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We numerically investigate the radial dependence of the velocity and temperature fluctuations and of the
time-averaged heat flux j (r) in a cylindrical Rayleigh-Bénard cell with aspect ratio � = 1 for Rayleigh numbers
Ra between 2 × 106 and 2 × 109 at a fixed Prandtl number Pr = 5.2. The numerical results reveal that the heat flux
close to the sidewall is larger than in the center and that, just as the global heat transport, it has an effective power
law dependence on the Rayleigh number, j (r) ∝ Raγj (r). The scaling exponent γj (r) decreases monotonically
from 0.43 near the axis (r ≈ 0) to 0.29 close to the sidewalls (r ≈ D/2). The effective exponents near the axis
and the sidewall agree well with the measurements of Shang et al. [Phys. Rev. Lett. 100, 244503 (2008)] and the
predictions of Grossmann and Lohse [Phys. Fluids 16, 1070 (2004)]. Extrapolating our results to large Rayleigh
number would imply a crossover at Ra ≈ 1015, where the heat flux near the axis would begin to dominate. In
addition, we find that the local heat flux is more than twice as high at the location where warm or cold plumes go
up or down than in plume depleted regions.
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I. INTRODUCTION

In Rayleigh-Bénard (RB) convection a fluid is heated
from below and cooled from above. This problem of thermal
convection is of the utmost importance from an applied point
of view. Examples are thermal convection in the atmosphere,
in the oceans, and in process technology. For recent reviews
of RB convection we refer to Refs. [1,2].

In a cylindrical container, the dynamics of a RB system de-
pends on three control parameters, the Rayleigh number Ra =
gβ�L3/νκ , the Prandtl number Pr = ν/κ , and the aspect ratio
� = D/L. Here g is the gravitational acceleration, β the iso-
baric thermal expansion coefficient, � the temperature differ-
ence between the top and bottom plates, ν the kinematic viscos-
ity, κ the thermal diffusivity, and L and D are the height and di-
ameter of the cylinder. The response of the system is expressed
by the Nusselt number Nu, the dimensionless heat flux [1].

Previous studies mainly focused on determining the global
heat flux as a function of Ra and Pr. For water (Pr = 2−7),
in the experimentally available range of Ra = 108–1011, one
finds that the global heat transport effectively scales as Nu ∼
Ra0.29–0.31 [1,3–8]. The effective exponents for the global heat
flux are well described by the unifying theory of Refs. [4,9–11].
That theory also made predictions for the scaling exponents of
the local heat flux in the center of the cell and at the sidewall
[11]. The reasoning is based on splitting the thermal energy
dissipation field into its plume and background contributions;
similarly the kinetic energy dissipation is decomposed into
its boundary layer and bulk contributions. By doing this
Grossmann and Lohse [11] accounted for the various scalings
in the Ra-Pr parameter space. They found that the local
heat flux has an effective power law dependence on the Ra
number, j (r) ∝ Raγj (r), and obtained a prediction for the
scaling exponent γj = 0.45 in the bulk (center) and γj = 0.22
at the plume (sidewall) regions.

In order to understand the heat flux one has to either rely
on Eulerian [12] or Lagrangian [13,14] measurements where
the complex interplay between velocity and temperature can
be studied. Advancements in experimental techniques made
it possible to measure the vertical local velocity uz(r,t) and
the local temperature T (r,t) at a given spatial location r as
functions of time. This allowed Shang et al. [12,15,16] to
determine the local convective heat flux [17]

j (r,t) = uz(r,t)[T (r,t) − T0]

κ�/L
, (1)

where T0 is the mean bulk temperature. They determined the
probability density functions (PDF) of the local heat flux in
the axis and sidewall regions and showed that the vertical heat
flux is highly non-Gaussian and intermittent due to thermal
plumes. This work stimulated Ching et al. [18] to theoretically
study the problem. They decomposed the velocity field into
a part associated with strong temperature fluctuations plus a
background and found that, with the definitions they used,
the local heat transport associated with the former velocity
component near the axis of the cell scaled as Ra1/7. Later
experiments by Shang et al. [16] revealed that the effective
scaling exponent for the local heat flux is about 0.49 near the
cell axis and about 0.24 near the sidewall, which confirms the
main results obtained by Grossmann and Lohse [11], but is in
disagreement with the model of Ching et al. [18].

