory velocity
e|E|/(meω) is smaller than the wave phase velocity ω/k,
where E is the intensity of the electric wave field, e and me

are the electron charge and mass, respectively].
We assume that ions are immobile in a plasma layer, the

phase velocity of the electromagnetic wave is larger than the
electron thermal velocity, and the electron collision frequency
is smaller than the wave frequency.

The electromagnetic field of the p-polarized wave is
represented by

E = (Ex(x),0,Ez(x)) exp(ikzz − iωt),

H = (0,Hy(x),0) exp(ikzz − iωt).

The field components Ex , Ez, and Hy , as functions
of plasma permittivity, can be found from the Maxwell’s
equations:

rotE = ikH, (1)

rotH = −ikεE, (2)

where ε = 1 − ω2
pe(x)/ω2 is the plasma permittivity, ωpe(x)

is the plasma frequency, k = ω/c, c is the speed of light.
Using Eqs. (1) and (2), one finds the wave field components

Ez and Hy in the vacuum region V1:

Ez = kxAv

k
[− exp(ikxx) + �v exp(−ikxx)], (3)

Hy = Av[exp(ikxx) + �v exp(−ikxx)], (4)

where the first terms in the brackets of the expressions (3)
and (4) account for the incident wave and the second terms

account for the reflected wave. �v is the reflection coefficient,
and Av is the amplitude of the incident wave.

The following introduces the function u(x), characterizing
the local wave impedance Z(x):

u(x) = −ikZ(x) = −ik
Ez(x)

Hy(x)
. (5)

Then, the function u(x) for the electromagnetic wave field
in region V1 is

uv1(x) = ikx

exp(ikxx) − �v exp(−ikxx)

exp(ikxx) + �v exp(−ikxx)
. (6)

In the vacuum region V2, the function is equal to

uv2(x) = ikx. (7)

The dependence of magnetic field component Hy on the x

coordinate in a nonuniform plasma region can be found from
the equation, following from Maxwell’s Eqs. (1) and (2) [30]:

ε(x)
d

dx

[
1

ε(x)

dHy

dx

]
− κ2(x)Hy = 0, (8)

where κ =
√

k2
3 − k2ε is the local reverse skin depth of the

electromagnetic wave.
The component of electric field Ez is connected with the

magnetic field component by the following expression:

Ez = i

kε(x)

dHy

dx
. (9)

Equation (8) cannot be solved analytically for arbitrary
dielectric permittivity distributions. However, an approximate
analytical solution of the equation can be found in some
limiting cases, for example, in the case of thin plasma slabs
(κa � 1) or when plasma nonuniformity is weak.

III. THE CASE OF THIN PLASMA SLABS

If the plasma slabs are thin, one can neglect the second
term on the right-hand side of Eq. (8), and the equation can be
represented in the simplified form:

ε(x)
d

dx

[
1

ε(x)

dHy

dx

]
≈ 0. (10)

Equation (10) has the following solution:

Hy(x) ≈ A

∫ x

x0

ε(x)dx + B, (11)

where x0 is a coordinate, and A and B are constants.
Using Eqs. (9) and (11), one obtains the expression for the

z component of the electric field,

Ez(x) ≈ iA/k, (12)

and, as a result, the expression for the function u, characteriz-
ing the local wave impedance in the plasma regions:

u(x) ≈ A

A
∫ x

x0
ε(x)dx + B

. (13)
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Since the tangential electric and magnetic field components
are continuous at interfaces, the function u is also contin-
uous. Matching the functions, characterizing the local wave
impedances, at each interface, one gets the following system
of equations:

ikx

1 − �v

1 + �v

= A1

B1
, (14)

A1∫ a1

0 A1ε1(x)dx + B1
= A2

B2
, (15)

A2∫ a1+a2

a1
A2ε2(x)dx + B2

= ikx, (16)

where the indexes 1 and 2 are for the regions Pl1 and Pl2,
respectively.

The system of Eqs. (14)–(16) is obtained, assuming that
x0 = 0 and x0 = a1 in Eq. (11) for the regions Pl1 and Pl2,
correspondingly.

