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Ring stains in the presence of electromagnetohydrodynamic interactions
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In a recent paper [Das et al., Phys. Rev. E 85, 046311 (2012)], we delineated the role of electrokinetic
transport in modifying the classical “coffee stain” effect. In this study, we extend this calculation to incorporate
the consequences of a generalized electromagnetohydrodynamic transport in the coffee stain phenomenon. The
magnetohydrodynamic (MHD) effect enhances the velocities at the beginning of the drop life, whereas the
electrokinetic effect increases the “disordering” effect in particle deposition at the end of the drop, triggered
by a velocity divergence. For a suitable combination of the strength of the MHD and electrokinetic transport,
however, this disordering effect is substantially enhanced, and, most nonintuitively, such velocity divergence and
the disordering effect may occur at a time that is much earlier than the end of the drop life, or may occur even
instantaneously after the start of the drop evaporation. This work will provide useful insight in the understanding
of the dynamics of mesoscopic patterns formed as the magnetic nanocrystals deposit in the presence of a combined
transport driven by evaporation and magnetic field effects.
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I. INTRODUCTION

Evaporation of a sessile drop and the associated inhomo-
geneous deposition of the suspended particles (leading to the
famous “coffee stain” effect) have attracted great attention over
the years [1–10], owing to the involved modeling challenges
[11–14] as well as the plethora of relevant technological
applications [1,2,13,15–22]. Deegan et al. [1] were the first
to identify this coffee stain effect and later demonstrated [2]
the presence of the diverging nature of the flux at the drop
contact line that makes the modeling extremely nontrivial. The
majority of the studies that obtain the velocity fields accounting
for the finite contribution of this divergence consider only
small drop contact angles [8,20,23–26], and there are only
a handful of studies that do the necessary calculation for all
ranges of contact angles [27,28].

Popov et al. [27] demonstrated that the diffusion of liquid
vapor to the air is the primary cause of the evaporation, al-
though there may be other mechanisms in play, in particular for
micron-sized drops. Also there has been substantial interest in
complementary problems associated with the evaporation, e.g.,
evaporation-driven cooling and the subsequent reduction of the
evaporation rate [17–19], creation of the Marangoni flow and
Marangoni-Benard instability [21,22,29], etc. Similarly, there
have been significant efforts in studying different versions
of the coffee stain problem, e.g., alteration of the deposition
behavior as a function of liquid volatility [30], particle size
[31–33], particle shape [34], particle nature [2,3,35–38], etc.
Also, there has been notable progress in elucidating the role
of different external effects on the coffee stain problem. For
example, Gelderblom et al. [28] demonstrated the effect of
a superhydrophobic surface on the deposition behavior, Eral
et al. [39] studied the effect of electrowetting on lowering
the coffee stain effect, and Kaya et al. [40] investigated
the effect of added salt in the richness of pattern formation
during evaporation. The other area of research activities con-
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cerning drop evaporation and evaporation-triggered deposition
involves the investigations of nontrivialities in the deposition
behavior, as well as different new effects triggered by the
evaporation. For example, Marin et al. [41] demonstrated that
the velocity divergence at the end of the drop lifetime leads
to a strong “disordering” effect in the particle deposition, and
Tsai et al. [42] and Luo et al. [43] showed that the evaporation
can trigger a spontaneous transition between Cassie-Baxter
and Wenzel states.

In an extension of this effort to study the coffee stain
problem under different physical circumstances and the re-
sulting alteration in the evaporation-triggered dynamics of
the suspended particles, in a recent study, we demonstrated
the effect of electrokinetic interactions on the deposition
behavior at the end of the lifetime of the drop [44]. We
considered the evaporation of an electrolytic liquid drop on a
charged substrate, and the electrokinetic effects were triggered
by the generation of the streaming current caused by the
advection of the mobile counterions present within the electric
double layer (EDL) formed at the interface of the charged
substrate and the electrolyte drop. We demonstrated that the
electrokinetic effects lead to a greater degree of velocity
divergence at the end of the drop lifetime [41], indicating a
more prominent disordering effect in evaporation-triggered
particle deposition. In the present paper, we extend this
analysis to study the coffee stain problem in the presence
of a general electromagnetohydrodynamic (EMHD) transport.
Therefore, the fluid flow is driven by a combination of three
effects: the pressure-driven capillary transport, the electroki-
netic transport (exactly similar to our previous study [44]),
and a magnetohydrodynamic (MHD) transport. The MHD
transport is achieved by employing a transverse magnetic field
(of constant intensity) and the fluid acts as a magnetic fluid due
to the presence of electrolyte ions (which is also responsible
for triggering the electrokinetic transport).