In experiments it is quite difficult to measure the heat flux
at many points in the cell due to problems with measurement
techniques and the presence of inherent noise levels. The
measurements at just one or two points may not be enough to
understand the complex dynamics involved in the convection
process. The present paper offers numerical results which
complement the work initiated by Shang et al. [12,16]. We
provide information on the heat flux at one-quarter, one-half,
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and three-quarters of the cell height for several radial positions
r , not only near the axis and the sidewall. This information
allows us to understand the two limits in the unifying theory
[11] on the effective scaling exponents, one valid in the bulk
(the central region of the cell) and the other valid in the
plume region. As a result we clearly see persistence of the
inhomogeneous nature of the flow in the radial direction which
leads to different scaling exponents.

In experiments the local velocity is measured by LDV/PIV
techniques at a spatial position which slightly differs from the
location of the local temperature measurement. This spatial
misalignment may possibly affect the results. In numerical
simulations, in contrast, one has all the information on the
flow field and thus the local heat flux can be calculated from
the velocity and temperature measurements at exactly the
same position. Finally, we comment on the local heat flux
distribution with respect to the large scale circulation and the
ultimate regime mentioned in Refs. [9,11,19] and provide data
to illuminate the differences between the measurements of
Shang et al. [16] and the earlier Ching et al. [18] claims.

In simulations the Ra number range and the duration avail-
able for time averaging are more limited than in experiments.
In order to mitigate the latter shortcoming we have limited
the Ra number of our simulations. In the next section we
briefly describe the numerical procedure before discussing our
results on the local heat flux and the velocity and temperature
fluctuations.

II. NUMERICAL METHOD

We performed direct numerical simulations for a Boussi-
nesq fluid in a unit aspect ratio (� = 1) cylinder with constant
temperatures applied at the top and bottom plates and an
adiabatic sidewall. The fluid simulated in our calculations
is water at 32 ◦C (Pr = 5.2) for 2 × 106 � Ra � 2 × 109.
The governing equations for momentum, energy, and mass
conservation in dimensionless form are given by (see e.g.
Ref. [20])

Du
Dt

= −∇p + θ ẑ +
(

Pr

Ra

)1/2

∇2u, (2)

Dθ

Dt
= 1

(PrRa)1/2
∇2θ, ∇ · u = 0. (3)

Here the dimensionless variables are the velocity u, scaled
temperature θ , and pressure p (minus the hydrostatic con-
tribution). The material derivative is denoted by D/Dt .
The unit vector ẑ is in the direction opposite to grav-
ity. The physical variables length and velocity are made
nondimensional by the cylinder height (L), and the free-
fall velocity U = √

gβ�L. Constant dimensionless temper-
atures of 1 and 0 are applied at the bottom and top plate,
respectively.

The governing equations are solved on a staggered grid
with second-order accuracy in space and time. For the time
advancement a third-order Runge-Kutta scheme is used. This
method is stable for a CFL number up to

√
3 [21] and here

we used a CFL number of 1.2. In addition, the maximum
time step of integration is restricted to 0.01 free-fall times.
More details about the numerical method can be found in
Refs. [20,22,23]. For the spatial resolution we followed the
criteria set by Stevens et al. [24].

The code has been validated by effecting many comparisons
of the calculated Nusselt number with experimental data
showing agreement within 1% [24]. Recently, we have shown
that statistical quantities (relative strength and temperature
amplitudes of the large-scale circulation, and sidewall tem-
perature gradient) measured in experiments and simulations
agree up to the statistical accuracy that can be obtained in
simulations [25].