Solving Eqs. (14)–(16), one finds the reflection coefficient:

�v = a1ε1 + a2ε2

a1ε1 + a2ε2 + 2i/kx

, (17)

where ε1 = ∫ a1

0 ε1(x)dx/a1, ε2 = ∫ a1+a2

a1
ε2(x)dx/a2 are the

average dielectric permittivities of the slabs Pl1 and Pl2,
respectively.

Using Eqs. (13)–(16), one also gets the dependencies on
the x coordinate for the wave impedance in the plasma layers
Pl1 and Pl2, correspondingly:

Z1(x) = iu1(x)/k = i/k∫ x

0 ε1(x)dx − a1ε1 − a2ε2 − i/kx

,

Z2(x) = iu2(x)/k = i/k∫ x

a1
ε2(x)dx − a2ε2 − i/kx

.

As seen from Eq. (17), the total transparency of the two-layer
structure is achieved (�v = 0), when the following condition
is satisfied:

a1ε1 + a2ε2 = 0. (18)

The condition of total transparency (18) is similar to that
obtained for the case when the plasma slabs are uniform.
However, in the former case there are the averaged dielectric

permittivities ε1 and ε2 instead of the permittivities ε10 and
ε20, where ε10 and ε20 are the permittivities of the uniform
plasma slabs Pl1 and Pl2, respectively. Note that in the case of
uniform plasma slabs the wave number kz has also to satisfy
the following condition [31]:

kz = ±k

√
ε10ε20

ε10 + ε20
, (19)

while in the case considered here an additional condition for kz

is absent, because we neglected in Eq. (8) the term, accounting
for the dependence of the wave filed on the wave number.

The conditions for kz, required for total transparency of the
structure in the thin slab case, can be obtained, if one accounts
for the second term on the left-hand side of Eq. (8). In this
case, Eq. (8) can be solved using the method of successive
iterations.

Applying this method, we assume that the magnetic filed
component can be presented in the form Hy ≈ H0 + H1, where
|H1| � |H0| and H0 is the solution of Eq. (10) described by
expression (11). In this case, one gets the following equation
for H1:

ε(x)
d

dx

[
1

ε(x)

dH1

dx

]
− κ2H0 = 0. (20)

From Eq. (20) one obtains the expression for H1 and,
consequently, the expression for the y component of magnetic
field in a plasma region:

Hy ≈ H0 + H1 = A

∫ x

x0

ε(x)dx + B

+
∫ x

x0

ε(x)

[∫ x

x0

κ2(x)

ε(x)

(
A

∫ x

x0

ε(x)dx + B

)
dx

]
dx.

(21)

Using Eqs. (9) and (21), one gets the following expression
for the z component of electric field in a plasma layer:

Ez = i

k

[
A +

∫ x

x0

κ2(x)

ε(x)

(
A

∫ x

x0

ε(x)dx + B

)
dx

]
. (22)

Then, the function u(x), characterizing the wave impedance
in a plasma layer, is

u(x) = −ik
Ez

Hy

=
1 + ∫ x

x0

κ2(x)
ε(x)

( ∫ x

x0
ε(x)dx + C

)
dx

C + ∫ x

x0
ε(x)dx + ∫ x

x0
ε(x)

[ ∫ x

x0

κ2(x)
ε(x)

( ∫ x

x0
ε(x)dx + C

)
dx

]
dx

, (23)

where C = B/A.
For this particular case, it is convenient to locate

the beginning of the coordinate system (x = 0) at the
Pl1-Pl2 interface and take x0 = 0 in Eq. (23). Then,
from the boundary condition u1(0) = u2(0) one gets that
C1 = C2.