Our present analysis is useful in light of several recent
studies that discuss the dynamics of magnetic particles
suspended in an evaporating drop (the drop can be either
of water or liquid metal) [45–48] or illustrate the gross
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alteration in the evaporation dynamics in the presence of a
constant applied magnetic field [49–51]. The most important
motivation of the present study, however, concerns the fact
that during the formation of the ring-shaped coffee stain,
particles deposit, aggregate, self-assemble, and may even get
organized into crystalline phases or form mesoscopic struc-
tures [41,52–55]. Among other applications, these phenomena
associated with the coffee stain effect have been extensively
used to form mesoscopic patterns or self-assembly of magnetic
nanocrystals or nanoparticles by having them suspended in
an evaporating drop [49,56–59]. The major inspiration for
studying such nanocrystal aggregation stems from the idea of
creating metamaterials [57,60], whose properties arise from
the mutual interactions of magnetic (or other) nanocrystals in
an aggregate. The structure and morphology of such patterns
and deposition have been shown to be substantially altered
by the application of an external magnetic field. For example,
Pileni and co-workers demonstrated that evaporation-induced
aggregated magnetic nanocrystals (e.g., cobalt, maghemite,
or γ -Fe2O3, maghemite coated with octanoic or dodecanoic
acid) can be tuned to form mesoscopic structures in the
presence of an external magnetic field applied parallel to
the interface [49,58,61,62]. Mutch et al. demonstrated that
the aggregation may be enhanced or retarded depending on
whether the magnetic field is applied parallel or perpendicular
to the substrate [45]. Bedair et al. observed that during
evaporation-triggered deposition of magnetic particles, the
presence of magnetic fields may alter the relative permeabili-
ties of the deposit [63]. Other noteworthy studies on pattern and
structure formation of a magnetic nanocrystal in the presence
of combined magnetic-field-driven and evaporation-driven
transport include the studies by Ozdemir et al. [64], Puntes
et al. [65], and Bliznyuk et al. [66]. The typical strength
of the magnetic field varies from 0.1 Tesla to as large as
0.6 Tesla [49]. There have been some theoretical efforts
to model the interactions of the magnetic nanocrystals in
the aggregated or deposited condition, thereby leading to an
estimation of the resulting magnetic properties of the deposit
[58,61]. However, there have been few theoretical models that
attempt to capture the relevant fluid physics (occurring as a
combination of the evaporation and magnetohydrodynamic
transport) that strongly dictates the nature of deposition. This
is especially important in light of the recent paper by Marin
et al. [41], which demonstrated that the ordering and the
crystallization of the coffee stain deposit is a strong function
of the flow dynamics, particularly at the end of the drop
lifetime. In the present paper, we provide a general theory
for such combined evaporative- and magnetic-field-driven
transport of particles. The usefulness of this general model
is that it can be easily applied to describe a simple coffee drop
problem, or a more involved problem where the evaporation-
driven coffee drop effect (causing inhomogeneous particle
deposition, aggregation, and crystallization) is used to trigger
intricate pattern formation or nanocrystallization of magnetic
nanoparticles in the presence of an applied magnetic field.

The framework of the present analysis is identical to our
previous study in the sense that we consider that the effect
of variation of the transport mechanism does not change the
net evaporation flux, which is driven by the diffusion of liquid
vapor to the air. All other assumptions, in particular regarding

the electrokinetic transport and the EDL interactions, remain
identical to our previous study. The central result of the
paper is that under the combined EMHD transport, for
certain operating parameters, there is a velocity divergence,
and therefore strong disordering in particle deposition, at a
time much earlier than the end of the lifetime of the drop.
In fact such disordering may occur almost instantaneously
after the start of the drop evaporation. Such a nontrivial
behavior cannot be predicted by the linear combination of
the individual effects of the electrokinetic and the MHD
transport. Therefore, through this work, we revisit the general
notion that the disordering in evaporation-triggered particle
deposition occurs only at the end of the drop life: it may
indeed occur at any time depending on the flow actuation
mechanisms. With such disordering being directly related to
the characteristics of the magnetic nanocrystal deposit, this
would mean a completely nontrivial pattern and mesoscopic
structure formation dynamics of magnetic nanocrystals in the
presence of combined evaporative- and magnetic-field-driven
transport.

II. THEORY

A. Evaporation flux and the depth-averaged velocity

Before describing the specificities of the dynamics of the
evaporation-triggered particle deposition in the presence of the
EMHD transport, we first discuss the well-known expressions
that govern the evaporation, e.g., the evaporation flux, the
depth-averaged advection velocities, and the time-dependent
contact angle [see Fig. 1(a)]. Please note that the detailed
derivation for these quantities can be found elsewhere [27,
28,41] and has been summarized in our previous work [44].
In spite of that, we reiterate these expressions (valid for small
contact angle of the drop [27,41]) for the sake of completeness.
Similar to our previous study [44], here too we consider that
the EDL effects do not affect the above-mentioned evaporation
quantities that are mainly dictated by the processes at the
air-water interface. Such an assumption is justified by the fact
that the EDL thickness is always assumed to be much smaller
than the drop height (at any time instant). However, such an
assumption would fail at the three phase contact line (for more
details, see [44]): we do not consider that case in this study.