A summary of the simulation parameters is shown in
Table I. The first and second columns are Ra and the number
of grid nodes. The volume- and time-averaged global heat
transport, i.e., the Nusselt number Nu = 1 + √

Ra Pr[〈uzθ〉V ],
is shown in the third column; here the overline denotes time
averages and the angular brackets 〈·〉V volume averages.
The number of grid points used to resolve the thermal
boundary layers is shown in the fourth column. In a RB cell
with no slip velocity condition at the walls the dimensional
thermal energy dissipation rate, εT = κ�2L−2〈|∇θ |2〉V , and
kinetic energy dissipation rate εK = ν3L−4Pr−2Ra〈|∇u|2〉V
satisfy exact relationships with Nu (see Refs. [1,26]), namely
εT = κ�2L−2Nu and εK = ν3L−4Pr−2Ra(Nu − 1). In order
to validate our simulations the obtained energy dissipation
rates are compared with Nu in Table I. These ratios are near

TABLE I. Summary of simulation parameters: the number of grid points used in angular (Nφ), radial (Nr ), and axial directions (Nz), volume
and time averaged Nusselt number (Nu), the number of grid points in the thermal boundary layer (nbl), convergence of exact relations for εK

and εT , comparing maximum of grid spacing in angular (δφm) and axial (δzm) directions with the Kolmogorov length scale based on global
kinetic energy dissipation rate (η), and the averaging time considered for the simulations are shown. The reported times are always measured
in the units of free-fall time and the lengths in terms of cylinder height. For statistical averages we discarded the initial 140 free-fall times, to
prevent transient effects from contaminating the results.

Ra Nφ × Nr × Nz Nu nbl
εK

ν3

L4
Ra
Pr2

(Nu−1)

εT

κ �2

L2 Nu
δφm, δzm, η (×102) time in L/U

2 × 106 193 × 49 × 129 10.93 19 1.008 0.968 2.26, 1.45, 3.41 4200
1 × 107 257 × 65 × 193 16.58 18 1.010 0.971 2.44, 0.73, 2.04 3700
2 × 107 257 × 65 × 193 20.71 18 1.007 0.843 2.44, 0.73, 1.62 3700
6 × 107 321 × 97 × 239 28.48 14 0.989 0.923 1.96, 0.97, 1.13 3000
1 × 108 385 × 129 × 257 33.25 15 0.997 0.955 1.62, 0.73, 0.95 2800
2 × 108 385 × 129 × 257 40.87 13 1.002 0.937 1.62, 0.73, 0.76 2700
5 × 108 513 × 161 × 321 52.80 13 1.005 0.947 1.22, 0.51, 0.56 1900
2 × 109 769 × 193 × 385 80.34 11 0.992 0.959 0.82, 0.34, 0.26 2040
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FIG. 1. (Color online) Computational grid used for Ra = 2 ×
107. We position numerical probes uniformly in the azimuthal
direction in circles at seven radial locations r/L = 0.06, 0.12, 0.19,
0.24, 0.34, 0.40, 0.45 (shown in black). For better statistics, on the
mid-height plane, we use two more sets of probes [blue (outer), red
(inner)] with an offset of one grid point. Inset shows a closeup view
of the probe locations on the grid.

one, which proves the adequacy of the grid resolution. In the
seventh column the largest grid spacings in the azimuthal and
axial directions are compared with the Kolmogorov length. In
the last column the total time used for the statistical averages is
shown in free-fall times (L/U ). The total computational time
was around 2.2 × 105 Power6 CPU hours. This large amount
of time was needed to resolve the small scale motions and heat
flux events.

We placed 1880 “numerical probes” at different radial
locations on three different horizontal planes (at z/L = 0.25,
z/L = 0.50, and z/L = 0.75), to obtain pointwise data on
the temperature and vertical velocity in order to calculate
the local heat flux according to Eq. (1). In each horizontal
plane a number of azimuthally nearly equally spaced probes
were placed on seven circles with radii r/L = 0.06, 0.12,
0.19, 0.24, 0.34, 0.40, and 0.45; see Fig. 1. On each circle
we distributed 60 probes at z/L = 0.50 and 20 probes at
z/L = 0.25, 0.75. In addition, on the mid-height plane, each
circle was complemented by two other circles, one inside and
one outside, spaced by one radial mesh length as shown in the
upper right corner of Fig. 1. In total, we have information
from 60(azimuthal) × 7(radial) × 3(sets) = 1260 probes at
the mid-height plane. For the planes at z/L = 0.25 and at
z/L = 0.75 we have information from 20 × 7 = 140 probes.