Accounting for the continuity of the function u(x) at
plasma-vacuum boundaries x = −a1 and x = a2, and assum-

ing that the transparency of the slabs is total (�v = 0), one
obtains the following system of equations:

u1(−a1) = ikx, (24)

u2(a2) = ikx, (25)

where the functions u1 and u2 are determined by Eq. (23) with
x0 = 0.
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It follows from Eqs. (24) and (25) that in the case of total
transparency,

u1(−a1) = u2(a2). (26)

In the general case, there is not an analytical solution of
Eqs. (24)–(26). Meanwhile, Eq. (26) will be approximately
fulfilled if ∫ −a1

0
ε1(x)dx ≈

∫ a2

0
ε2(x)dx, (27)

∫ −a1

0

κ2
1 (x)

ε1(x)
dx ≈

∫ a2

0

κ2
2 (x)

ε2(x)
dx, (28)

∫ −a1

0
ε1(x)

(∫ x

0

κ2
1 (x)

ε1(x)
dx

)
dx ≈

∫ a2

0
ε2(x)

(∫ x

0

κ2
2 (x)

ε2(x)
dx

)
dx,

(29)∫ −a1

0
ε1(x)

[∫ x

0

κ2
1 (x)

ε1(x)

(∫ x

0
ε1(x)dx

)
dx

]
dx

≈
∫ a2

0
ε2(x)

[∫ x

0

κ2
2 (x)

ε2(x)

(∫ x

0
ε2(x)dx

)
dx

]
dx, (30)

∫ −a1

0

κ2
1 (x)

ε1(x)

(∫ x

0
ε1(x)dx

)
dx ≈

∫ a2

0

κ2
2 (x)

ε2(x)

(∫ x

0
ε2(x)dx

)
dx.

(31)

Note that the condition for total transparency (27), obtained
accounting for the second term on the right-hand side of
Eq. (8), coincides with the condition (18) obtained without
taking into account the term. Therefore, the condition (27) is
more important than the conditions (28)–(31). If the plasma
slabs are uniform, then one gets from Eqs. (28)–(31) the
relation,

κ1/ε1 + κ2/ε2 = 0.

The wave number, satisfying this equation, coincides with
that described by expression (19). Therefore, in the case of
thin nonuniform slabs one can expect that the resonant wave
number approximately equals to

kz0 = k
√

ε1ε2/(ε1 + ε2). (32)

IV. THE CASE OF WEAK NONUNIFORMITY

An approximate solution of Eqs. (1) and (2) can also be
found in the case, when plasma nonuniformity is weak (i.e.,
when the dielectric permittivity varies slightly at the distance
which is about the skin depth κ−1). To get a solution in this
case, it is convenient to use the equation for the x component
of electric field, following from Maxwell’s Eqs. (1) and (2) [1]:(

∂2

∂x2
+ ∂2

∂z2

)
Ex + ω2

c2
ε(x)Ex + ∂

∂x

(
Ex

∂

∂x
ln ε(x)

)
= 0.

(33)

Let us assume that the x component of electric field can be
presented in the form,

Ex(x,z) = α(x)F (x) exp[ikε(x)α(x)z], (34)

where kε(x) = ω
c

√
ε(x), and α = sin θ (x), θ (x) is the angle

between the wave vector and the x axis.
Substituting (34) into (33), one gets that [1]

kε(x)α(x) = kε(0)α(0) = const, (35)

∂2F

∂x2
+ ω2

c2
εeff(x)F = 0, (36)

where α(0) = sin θ (0) = kz/k,

εeff(x) = ε(x) − sin2 θ0 + c2

ω2

[
1

2ε

∂2ε

∂x2
− 3

4ε2

(
∂ε

∂x

)2
]

.

Here, it is assumed that the point x = 0 is located at the V1-Pl1
boundary.