Following [27,41,44], the height of the drop h can be
expressed as

h(r,t) � R2 − r2

2R
θ (t), (1)

where (see Fig. 1) R is the contact radius of the drop, r is the
radial coordinate, and θ (t) is the instantaneous contact angle
of the drop expressed as [27,41,44]

θ (t) = 16Dva�c

πR2ρ
(te − t). (2)

In Eq. (2), Dva is the diffusion coefficient of vapor in air, �c

is the vapor concentration difference between the drop surface
and the surroundings, ρ is the density of the liquid, and te is
the total lifetime of the drop. Further, the evaporation flux can
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FIG. 1. (Color online) (a) Schematic of the electrolytic evaporat-
ing drop with pinned contact line on a charged substrate, specifying
the base radius R, evaporation flux J (r), drop height h(r,t), and
contact angle θ (t), as well as the initial (marked in light shade) and
current (marked in bright shade) drop configurations. (b) Magnified
view of the section [marked in black dotted rectangle in (a)] depicting
the EDL (the cations or the counterions are in green and the anions
or the coions are in blue), a sample coffee particle (shown in orange;
there will be other such particles as well, which are not depicted for the
sake of clarity), and the respective directions of the applied magnetic
field and the induced streaming field, as well as the pressure-driven,
electrokinetic and MHD transport.

be expressed as [27,41,44]

J (r,t) = 2

π

Dva�c√
R2 − r2

. (3)

Finally, the depth-averaged velocity uav can be expressed as
[refer to [27,41] to see the manner in which uav is derived from
J (r,t) and h(r,t)]

uav(r,t) = 4RDva�c

πρrθ (t)

[
1√

R2 − r2
− R2 − r2

R3

]
. (4)

Similar to our previous study [44], here too we assume that
the evaporation flux J and the depth-averaged velocity uav

remain independent of the actuation mechanisms that drive
the transport in the interfacial layers—therefore it remains
unaltered for a pure pressure-driven transport, a combined
pressure-driven and electro-osmotic transport, or the most
general case of an EMHD transport.

B. Effect of EMHD transport

We consider the evaporation-triggered particle deposition
in the presence of an EMHD transport. The MHD effect is
induced by the application of a transverse magnetic field [B =

B0ez (ez is a unit vector in the z direction); see Fig. 1(b)]. The
electrodynamic (or the electrokinetic) effect is triggered by the
development of the streaming field on account of the transport
of mobile ions inside the EDL [this EDL is induced as the
electrolytic drop comes in contact with the charged solid; see
Fig. 1(b)]. Following Marin et al. [41] and Das et al. [44],
we can use the thin film lubrication approximation (under the
condition that the drop height h is always much smaller than the
drop contact radius R), with appropriate consideration for the
EMHD interactions, to express the radial momentum transport
equation as

∂p

∂r
= η

∂2ur

∂z2
+ fr, (5)

where η is the dynamic viscosity, ∂p/∂r is the radial pressure
gradient (which is a constant), ur is the radial velocity, z is
the transverse coordinate, and fr is the body force (per unit
volume) in the radial direction.

Following [67–71], the EMHD body force vector (per unit
volume) f can be expressed as

f = ρeE + σe(E + v × B) × B. (6)

Here, ρe is the EDL charge density (described through the
Poisson equation; see below), σe is the electrical conductivity
of the liquid, and E = Eser (er is the unit vector in the radial
direction). Therefore, assuming that the flow is predominantly
in the radial direction, i.e., v � urer [or ur � uφ and ur � uz,
where uφ and uz are the velocity components in the azimuthal
(φ) and z directions], we get

f = (
ρeEs − σeurB

2
0

)
er − σeEsB0eφ. (7)

Here, eφ is the unit vector in the azimuthal (φ) direction.
The implications of this assumption v � urer , as well as the
occurrence of an additional body force term in the azimuthal
φ direction [see Eq. (7)], has been discussed in the Appendix.