III. RESULTS

A. Local heat flux

In Fig. 2 we show PDFs for the local instantaneous
heat flux j on the mid-height plane, at two different radial
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FIG. 2. (Color online) PDFs of the local instantaneous heat flux j

(a) near the sidewall at r/L = 0.45 and (b) near the axis r/L = 0.06
at midheight for Ra = 2 × 107 (red solid), 1 × 108 (green dash-dot),
and 2 × 109 (blue dash).

positions, one near the cell axis (r/L = 0.06) and one near
the sidewall (r/L = 0.45). Note that the latter is outside the
kinetic boundary layer (BL) which at this Prandtl number
has a thickness of λu/L ≈ 3.6Ra−0.26±0.03 [28]. According
to this scaling law we have λu/L ≈ 0.05 for Ra = 107 and
λu/L ≈ 0.016 for Ra = 109. From our numerical calcula-
tions of the kinetic sidewall BL thickness, as identified
by the location of the maximal velocity fluctuations, we
get even slightly smaller values. Obviously, there is no
thermal BL at the sidewalls due to the adiabatic boundary
conditions.

The first striking observation from Fig. 2 is that the absolute
value of the heat flux is much larger at the side walls
(a) as compared to the center (b). This is consistent with
the expectation that most of the heat is transported by the
large-scale convection roll and of course it is well known [16].
Near the sidewall we observe some events with a heat flux
as high as 15 times the average. In this region, the PDF has
a marked positive skewness due to rising and falling of the
warm and cold plumes. The PDF of the local heat flux in
the cell center also has a positive skewness, which indicates
that plumes can travel through this region as well. Figure 3
shows examples of the time evolution of j as a function of
the dimensionless time t close to the cell center (r/L = 0.06,
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FIG. 3. (Color online) Time series for the heat flux near the
sidewall (thin, red) and in the center (thick, gray) for Ra = 1 × 108.

gray) and to the sidewall (r/L = 0.45, red) for Ra = 108 and
again reflects the presence of much stronger heat transport
events near the sidewall than near the axis.

One of the main features of turbulence is the small scale
intermittency that is measured as departure from a Gaussian
character of the PDF, mainly the tails and the peakedness.
This can be quantified by calculating the flatness F4 of the
PDF. For strongly intermittent signals however the integral
of j 4 × PDF(j ) defining the flatness may not converge. To
examine this issue we calculate the angular average of this
quantity at r/L = 0.06 and at r/L = 0.45 on the mid-height
plane. While at the sidewall this quantity decays for large
|j | sufficiently fast, see Fig. 4 (this feature is more evident
when data is plotted on a linear rather than log scale), and
thus permits the calculation of the flatness (showing strong
intermittency, F4 ≈ 11, inset of Fig. 4), in the center the inter-
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FIG. 4. (Color online) j 4 × PDF(j ) vs j is shown for different Ra
near the sidewall region showing convergence of the flatness at that
location. Note that the vertical axis is given in log scale, in contrast
to the figures shown in the convergence test by Belin et al. [27],
where j 4 × PDF(j ) is given on a linear scale. The inset shows that
the flatness F4 increases as a function of Ra.
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FIG. 5. (Color online) Centered PDFs of the normalized heat
flux j�(r) = [j (r) − j (r)]/jrms(r) on the mid-height plane (a) near
the sidewall r/L = 0.45, and (b) near the axis r/L = 0.06.

mittency is so strong that no convergence for the flatness can be
achieved.

By rescaling the heat flux j with its standard deviation
jrms, the zero-mean PDF for the normalized heat flux j� ≡
(j − j )/jrms shows universality near the sidewall [see
Fig. 5(a)]. The tails for the rescaled PDFs are shorter at the
sidewalls compared to those at the center. This indicates rela-
tively fewer plumes carrying a large heat flux at the sidewalls
in contrast to relatively more plumes carrying a smaller heat
flux at the center, and again underlines the extremely strong
intermittency of the heat flux on the axis [see Fig. 5(b)].