If the nonuniformity of plasma is weak, the following
inequalities are fulfilled:

|ε(x) − sin2 θ0| �
∣∣∣∣ c2

ω2

1

2ε

∂2ε

∂x2

∣∣∣∣ , (37)

|ε(x) − sin2 θ0| �
∣∣∣∣∣ c2

ω2

3

4ε2

(
∂ε

∂x

)2
∣∣∣∣∣ , (38)

and

εeff(x) ≈ ε(x) − sin2 θ0. (39)

Taking into account that sin θ0 = kz/k and κ =
√

k2
3 − k2ε,

the conditions (37) and (38) can be rewritten in the form:∣∣∣∣ ∂2ε

∂x2

∣∣∣∣ � |2ε|κ2, (40)∣∣∣∣1

ε

∂ε

∂x

∣∣∣∣ � 2κ√
3
. (41)

If |∂ε/∂x| � 2κ3/k2 and the dielectric permittivity is
described by Eq. (39), then the approximate expression for
the dependence of the x component of electric field on the x

coordinate is

Ex(x) ≈ kz

k
√

κ(x)ε(x)

[
C exp

( ∫ x

x0

κdx

)

+D exp

(
−

∫ x

x0

κdx

)]
, (42)

where x0 is a coordinate, and C and D are constants.
Taking into account that Hy = (kε/kz)Ex and using the

expression for Ex (42), one gets the approximate expression
for the component of the magnetic field:

Hy(x) ≈ ε(x)√
κ(x)ε(x)

[
C exp

( ∫ x

x0

κdx

)

+D exp

(
−

∫ x

x0

κdx

)]
. (43)

Since Ez = (i/kε)∂Hy/∂x, in the case of weak plasma
nonuniformity the expression for the z component of electric
field is

Ez(x) ≈ iκ(x)

k
√

κ(x)ε(x)

[
C exp

(∫ x

x0

κdx

)

−D exp

(
−

∫ x

x0

κdx

)]
. (44)
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FIG. 2. The dielectric permittivity profiles in the first (a) and second (b) plasma slabs considered in the numerical analysis.

Using the expressions (43) and (44), one obtains the
following expression for u(x), characterizing the wave
impedance,

u(x) ≈ κ(x)

ε(x)

C exp
( ∫ x

x0
κdx

) − D exp
(− ∫ x

x0
κdx

)
C exp

( ∫ x

x0
κdx

) + D exp
(− ∫ x

x0
κdx

) . (45)

Thus, the functions u1(x) and u2(x), characterizing the wave
impedance in the regions Pl1 and Pl2, are, correspondingly,

u1(x) ≈ κ1(x)

ε1(x)

exp
( ∫ x

0 κ1dx
) − A exp

(− ∫ x

0 κ1dx
)

exp
( ∫ x

0 κ1dx
) + A exp

(− ∫ x

0 κ1dx
) . (46)

u2(x) ≈ κ2(x)

ε2(x)

exp
( ∫ x

a1
κ2dx

) − B exp
(− ∫ x

a1
κ2dx

)
exp

( ∫ x

a1
κ2dx

) + B exp
(− ∫ x

a1
κ2dx

) , (47)

where A and B are constants. x0 = 0 and x0 = a1 for the
regions Pl1 and Pl2, respectively.

Remember that in the vacuum regions V1 and V2, the u(x)
dependence is determined by Eqs. (6) and (7), respectively.

Assuming that the wave impedance is continuous at
boundaries x = 0, x = a1, and x = a1 + a2, one gets the
following system of equations:

ikx(1 − �v)

1 + �v

= κ1(0)

ε1(0)

1 − A

1 + A
,

κ1(a1)

ε1(a1)

exp
( ∫ a1

0 κ1dx
) − Aexp

(−∫ a1

0 κ1dx
)

exp
( ∫ a1

0 κ1dx
) + Aexp

(− ∫ a1

0 κ1dx
) = κ2(a1)

ε2(a1)

1 − B

1 + B
,

κ2(a1 + a2)

ε2(a1 + a2)

exp
(∫ a1+a2

a1
κ2dx

) − Bexp
(−∫ a1+a2

a1
κ2dx

)
exp

(∫ a1+a2

a1
κ2dx

) + Bexp
(−∫ a1+a2

a1
κ2dx

) = ikx.

(48)

From the system (48) one can find the reflection coefficient
�v and the transparency coefficient T =

√
1 − |�v|2. We do

not present the expressions for �v and T here, because they
are very big and uninformative.