Using Eq. (7) to obtain the body force in the radial direction,
the radial momentum transport equation (5) can be expressed
as (we henceforth denote ur as u)

∂p

∂r
= η

∂2u

∂z2
+ ρeEs − σeuB2

0 . (8)

The EDL charge density ρe can be expressed through the
Poisson equation as

d2ψ

dz2
= −ρe

ε
, (9)

where ψ is the EDL electrostatic potential and ε is the liquid
permittivity. The charge density can be further expressed as
(for symmetric monovalent electrolyte)

ρe = e(n+ − n−), (10)

where e is the protonic charge. Using Eq. (10) in Eq. (9),
along with the linearized Boltzmann distribution (valid
for small EDL potential), i.e., n± = n∞ exp (∓eψ/kBT ) ≈
n∞(1 ∓ eψ/kBT ), with n∞ being the bulk ionic number
density, we get

d2ψ

dz2
= ψ

λ2
, (11)
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where λ =√
εkB T

2e2n∞ is a characteristic EDL thickness, also known
as the Debye length. We solve Eq. (11) in the presence of
the boundary condition ψ(z = 0) = ζ and ψ(z � λ) = 0 to
obtain

ψ = ζ exp (−z/λ). (12)

Using Eqs. (12) and (9) in Eq. (8), we get

∂p

∂r
= η

∂2u

∂z2
− εζ

λ2
exp (−z/λ)Es − σeuB2

0 . (13)

In dimensionless form, the above equation can be expressed
as

∂2ū

∂z̄2
− Ha2ū = −1 − β

λ̄2
exp (−z̄/λ̄)Ēs, (14)

where

ū = u

u0
, u0 = −h2

0

η

∂p

∂r
, z̄ = z

h0
, λ̄ = λ

h0
,

(15)

Ha =
√

σeB
2
0h2

0

η
, β = ue

u0
, ue = −εζE0

η
, Ēs = Es

E0
.

Here β may be interpreted as the ratio of an electrokinetic
velocity scale and a pressure-driven velocity scale. In Eq. (15),
Ha is the Hartmann number characterizing the strength of
the applied magnetic field in dimensionless form, h0 is a
characteristic length scale, and E0 is a characteristic electric
field strength scale. Equation (14) can be solved analytically
to obtain

ū = C1 exp (Haz̄) + C2 exp (−Haz̄)

+ 1

Ha2 + βĒs

Ha2λ̄2 − 1
exp (−z̄/λ̄). (16)

Using the boundary conditions ū(z̄ = 0) = 0 and ( ∂ū
∂z̄

)z̄=h̄ = 0,
we get

C1 = βĒs[exp (−h̄/λ̄) − Haλ̄ exp (−Hah̄)]

2Haλ̄(Ha2λ̄2 − 1) cosh (Hah̄)

− exp (−Hah̄)

2Ha2 cosh (Hah̄)
,

(17)

C2 = −βĒs[exp (−h̄/λ̄) + Haλ̄ exp (Hah̄)]

2Haλ̄(Ha2λ̄2 − 1) cosh (Hah̄)

− exp (Hah̄)

2Ha2 cosh (Hah̄)
.

Using Eq. (17), we may rewrite Eq. (16) as

ū = (M1Ēs + M2) exp (Haz̄) + (M3Ēs + M4) exp (−Haz̄)

+M5Ēs exp (−z̄/λ̄) + 1

Ha2 , (18)

where

M1 = β[exp (−h̄/λ̄) − Haλ̄ exp (−Hah̄)]

2Haλ̄(Ha2λ̄2 − 1) cosh (Hah̄)
,

M2 = − exp (−Hah̄)

2Ha2 cosh (Hah̄)
,

M3 = −β[exp (−h̄/λ̄) + Haλ̄ exp (Hah̄)]

2Haλ̄(Ha2λ̄2 − 1) cosh (Hah̄)
,

M4 = − exp (Hah̄)

2Ha2 cosh (Hah̄)
, M5 = β

Ha2λ̄2 − 1
. (19)

From Eq. (18), it is easy to see that the velocity is governed by
the unknown streaming potential Ēs .

To obtain the streaming potential, we first equate the net
ionic current i (per unit length) to zero, i.e.,

i(r,t) = e

∫ h(r,t)

0
(u+n+ − u−n−)dz = 0. (20)

Using u± = u ± eEs/� (where � is the ionic friction coeffi-
cient, assumed to be identical for the cations and the anions),
we can rewrite the above equation as

i(r,t) = e

∫ h(r,t)

0

[
u(n+ − n−) + eEs

�
(n+ + n−)

]
dz = 0,

(21)
or in dimensionless form as

i

en∞u0h0
=

∫ h̄

0
[ū(n̄+ − n̄−) + K(n̄+ + n̄−)]dz̄ = 0, (22)

where K = eE0/u0�. This dimensionless number K can be
expressed in terms of the dimensionless parameter S = kBT η

�εζ 2

introduced in [44], which is effectively the reciprocal of the
electric Hartmann number He [72] (obtained by replacing
the ionic friction coefficient � by the reciprocal of ionic
mobility ω):

K =
(

eζ

kBT

) (
−ue

u0

) (
ωkBT η

εζ 2

)
= − ζ̄ β

He
. (23)

Since the product ζ̄ β is always positive, K must be always
negative.