Figure 6(a) shows the time- and angularly averaged heat
flux as a function of Ra at different radial positions on the
mid-height plane. The solid lines are the measurements of
Shang et al. [16] taken right on the axis and very near to
the wall. Figure 6(b) shows that the corresponding scaling
exponent γj as a function of the radial position decreases
monotonically from 0.43 near the axis to 0.29 close to the
sidewall. The measurements of Shang et al. [16] and the
theoretical analysis of Grossmann and Lohse [11] only made
statements on the values close to the sidewall and to the axis;
these are well confirmed by the present results. In the Ra range
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FIG. 6. (Color online) (a) Open symbols indicate the numerical
results for the local heat flux averaged over time and angular position
as function of Ra at different radial positions r/L. The solid lines show
the experimental data of Shang et al. [16]. (b) The scaling exponent
for the time- and angle-averaged heat flux as function of the radial
position r/L for the simulations, experiment [16], and theory [11].

considered here the heat transport near the sidewall is an order
of magnitude larger than in the center. An extrapolation of the
power law fits j = 0.0025Ra0.43±0.01 obtained near the center
and j = 0.3236Ra0.29±0.01 valid near the wall shows that these
become equal for Ra ≈ 1015. This value is consistent with
the prediction of the unifying theory [9]. Recent experiments
[29] suggest the occurrence of this feature in the range
1013 � Ra � 5 × 1014, whereas Shang et al. [16] suggested
that it happens at Ra ≈ 1014, based on their extrapolation.

B. Local fluctuations

In this section, we determine the scaling with Ra of the
velocity and temperature fluctuations with respect to their
theoretical global mean at different radial locations.

Figure 7(a) shows Rerms ≡ √
(Ra/Pr)urms (equivalent to

UdimL/ν with Udim the dimensional rms velocity) as a function
of Ra on the mid-height plane. For the normalized temperature
fluctuations we take the root mean square of θ ′ = θ − 1/2.
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FIG. 7. (Color online) (a) Reynolds number based on the rms
velocity Rerms, and (b) the rms values of θ − 1/2, with θ the
normalized temperature, as functions of Ra, both for different radial
positions.

Figure 7(b) shows the results for this quantity versus Ra at
different radial positions on the mid-height plane.

At all radial positions, fluctuations of both velocity and
temperature exhibit a power law dependence on Ra propor-
tional to Raγu and Raγθ ′ , respectively. In this Ra number regime
the thermal fluctuations close to the sidewall are an order of
magnitude larger than at the cell center due to the plumes that
travel along the wall.

Figure 8 shows that the corresponding velocity scaling
exponents increase smoothly from γu = 0.44 in the cell center
to γu = 0.49 near the sidewall. Figure 8 shows that the
corresponding temperature scaling exponent decreases from
γθ ′ = −0.18 in the cell center to γθ ′ = −0.20 near the sidewall.

Table II summarizes the data for the scaling exponents
available in the literature and compares them with the present
ones. There are some differences among the values reported.
This is due in part to the spatial dependence of this quantity,
shown in Fig. 8, but also to the use of different experimental
techniques which measure somewhat different quantities.
Overall, there is a general consistency among the data shown.
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FIG. 8. (Color online) Variations in the velocity (blue, upper
points and right axis) and temperature (red, lower point and left
axis) scaling exponents with Ra are shown as functions of the radial
position.

The origin of the residual differences cannot be ascertained on
the basis of the presently available knowledge and must await
further research.

The quantity Rerms shown in Fig. 7(a) would equal the
Reynolds number based on the mean velocity fluctuation,

Re′ = √
(Ra/Pr)u′, with u′ =

√
u2

z − (uz)2 only for a perfectly
converged simulation without any fixed large scale convection
roll, for which uz = 0. The simulation time necessary for
this full convergence is completely outside the realm of
practical computations as it would require averaging over a
time sufficiently long with respect to slow processes such
as the reorientation of the large scale circulation (see, e.g.,
Ref. [43] and Sec. IV A below). It is also interesting therefore
to present in Fig. 9 results for Re′ similar to those of Fig. 7(a)
for Rerms. The subtraction of uz removes the effect of the
slowly varying large scale circulation which dominates near
the sidewall but is fairly inconsequential near the axis. Thus the
same scaling found near the axis in Fig. 7(a), Rerms ∼ Ra0.44,
becomes applicable over the entire cell as suggested by the
solid line.
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FIG. 9. (Color online) Reynolds number Re′ based on the rms
velocity fluctuations vs Ra at different radial positions; the solid line
has the slope 0.44 suggested by value of γu at r/L = 0.06 from
Fig. 7(a).