Instead of that, consider the case of total transparency
(�v = 0). In this case, it follows from the first equation of
the system (48) that

A =
(

κ1(0)

ε1(0)
− ikx

)/ (
κ1(0)

ε1(0)
+ ikx

)
. (49)

The constant B can be found from the third equation of the
system (48):

B = exp

(
2
∫ a1+a2

a1

κ2(x)dx

)

×
(
κ2(a1 + a2)

ε2(a1 + a2)
− ikx

)/(
κ2(a1 + a2)

ε2(a1 + a2)
+ ikx

)
. (50)

Thus, the second equation of the system (48) with the constants
A and B described be Eqs. (49) and (50) determines the
conditions for total transparency of the two-layer structure
in the case of weak nonuniformity.

If
κ1(a1)

ε1(a1)
= −κ2(a1)

ε2(a1)
, (51)

and
κ2(a1 + a2)

ε2(a1 + a2)
= −κ1(0)

ε1(0)
, (52)

from the second equation of the system (48) one gets that the
following condition should be also satisfied:∫ a1

0
κ1(x)dx =

∫ a1+a2

a1

κ2(x)dx. (53)

If the slabs are spatially uniform, the conditions (51)–(53)
coincide with the conditions of total transparency presented in
Ref. [23].

FIG. 3. (Color online) The absolute value of the reflection
coefficient for kz = kz0 = 1.148 cm−1, a2 = 0.25 cm in the cases of
uniform (solid curve) and nonuniform (dashed curve) plasma slabs.
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FIG. 4. (Color online) The absolute value of the reflection coefficient (a) and the reverse skin depth (b) for kz = kz0 (solid curve), 1.1kz0

(dashed curve), and 1.3kz0 (dotted curve) in the nonuniform plasma case. The other parameters are the same as in Fig. 3.

V. NUMERICAL RESULTS

In Secs. III and IV, the conditions for total transparency
of the two-layer structure were obtained for the case of thin
plasma slabs and when plasma nonuniformity is weak. In the
general case, transmission of an electromagnetic wave through
a two-layer nonuniform-plasma structure can be studied only
numerically. To carry out the numerical study, it is convenient
to use the equation for u(x), describing the wave impedance
and following from Maxwell’s Eqs. (1) and (2) [30]:

∂u

∂x
= 1

ε(x)
[κ2(x) − ε2(x)u2]. (54)

Assuming that u = u1 + iu2, where u1 and u2 are real
functions, one gets from the previous equation the system,

∂u1

∂x
= 1

ε(x)

[
κ2(x) − ε2(x)

(
u2

1(x) − u2
2(x)

)]
, (55)

∂u2

∂x
= −2ε(x)u1(x)u2(x). (56)

The system of Eqs. (55) and (56) should be accompanied
by boundary conditions. Since at plasma-vacuum boundary
Pl2-V2 u(a1 + a2) = ikx , then u1(a1 + a2) = 0 and u2(a1 +
a2) = kx . It is obvious that u1 and u2 are also continuous
functions.

In our numerical model, we assume that the boundary
V1-Pl1 can be located at different x(�a1), and the reflection

coefficient can be presented in the form �v = �1 + i�2, where
�1 and �2 are real functions. If the boundary is located at
x = 0, then the first slab size equals to a1. For the case of
location of the boundary at x > 0 the width of slab Pl1 is
a1 − x and is smaller than a1.

Taking into account the continuity of the functions u1 and
u2 at the boundary V1-Pl1, one gets from Eq. (6) the following
expression for absolute value of the reflection coefficient:

|�v(x)| =
√

�1(x)2 + �2(x)2

=
√(

u1(x)2 + u2(x)2 − k2
x

)2 + (2u1(x)kx)2

u1(x)2 + (u2(x) + kx)2
, (57)

where u1(x) and u2(x) are the functions, characterizing the
wave impedance at the Pl1-V1 interface, which can be obtained
numerically from Eqs. (55) and (56). The system of ordinary
differential Eqs. (55) and (56) is solved numerically by a
fourth-order Runge-Kutta method.