Using Eq. (18) in Eq. (22), we get the streaming potential as

Ēs = − M2I1 + M4I2 + 1
Ha2 I3

M1I1 + M3I2 + M5I4 + KI5
, (24)

where [using the linearization of the ionic concentration
distribution for low EDL potentials (alternatively known as
Debye-Hückel linearization)], we get

I1 =
∫ h̄

0
exp (Haz̄)(n̄+ − n̄−)dz̄

= − 2ζ̄ λ̄

Haλ̄ − 1

{
exp

[
h̄

λ̄
(Haλ̄ − 1)

]
− 1

}
,

I2 =
∫ h̄

0
exp (−Haz̄)(n̄+ − n̄−)dz̄

= 2ζ̄ λ̄

Haλ̄ + 1

{
exp

[
− h̄

λ̄
(Haλ̄ + 1)

]
− 1

}
,

(25)

I3 =
∫ h̄

0
(n̄+ − n̄−)dz̄ = 2ζ̄ λ̄[exp (−h̄/λ̄) − 1],

I4 =
∫ h̄

0
exp (−z̄/λ̄)(n̄+ − n̄−)dz̄ = ζ̄ λ̄[exp (−2h̄/λ̄) − 1],

I5 =
∫ h̄

0
(n̄+ + n̄−)dz̄ = 2h̄.
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To close the problem, we need to express u0 in terms of uav .
That can be done as follows:

uav =
∫ h

0 udz

h
= u0

h̄

∫ h̄

0
ūdz̄ ⇒ u0 = uavh̄∫ h̄

0 ūdz̄
, (26)

where ∫ h̄

0
ūdz̄ =

(
M1Ēs + M2

Ha

)
[exp (Hah̄) − 1]

−
(

M3Ēs + M4

Ha

)
[exp (−Hah̄) − 1]

−M5Ēs λ̄[exp (−h̄/λ̄) − 1] + h̄

Ha2 . (27)

With u0 expressed in terms of uav , we can now employ
Eqs. (4), (18), (19), (24), and (25) to obtain the velocity field
(and hence the particle velocities; we assume the particles to
be neutrally buoyant) in the entire evaporating drop.

III. RESULTS AND DISCUSSIONS

A. Velocity profile without consideration of streaming potential

In Fig. 2(a), we show the effect of the MHD transport
(governed by the corresponding Hartmann number) on the
temporal variation of the velocities at different radial locations,
without considering streaming potential effects. For radial
locations that are closer to the drop center, MHD transport
causes a noticeable increase in the velocity for initial and
intermediate time values. The MHD transport retards the
pressure-driven capillary transport. However, to ensure the
uniformity of the evaporation flux (and the consequent depth
average flow speed uav), there is a significant augmentation
of the corresponding pressure gradient [see Fig. 2(b)]. This
triggers a larger velocity for the case with MHD effects.
Qualitatively, such an enhancement is exactly analogous to our
previous study [44], where we demonstrated that the retarding
influences of the electrokinetic streaming effect result in a
net increase in the flow speed. It may be noted, however,
that at locations closer to the drop edge, as well as at time
values close to the drop lifetime, the effect of MHD transport
is substantially weakened. This can be explained by the
following mathematical argument. From Eqs. (15) and (26),

we can write u = uav(ūh̄/
∫ h̄

0 ūdz̄). For large radial values, as
well as large time values, h̄(r̄ ,t̄) is substantially reduced, so

that ūh̄ ≈ ∫ h̄

0 ūdz̄, making u ≈ uav . Therefore, u is primarily
dictated by uav , with negligible influence of ū. Consequently,
the MHD transport which varies with ū [see Eq. (14)] will
demonstrate the negligible influence on the overall velocity.
This radial and temporal dependence of the MHD effect can
be alternatively supported by the corresponding variation in
the pressure gradient [see Fig. 2(b)].