IV. STATISTICS WITH RESPECT TO THE ORIENTATION
OF THE LARGE SCALE CIRCULATION

For � = 1, the flow in the cell is characterized by a large
scale circulation (LSC) [31,41–43] as sketched in Fig. 10.
Most of the plumes travel in the LSC plane close to the
sidewall. In experiments the LSC orientation can be detected
with thermistors embedded in the sidewall [44] which measure
relatively higher and lower temperatures in the regions of
upflow and downflow [43]. Here we want to determine how
the local heat flux depends on the location of measurement
with respect to the LSC orientation plane.

A. Determination of LSC orientation

A well-tested method to determine the LSC orientation
as a function of time is to fit a cosine to the azimuthal
distribution of the vertical velocity or temperature profiles
near the sidewalls [1,43–45]. For this purpose we use the

TABLE II. Summary of the velocity and temperature scaling exponents γu and γθ ′ reported in several experimental (E) and theoretical (T)
studies. The experiments mentioned below have been carried out in cylindrical cells, unless stated otherwise.

Ra Pr � γu (center) γθ ′ (center) γu (sidewall) γθ ′ (sidewall)

Castaing et al. [30] (E) 4 × 107–6 × 1012 0.65–1.5 1 0.491 ± 0.002 −0.147 ± 0.005
Castaing et al. [30] (T) 4 × 107–6 × 1012 0.65–1.5 1 3/7 −1/7
Sano et al. [31] (E) 108–1010 0.64–1.4 1 0.485 ± 0.005
Takeshita et al. [32] (E) 106–108 0.024 1 0.46 ± 0.02
Ashkenazi et al. [33,34] (E) 1011–5 × 1014 27–190 1 (square) 0.43 ± 0.02
Chavanne et al. [35] (E) 107–6 × 1012 0.7–4 0.5 0.49
Daya and Ecke [36] (E) 2 × 108–4 × 109 5.46 0.79 0.5 ± 0.03 −0.10 ± 0.02
Niemela et al. [37] (E) 15 × 106–1013 0.7 1 0.5
Qiu et al. [38,39] (E) 108–1010 5.4–5.5 1 0.55 0.46
Lam et al. [40] (E) 106–1011 6–1027 0.5–4.4 0.495 (bottom)
Grossman and Lohse [11] (T) 106–1014 ∼0.1–10 1 0.39 −0.11 to −0.16 −0.09 to −0.11
Shang et al. [16] (E) 108–1010 4.4 1 0.49 ± 0.03 −0.14 ± 0.03 0.46 ± 0.03 −0.24 ± 0.03
Present work 2 × 106–2 × 109 5.2 1 0.44 ± 0.01 −0.18 ± 0.01 0.49 ± 0.01 −0.20 ± 0.01
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FIG. 10. (Color online) Sketch of the LSC in a cylindrical RB cell.
The warm plumes go upwards on the right side, defined as α = 0, and
go downwards on the left side of the cell, defined as α = π . Due to the
shape of the LSC the warm uprising fluid (cold down flowing fluid)
is close to the sidewall at z/L = 0.25 and z/L = 0.50 (z/L = 0.75
and z/L = 0.50).

information from the numerical probes placed uniformly in
the angular direction at r/L = 0.45 (see Sec. II) [46]. To make
sure that the LSC orientation is properly identified one has
to avoid a determinant influence of individual plumes. This
need requires that the instantaneous data be preprocessed by
means of short-time moving averages. The choice of a proper
averaging time depends on an order-of-magnitude estimation
of the LSC circulation time. Such an estimate can be found
by dividing the length of the longest path around the cell,
2L + 2D = 4L for � = 1, by an estimate of the fluid velocity.
An upper limit is the free-fall velocity, with which we find
4L/U = 4 free-fall times. A more realistic estimate can be
found by using the computed velocity which, for Ra = 108,
is about 0.15U [see Fig. 11(a)] and somewhat smaller for
Ra = 109. With this estimate we find ≈27 free-fall times. On
this basis we decided to use four different short-time averaging
durations, namely 4, 10, 20, and 50 free-fall times. In this way
we are more confident that the averaging time that we use
covers the correct range.

We determine the LSC orientation by fitting the expression

(uz)i = (uz)m + Au cos(φi + φLSC) (4)

to the time-averaged vertical velocity data. Here (uz)i is
the short-time moving-averaged vertical velocity provided
by the i-th probe at the angular position φi , (uz)m is the
mean value, Au is the amplitude, and φLSC is the angular
position of the LSC with respect to the reference frame of the
computation.