The reflection coefficient was calculated assuming that the
dielectric permittivities in the plasma slabs are cosinelike
functions (see Fig. 2). It was supposed that the x dependencies
of dielectric permittivities on the x coordinate have the fol-
lowing form: ε1 = ε1max − Am cos (π (x − a1/2)/a1) for x <

a1; ε2 = Bm cos (π (x − (2.0a1 + a2)/2)/a2) + ε2min for x >

a1, where ε1max = 0.37, ε2min = −1, Am = π (ε1max − ε1)/2,
Bm = π (ε2 − ε2min)/2. The calculations were carried out for

FIG. 5. (Color online) The same as in Fig. 4 at a2 = 1 cm for the uniform plasma case and kz = kz0 = 1.148 cm−1 (solid curve), as well as
for the nonuniform plasma case at kz = kz0 (dashed curve) and kz = 1.1kz0 (dotted curve).
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FIG. 6. (Color online) The same as in Fig. 5 at a2 = 5 cm for the uniform plasma case and kz = kz0 (solid curve), as well as for the
nonuniform plasma case at kz = kz0 (dashed curve) and kz = 1.05kz0 (dotted curve).

ω = 2π × 9 × 108 s−1 and different widths of the second
plasma slab Pl2: a2 = 0.25 cm, 1 cm, and 5 cm. The resonant
width of the first plasma layer Pl1 was obtained from the re-
lation a1 = −a2ε2/ε1, which coincides with one of the condi-
tions of total transparency in the uniform plasma case [29].
We considered the cases when the wave number kz is the
same as the resonant wave number in the uniform plasma case
[kz = kz0, determined by Eq. (19)] and is different from kz0.

In Fig. 3, the dependence |�v(x)| is shown for the nonuni-
form plasma case and compared with that obtained for the
case when the plasma slabs are spatially uniform. Both curves
in Fig. 3 are obtained for kz = kz0 = 1.148 cm−1. It is seen
from Fig. 3 that the absolute value of the reflection coefficient
|�v(x)| at x = 0 in the nonuniform plasma case is very small
(∼2 × 10−3) (i.e., transparency of the system, consisting of
nonuniform plasma layers, is nearly total), similarly to the
uniform plasma case.

If the wave number kz is larger than kz0, then the reflection
coefficient at x = 0 is also larger than that obtained at kz =
kz0 (see Fig. 4). It means that transparency of the two-layer
structure depends on the wave number kz, in agreement with
the analytical results presented in Sec. III for the thin slab case
[see Eqs. (28)–(31)]. Increasing the wave number kz, one also
increases the reverse skin depth κ , and the condition of the

FIG. 7. (Color online) The absolute value of the transparency
coefficient obtained at kz = kz0 with uniform first layer and nonuni-
form second layer (solid curve) and with nonuniform first layer and
uniform second layer (dashed curve). The other parameters are the
same as in Fig. 6.

thin plasma slab (κ1a1 � 1) may become not applicable for
large kz.

In Fig. 5(a), the dependencies |�v(x)| are shown for
a2 = 1 cm in the following cases: uniform plasma slabs and
kz = kz0 (solid curve); nonuniform plasma slabs and kz = kz0

(dashed curve); nonuniform plasma slabs and kz = 1.1kz0

(dotted curve). In the case of nonuniform plasma and kz = kz0,
the absolute value of the reflection coefficient |�v| at x = 0 is
very small (∼0.006). If the plasma slabs are nonuniform and
kz = 1.1kz0, the absolute value of the reflection coefficient is
about 0.2 at x = 0. For this case, the function |�v(x)| has
a minimum at x ≈ 2.5 cm, and κ1a1 is larger than 0.4 at
some x (i.e., the thin slab approximation is not applicable
if a2 = 1 cm).

We also considered the case when κ1a1 > 1, where κ1 is the
average reverse skin depth for the first plasma slab. To study the
case of thick plasma slabs, it was assumed that a2 = 5 cm. If
both plasma slabs are nonuniform and thick, then transparency
of the two-layer structure is smaller than that in the thin slab
case (see Fig. 6). An increase of kz with respect to kz0 is
accompanied by an enlargement of |�v(0)|.