There is also a crucial difference between the MHD-
triggered velocity increase and the velocity increase noted
with finite electrokinetic effects [44]. The electrokinetic effects
depend on the net flow rate (i.e., uav), and accordingly the
increase of uav at the end of the drop life enhances the
electrokinetic effects and makes its impact significant for
the evaporation-triggered disordered phase deposition of the
particles. On the contrary, with MHD effects, an increase in
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FIG. 2. (Color online) (a) Variation of the velocity profiles for
pure MHD transport for different values of the radial location and
Hartmann number for the case of no streaming potential. In the
plots where we do not specify the Hartmann number, we consider
a pure pressure-driven capillary transport. (b) Variation of the ratio
of the corresponding pressure gradients [(dp/dr)0 and (dp/dr)Ha

refer to the pressure gradient without and with the MHD transport;
here we replace ∂p/∂r by dp/dr]. Different parameters used for the
simulation are z = 0.05hm (t = 2000 s, r/R = 0.99) [where hm =
h (t = 2000 s, r/R = 0.99) (this height h is the case where there
are no external effects)], Dva = 24 × 10−6 m2/s, �c = 1.2 × 10−2

kg/m3, ρ = 998 kg/m3, te = 2100 s (this te is the total lifetime of the
drop without any external effect).

the velocity occurs only at the initial (or intermediary) times
(for reasons discussed above), and there is no influence in
the disordered phase velocity—therefore MHD alone cannot
influence the disordering effect of the particle deposition.

B. Velocity profile with consideration of streaming potential

In Fig. 3(a), we demonstrate the effect of combined MHD
and the streaming-potential-induced electrokinetic transport.
The strength of the streaming potential is governed by the
dimensionless parameters K and β. Smaller magnitudes of
K and larger values of β signify stronger electrokinetic
transport (discussed in Sec. II B). This can be further corrob-
orated using the fact that Es ∼ E0 ∼ ueη/εζ ∼ βu0η/εζ ∼
eβE0η/K�εζ [see Eqs. (15)], clearly demonstrating the nature
of the dependence of the electrokinetic effects on K and
β. When the contribution of these parameters is relatively
small, the combined EMHD transport leads to an enhanced
deposition speed at the end of the drop life (contributed by
the electrokinetic transport, which is similar to our finding
in [44]), whereas at the beginning of the drop life there is a
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FIG. 3. (Color online) (a) Variation of the temporal velocity
profiles for EMHD transport for different values of the radial location
and Hartmann number as well as the parameters K and β for the case
with finite streaming potential. In the plots where we do not specify
the Hartmann number, we consider only a combined pressure-driven
and electrokinetic (driven by streaming potential) capillary transport.
(b) Variation of tc (see the text for definition) with the radial location as
a function of the parameters K and β. The variation of the Hartmann
number has no influence on tc. Unless specified, we always take
λ = 0.1hm and ζ̄ = −1. Other parameters are identical to that used
in Fig. 2.

MHD-effect-driven speed enhancement [similar to Fig. 2(a)].
Also similar to Fig. 2(a), the contribution of the MHD transport
is found to be more prominent at smaller radial locations. Up
to this point, the effect of the EMHD transport appears to be a
trivial combination of the electrokinetic and MHD transport.
However, for smaller magnitudes of K and larger values
of β, the combination appears to be completely nontrivial.
This is manifested by a large divergence in the flow field
(similar to what is observed at the end of the lifetime of the
drop [41,44]) at a time (which we denote as tc, i.e., tc < te) that
is much smaller than the lifetime of the drop. At larger radial
locations (where the average flow strength is much higher),
tc can be even smaller. This velocity divergence characterizes
the disordering effect in the particle deposition [41,44], and
therefore suggests a most remarkable situation where the
disordering effect is triggered much before the end of the drop
life. Most importantly, this disordering occurs only when there
is a finite MHD transport. This is in sharp contrast to the fact
that for only a combined pressure-driven and electrokinetic
transport, with identical parameters, the disordering occurs
only at the end of the drop life (as seen in our previous
study [44]). Such a behavior can be explained by the following

mathematical argument. From the scaling expressed above,

we may write Es ∼ βu0η/εζ ∼ (βη/εζ )(uavh̄/
∫ h̄

0 ūdz̄). This
shows that Es depends linearly on uav , and inversely on ū.
Hence the MHD-triggered lowering of ū will lead to a larger Es

or a larger electrokinetic effect. Therefore, for augmentation of
the electrokinetic effect (and the resulting velocity divergence),
one need not solely depend on the divergence of uav (occurring
at the end of drop life); rather, with the MHD transport, such
an increase can occur at a much lesser time (since the MHD
effect is most significant at a smaller time), causing a velocity
divergence at a time much smaller than the original drop life.

In Fig. 3(b), we plot the variation of tc as a function of
the radial location for different values of the parameters such
as β, K , and λ/h0. For small magnitudes of K and large
values of β, we find extremely small values of tc for relative
high values of radial location, therefore signifying that the
disordering effect may set in almost instantly after the onset
of evaporation. Therefore, our study readdresses the notion
that the disordering effect in evaporation-triggered particle
deposition occurs only at the end of the lifetime of the drop;
rather, we demonstrate that the time at which this effect sets
in is strongly dependent on the interplay of different effects,
and may occur, for certain choices of the parameters, almost
instantly after the start of the evaporation.