Figure 11(a) shows an example of the azimuthal vertical
velocity profile, and the corresponding cosine fit, using a short-
time averaging window of 20 free-fall times for Ra = 2 × 108.
The maximum of the curve is marked with a red cross and
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0.2
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200

φ /π

j
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FIG. 11. (Color online) Angular dependencies of vertical velocity
and heat flux on the mid-height plane at r/L = 0.45 near the
sidewall for Ra = 2 × 108: (a) vertical velocity (blue points) filtered
by averaging of 20 free-fall times. The red cross indicates the
maximum of the cosine fit, which we take as the LSC orientation.
(b) Instantaneous local heat flux (black points). The black dash lines
indicate the respective cosine fits to the data according to Eqs. (4)
and (5).

identifies the position of the LSC plane. Figure 11(b) is an
example of instantaneous heat flux data fitted as in Eq. (4), but
with twice the frequency (see below),

(j )i = (j )m + Aj cos(2φi + φLSC). (5)

Figure 12 shows φLSC versus time as calculated using
the four different averaging times and for four different Ra
numbers. As expected, the fluctuations in the position of the
LSC plane are somewhat greater when short averaging times
are used. This figure clearly shows that the LSC orientation
is different among simulations even though we used identical
initial conditions for each simulation. We also note that the
frequency of LSC reorientations observed in our simulations
is roughly consistent with the experimental observations by
Ref. [45].

Once the position of the LSC plane as a function of time has
been determined, we can calculate the time-averaged vertical
velocity uz and heat flux j with respect to the LSC orientation.
For this purpose we assign to the uz and j instantaneously
measured by the probe located at φ an angular position
α = φ − φLSC with respect to the LSC. We repeat this step for
all the probes. In this way all the data of the numerical probes
are converted from the computational to the LSC frame of
reference.

Time averages in the LSC reference frame for the vertical
velocity and for the heat flux at r/L = 0.45 on the mid-
height plane are shown in Fig. 13. A comparison of the two
panels in this figure shows that the heat flux has double the
periodicity of the velocity, because the heat flux is enhanced
in correspondence of both the upward and downward moving
streams of the LSC. The local convective heat flux is lower
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FIG. 12. (Color online) LSC orientation as function of time for different Ra. The time averaging used to determine the LSC orientation
(see text) are 4, 20, and 50 free-fall times. The time averaging that is applied to the signal before the analysis is 4 (blue dash-dotted line),
20 (black solid), and 50 (red dash) free-fall times.

near α = π/2 and 3π/2 where very few warm plumes ascend
or cold plumes descend.

The four averaging times used to define φLSC result, in
principle, in four different values of α attributed to each probe
reading. Therefore, for the α dependence of, for example, the
average heat flux j (α), one can draw four different curves.
These four results are shown together by four sets of different
symbols in the lower panel of Fig. 13 depicting the heat flux.
Differences among these results are barely noticeable. This
feature derives from the fact that each value of j (α) measured
by each probe was assigned to one of 20 equal intervals in
which the range of α was divided. Thus values falling within
each 5% of the circle are attributed to the same value of α.
As can be seen in Fig. 12, most of the fluctuations of the LSC
angular position fall within such a range irrespective of the
averaging time. Figure 13 would not greatly change even if the
angular intervals were, for example, halved. Now the values
originally in one bin would be distributed between two adjacent
smaller bins. However, by continuity, the resulting difference
would not be large. This conclusion should be corrected if
large fluctuations were frequent, which is by far not the case

as Fig. 12 shows. Indeed, as seen in the figure, the short-time
averages fluctuate very close to the long-time ones.

In Fig. 14 the amplitudes of the cosine fits for the axial
velocity Au, temperature Aθ , and normalized heat flux Aj [all
defined by fits of Eqs. (4) and (5)], are shown as functions of
Ra at midheight near the sidewall, r/L = 0.45. Interestingly,
these amplitudes have a power-law dependency on Ra,
with scaling exponents 0.020 ± 0.005, −0.250 ± 0.010, and
0.019 ± 0.005 for axial velocity, temperature, and local heat
flux, respectively.