Note that κ2 > κ1, and nonuniformity of the first slab affects
more strongly on transparency of the structure than that of the
second layer [see Fig. (7)].

VI. CONCLUSIONS

We have studied analytically and numerically the trans-
parency of two-layer plasma structures with nonuniform
spatial distributions of dielectric permittivity in the layers.
The case of the p-polarized electromagnetic wave obliquely
incident on this structure has been considered. The elec-
tromagnetic wave field has been assumed to be evanescent
in both layers. Conditions (27)–(31) and (51)–(53) for total
transparency of the two-layer structure have been found
analytically in the thin plasma slab case as well as when
the plasma nonuniformity is weak. In our numerical study,
we have considered both cases of thin and thick plasma
slabs.

For thin plasma slabs, it has been found that the condi-
tion of total transparency depends on the average dielectric
permittivities (plasma densities) in the slabs and the widths
of the slabs [see Eq. (27)]. There is a dependence of the
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transparency coefficient on the wave number, but it is small,
that is, transmission of waves with different wave lengths and
small reflection coefficients through the thin plasma slabs is
possible (see Fig. 4).

If the plasma slabs are thick (κa � 1), plasma nonunifor-
mity affects essentially transparency of the two-layer structure.
Moreover, in this case, a small deviation of the wave number
from the resonant number (kz0 = k

√
ε1ε2/(ε1 + ε2)) may

be accompanied by an essential increase in the reflection
coefficient [see Fig. 6(a)]. Nonuniformity of the first slab with
0 < ε1 < 1 affects more strongly the wave transmission than
that of the second layer. This is explained by the fact that the
conditions of weak nonuniformity (40) and (41) depend on the
skin depth, and the skin depth in the first layer is larger than
that in the second slab.

The analysis of transmission of the obliquely incident p-
polarized waves through an inhomogeneous plasma layer is
more complicated than that for the waves propagating in the di-
rection of the density gradient and the case of the oblique
s-polarized waves [1,2,18]. In the case considered here, the
effective dielectric permittivity εeff depends not only on the
dielectric permittivity and the angle of wave incidence, but
εeff is also a function of the derivatives dε/dx and d2ε/dx2

(see Sec. IV). To our knowledge, due to the complexity in
the expression for the effective dielectric permittivity exact
analytical solutions describing transmission of the obliquely
incident p-polarized waves through an inhomogeneous plasma
layer are not available at present.

Note that some simplifications have been used in our study.
In particular, the electron temperature and collisions effects
have been neglected. These effects can influence the transmis-
sion of electromagnetic waves through the structure and loss
of wave electromagnetic energy, and were studied by previous
authors [24,32]. We also limited our study by the case when
the local plasma frequencies ωpe(x) in the dense-plasma layer

are larger than the wave frequency. Meantime, in most of the
laboratory plasmas there are the resonance points near plasma
boundaries, where the plasma frequency is approximately
equal to the wave frequency. In these points, dissipation of
wave electromagnetic energy takes place [30,33], and it may
be accompanied by a decrease of the transmission coefficient.
However, for the high-frequency limit, considered here, we
expect that the effect of the resonance points on the energy
dissipation and the transmission coefficient is small. Plasma
inhomogeneity may also affect propagation and excitation
of waves corresponding to the low-frequency range [34].
We also neglected nonlinear effects, which can influence the
transmission of electromagnetic waves through the structure,
even increasing it at certain conditions [14,35–38]. Moreover,
our study has been limited only by the case of the two-layer
structure with the evanescent waves in each plasma layer. In
the structures with a larger number of layers, it was shown
recently that total transparency can be achieved without surface
mode excitation, for example, exploiting the standing wave
resonances [39].

In conclusion, we have shown that the transmission co-
efficient of the p-polarized waves obliquely incident on a
two-slab structure can be about unity, even if the plasma
nonuniformity is large. The nonuniformity effects are more
important if the slabs are thick, compared with the case of
thin layers. The results obtained in this paper can be useful for
laboratory plasma experiments, as well as in communications
and plasmonic applications.
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