The physical significance of such velocity divergence, at
different radial locations and at times smaller than the drop
life, can be manifold. It may signify that the pinned contact
line mode of evaporation ceases to occur (therefore demanding
a different analysis as compared to what has been presented
here) or that there is an instantaneous coffee stain formation,
etc. All of these hypotheses are still a matter of conjecture,
and we do not intend to discuss them in this paper. In a future
paper, we would like to further discuss these issues and attempt
to quantify our findings through detail experiments.

C. Effect of the magnetic field on evaporation

It is worthwhile to discuss the role of the applied magnetic
field in altering the evaporation dynamics (or evaporation rate)
of the evaporating drop. This is an important analysis in light
of the fact that we assume that the evaporation dynamics
remains unaffected by the application of the magnetic field (see
Sec. II A). To evaluate the role of the applied magnetic field in
altering the evaporation dynamics, we first need to estimate the
strength of the magnetic field. From Eq. (8), we can obtain the
scaling of the magnetic field (strong enough to affect the flow)
as B0 ∼ √

η/h2
0σe. Considering h0 ∼ 1–10 cm, σe ∼ 10 S/m,

and η = 10−3 Pa s, we get B0 ∼ 0.1–1 T. Therefore, we can
clearly see that if the solution is substantially ionic in nature,
then the liquid becomes sufficiently magnetic so that even
moderate magnetic fields can induce appreciable MHD effects
(such a situation where an ionic solution becomes magnetic
has been studied earlier in [69–71,73–75]). There have been
several studies [50,76] that experimentally demonstrate the
effect of the magnetic field of such moderate strength on
the evaporation of water and electrolyte solution. It is clearly
shown in these studies that over a finite time window (t ∼ 103

s, i.e., the time window over which we provide our results),
the presence of the magnetic field causes only a minor (often
less than 10–20%) increase in the evaporation rate of low
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ionic concentration solution, and a minor decrease in the
evaporation rate of large ionic concentration solution. For the
present analysis, we neglect such an alteration, and therefore
our model remains valid in the sense that the evaporation
remains unaffected by the applied magnetic field. Interestingly,
this minor variation in the evaporation rate is not attributed
to the temperature rise. Typically, the magnetic-field-induced
Joule heating raises the temperature by �T ∼ σeu

2
0B

2
0�t/ρcp

(where �t is the total time interval and σT and cp are the
thermal conductivity and specific heat capacity of the liquid,
respectively) [77,78]. Using B0 ∼ 1 T, u0 ∼ 10−5 m/s, σe ∼
10 S/m, ρ ∼ 1000 kg/m3, cp ∼ 103 J/kg K, and �t ∼ 103 s,
we get �T ∼ 10−12 K, i.e., the temperature rise is extremely
small. Therefore, we can safely conclude that the change in
evaporation rate on account of application of the magnetic
field is not due to the corresponding temperature rise, and may
be associated with variations of other possible factors such as
water ordering or disordering effect of the ions [50], change
in bulk electrical conductivity [50,76,79], change in hydrogen
bonding in water [80], etc. It is worthwhile to mention here
that the well-known heating effect encountered by magnetic
fluids in the presence of applied magnetic fields occurs only
when the magnetic field is of an alternating nature, and the heat
is generated by the viscous dissipation caused by the rotation
of the magnetic nanoparticles in order to align to the magnetic
field [81,82]. Since in the present problem the applied magnetic
field is strictly steady, no such dissipation-induced heating is
possible. Also, the net heat generated, or the net temperature
rise due to the applied magnetic field, remains substantially
small and can be safely neglected.

In addition, as a final note, we would like to emphasize that
the electric field is the in situ generated streaming electric field
induced in the presence of zero net current [see Eq. (20)], and
hence there will be no Joule heating due to the induced electric
field.

Hence, to summarize, we can confidently conclude that both
the applied magnetic field and the induced electric field will
not cause any noticeable deviation of the proposed evaporation
dynamics (described in Sec. II A), keeping our model perfectly
valid.