Figure 15(a) shows the time-averaged local heat flux as a
function of Ra at different α at midheight near the sidewall.
From the figure it is clear that this quantity has a power law
dependence on Ra. In agreement with the data in Fig. 14, we
find that the local heat flux in the LSC plane increases faster
than in the regions where few warm plumes rise and cold ones
fall. This is also revealed when the local heat flux scaling
exponent as function of α, see Fig. 15(b), is considered.

Figure 16 shows the variation of the time-averaged local
heat flux with α at three different heights. For z/L = 0.25
larger values of j occur near α = 0, and lower values near
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FIG. 13. (Color online) Time averaged quantities relative to the
orientation of the LSC plane near the sidewalls (r/L = 0.45) at
midheight: (a) vertical velocity uz(α); (b) local heat flux j (α). Here
the circles (blue), squares (red), diamonds (black), and triangles
(magenta) correspond to time averages over 4, 10, 20, and 50 free-fall
times, respectively. The black lines show the cosine fits according to
Eqs. (4) and (5). The mean heat flux (thin-dash dot) and the amplitude
of variation (Aj ) are also shown.

α = π . A similar picture shifted by π is found for z/L =
0.75, with higher values near α = π and lower values near
α = 0. At z/L = 0.50, on the other hand, the levels at α = 0
and α = π are comparable. These results suggest that the
plane of the LSC is somewhat tilted with respect to the
vertical.

106 107 108 109
10−2

10−1

100
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Aθ(α)
Au(α) Aj(α)/ | j(α)|mean

FIG. 14. (Color online) Amplitude variation as function of Ra
of cosine fits near the sidewalls, r/L = 0.45, at the midheight as
function of Ra. The data are shown for temperature (circle, red), axial
velocity (square, black), and normalized heat flux (diamond, blue).
Here |j (α) |mean is the arithmetic mean heat flux in the azimuthal
direction for a given Ra. The dashed lines indicate the power law fits
for the data.
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FIG. 15. (Color online) (a) Scaling of the time averaged local
heat flux with Ra near the sidewalls, r/L = 0.45, at midheight. The
symbols indicate measurements taken at different α. The dashed
lines are the power law fits to the data. (b) Scaling exponent for
the heat flux γj (α) relative to the LSC plane near the sidewall
at z/L = 0.25 (triangles, red), z/L = 0.50 (square, black), and
z/L = 0.75 (diamond, blue). The straight lines indicate the arithmetic
mean values of the scaling exponents.

V. SUMMARY AND CONCLUSIONS

To summarize, we investigated numerically the scaling of
the local heat flux in Rayleigh-Bénard convection of a fluid
with Pr = 5.2 (appropriate for water at 32 ◦C) for 2 × 106 �
Ra � 2 × 109 in a unit aspect ratio cylinder. In this Ra number
regime the local heat flux is larger close to the sidewall than on
the axis. The local heat flux uz(T − T0) is a positive quantity
both when fluid warmer than the average temperature T0

rises and fluid colder than T0 sinks. The PDFs of the local
heat flux have a positive skewness due to the dominance of
plume transport in this Ra range. On the mid-height plane, the
scaling exponents of the local heat flux with Ra near the axis
and close to the sidewall agree well with the measurements
of Shang et al. [16] and the predictions of Grossmann and
Lohse [11]. Here we have shown that these scaling exponents
decrease monotonically with position r from 0.43 near the
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FIG. 16. (Color online) Time averaged local heat flux with respect
to the LSC orientation for Ra = 2 × 108 at different axial positions
for r/L = 0.45. The data are at the quarter height plane z/L = 0.25
(circle, red), at midheight z/L = 0.50 (square, black), and at the
three-quarters height z/L = 0.75 (diamond, blue). Moving averages
are taken over 20 free-fall times.

axis to 0.29 close to the sidewall. The scaling exponent for
the Reynolds number based on the rms velocity depends
on the radial position as well, with a value of 0.44 near the
axis and 0.49 close to the sidewall. For the scaling exponents
of the temperature fluctuations we find −0.18 and −0.20,
respectively. We showed the marked effect of the LSC which
causes local heat fluxes more than twice as large in its
plane than at 90◦ from it. This effect becomes stronger for
high Ra.
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