IV. CONCLUSIONS

In this study, we investigate the problem of the coffee stain
effect in the presence of the combined EMHD transport. The
presence of a MHD transport, quantified by the Hartmann
number, ensures that there is an increase in flow speed at
initial and intermediate times of the drop life, with the effect
being particularly pronounced for radial locations closer to the
drop center. This is in contrast to the effect of the electrokinetic
transport, where the flow speed augmentation occurs primarily
at the end of the drop life [41,44], causing an enhanced
disordering effect in particle deposition. However, the reasons
for the flow speed enhancement for both of these processes are
identical: they occur as these transport mechanisms retard the
original pressure-driven capillary transport, thereby enhancing
the net pressure gradient in order to maintain the uniformity
in the evaporation flux. Most importantly, we observe that
for certain parameter values, the MHD and the electrokinetic
transport combine to produce a nontrivial behavior where

the large divergence in the velocity field, and therefore the
disordering in particle deposition, occurs at a time much earlier
than the end of the drop life, and may even occur almost
instantaneously after the start of the evaporation process. The
characteristics of the coffee stain deposit are a function of the
deposition dynamics and depend on the flow divergence effects
[41]. Such deposition has been prolifically used to create two-
dimensional mesoscopic structures and patterns of magnetic
nanocrystals in the presence of a combined evaporative- and
magnetic-field-driven transport [49,58,61,62]. Such a setup
is exactly identical to the problem studied here. Therefore,
the large nontrivialities in particle deposition dynamics pre-
dicted in the presence of combined evaporation and elec-
tromagnetohydrodynamic transport will substantially influ-
ence the physics and characteristics of magnetic nanocrystal
deposition.

APPENDIX: DISCUSSION ON THE PRESENCE
OF A BODY FORCE IN φ DIRECTION AND

ON THE ASSUMPTION v � ur er

We consider a lubrication approximation, so that the
continuity equation under the condition ur � uφ reduces to

1

r

∂

∂r
(rur ) + ∂uz

∂z
= 0. (A1)

Therefore, in the presence of the lubrication approximation
(we take r ∼ R and z ∼ h, and R � h), ur ∼ (R/h)uz, or,
ur � uz.

Neglecting the inertial terms (due to low Reynolds number,
caused by velocities of the order of μm/s), we can write
the φ-momentum transport equation (using the lubrication
approximation) as

− 1

r

∂p

∂φ
+ η

[
∂2uφ

∂z2
+ 2

r2

∂ur

∂φ

]
− σeEsB0 = 0. (A2)

From the r-momentum equation (5), we can write p ∼
Rηur/h2. Therefore, we can compare the different terms in
Eq. (A2) as

1
r

∂p

∂φ

η
∂2uφ

∂z2

∼ ur

uφ

� 1,

1
r

∂p

∂φ

η
(

2
r2

)
∂ur

∂φ

∼ R2

h2
� 1. (A3)

Therefore, Eq. (A2) reduces to

∂p

∂φ
= −rσeEsB0, (A4)

which signifies a pressure buildup (and no flow) in the φ

direction. This is equivalent to the building up of the osmotic
pressure [83] in the transverse direction in a nanochannel with
thick EDLs.

Therefore, our lubrication approximation and the assump-
tion v � urer are consistent with the different components of
the Navier-Stokes equation in cylindrical coordinates.
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[28] H. Gelderblom, Á. G. Marı́n, H. Nair, A. van Houselt, L. Lefferts,

J. H. Snoeijer, and D. Lohse, Phys. Rev. E 83, 026306 (2011).
[29] V. X. Nguyen and K. J. Stebe, Phys. Rev. Lett. 88, 164501

(2002).
[30] H. Hu and R. G. Larson, J. Phys. Chem. B 110, 7090 (2006).
[31] V. H. Chhasatia and Y. Sun, Soft Matter 7, 10135 (2011).
[32] J.-Y. Jung, Y. W. Kim, and J. Y. Yoo, Anal. Chem. 81, 8256

(2009).
[33] T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, Anal. Chem.

83, 1871 (2011).
[34] P. J. Yunker, T. Still, M. A. Lohr, and A. G. Yodh, Nature

(London) 476, 308 (2011).
[35] S. Maheshwari, L. Zhang, Y. Zhu, and H.-C. Chang, Phys. Rev.

Lett. 100, 044503 (2008).
[36] R. van Hameren, P. Schön, A. M. van Buul, J. Hoogboom, S. V.

Lazarenko, J. W. Gerritsen, H. Engelkamp, P. C. M. Christianen,

H. A. Heus, J. C. Maan, T. Rasing, S. Speller, A. E. Rowan, J. A.
A. W. Elemans, and R. J. M. Nolte, Science 314, 1433 (2006).

[37] Q. W. Li, Y. T. Zhu, I. A. Kinloch, and A. H. Windle, J. Phys.
Chem. B 110, 13926 (2006).

[38] X. M. Lin, G. M. Wang, C. M. Sorensen, and K. J. Klabunde, J.
Phys. Chem. B 103, 5488 (1999).

[39] H. B. Eral, D. Mampallil, M. H. G. Duits, and F. Mugele, Soft
Matter 7, 4954 (2011).

[40] D. Kaya, V. A. Belyi, and M. Muthukumar, J. Chem. Phys. 133,
114905 (2010).
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