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The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of
probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables.
The construction of transport equations governing the evolution of such PDFs has been the subject of numerous
studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic
equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations
are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the
various forms is considered. In particular, consideration is given to which form of equation is most appropriate
for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation
of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes
number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question
regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that
one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies
this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of
the kinetic equation do not satisfy this limit or apply only in a limited regime.
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I. INTRODUCTION

The study of scalar and particle dispersion in turbulent
flows is a field of great interest, not only because of the need
for detailed understanding in industrial and environmental
applications (particle transport in pipelines, formation of water
droplets in clouds, dispersion of radioactive aerosols in nuclear
fission reactors, combustion of fuel droplets in engines, etc.)
but also because there remain many theoretical challenges and
unanswered questions in the field.

There are two distinct but closely related areas of interest:
the dispersion of fluid points (i.e., particles with St = 0,
where St is the particle Stokes number) and the dispersion of
inertial particles. Both present challenges, but the dispersion
of inertial particles is more complex since, by virtue of their
inertia, the particles do not follow the flow exactly. This
leads to some important phenomena. For example, studies
have shown that inertial particles suspended in homogeneous
turbulence are not, as might be expected, uniformly mixed by
the turbulence but tend to cluster in high-strain, low-vorticity
regions of the flow (e.g., [1]). Then again, in inhomogeneous
turbulence such as a boundary layer, inertial particles are
distributed nonuniformly, both instantaneously and on average
(e.g,. [2]). This is in contrast to the distribution of fluid points,
which, if initially uniform, will remain so for all times (if the
flow is incompressible). The strong nonuniformity of inertial
particle distributions in a turbulent boundary layer occurs
even when body forces such as gravity are absent and is a
consequence of two competing mechanisms: turbophoretical
drift and preferential sampling of the flow by particles (e.g.,
[3–5]). Developing models capable of accurately predicting
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such phenomena is nontrivial and a subject of continuing
research. In this context kinetic equations play an important
role. These equations, which capture the dynamics of a system
via a probability density function (PDF) for a phase-space
distribution, can be used as the basis for constructing contin-
uum equations that describe the transport of the mean-field
statistics of the particles (or fluid points) (i.e., the transport of
the moments of the PDF).

PDF kinetic equations and their associated continuum equa-
tions have been shown to successfully predict the dispersion
statistics of particles suspended in homogeneous flows (e.g.,
[6]). However, for inhomogeneous systems the predictions are
only, at best, in adequate agreement with equivalent simulation
data (e.g., [7]) Turbulence inhomogeneity presents a major
challenge in the construction of appropriate PDF equations.

In this work PDF equations are considered for both scalar
dispersion as well as for inertial particle transport: In the case
of passive scalars the PDF of interest, ρ(x,t), will define, in
essence, the distribution at time t of the position xf (t) of a
marked fluid point, governed by the equation of motion

d

dt
x

f

i = ui(xf ,t). (1)

The field u(x,t) is to be interpreted as a stochastic model for
a turbulent, incompressible fluid flow, exhibiting correlations
in both space and time. This flow field may be homogeneous
or inhomogeneous. While it is possible to include molecular
diffusion by the addition of a further delta-correlated in time
contribution to the field u this will not be considered here.

By extension, for inertial particles, the PDF of interest,
p(x,v,t), will define the joint distribution of the position xp(t)
and velocity vp(t) = ẋp(t) of a pointlike particle. The equation
of motion defining the trajectories xp will be problem specific.
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A generic form for this equation is considered here, namely,

d2

dt2
x

p

i = Fi(xp,vp,t) + fi(xp,t). (2)

In this equation, which embraces a wide range of models, the
stochastic acceleration experienced by a particle with phase-
space position (x,v) at time t has been decomposed into a
mean deterministic component F and a zero-mean stochastic
term f . Clearly both F and f will depend in some way upon
the underlying fluid velocity field u. The precise nature of this
dependence is not of concern here, since the analysis to be
presented is of a general nature.

Consideration is given first to the case of inertial particles
and the formulation of transport equations for p. This leads
naturally to the limiting case of fluid points obtained as
τp → 0, where τp is some particle response (relaxation) time,
characterizing particle inertia. We consider various forms of
the PDF equation for p and the consequent τp → 0 forms
for ρ. The aim is to resolve some long-standing questions
concerning the equivalence (or otherwise) of these different
forms and the adherence of the models to the fundamental
physical constraint of zero drift. This constraint, which relates
to the preservation of a fully mixed state of fluid points in
incompressible flow, is discussed in detail later in the paper.

For a single realization of f (and corresponding trajectory
xp) we define the fine-grain PDF

P(x,v,t) = δ(xp(t) − x)δ(vp(t) − v). (3)

Then p = 〈P〉 and, corresponding to Eq. (2), the evolution of
this PDF is governed by

∂p

∂t
= − ∂

∂xi

[pvi] − ∂

∂vi

[pFi] − ∂

∂vi

〈Pfi〉. (4)

Here 〈 · 〉 denotes an ensemble average over all realizations of
not only the field f but also the initial conditions xp(0), vp(0).
While (4) represent an exact equation for p it is of little value
in this form since the average 〈P f 〉, referred to as the phase-
space diffusion flux, requires closure. The challenge lies in the
formulation of closed-form expressions for 〈P f 〉 that properly
take into account both spatial and temporal correlations of u
(and by extension f ) and also any inhomogeneity inherent in
this flow field.

A number of authors have addressed this issue and the next
section summarizes key results from three different approaches
to this closure problem. It is often stated (e.g., [6,8,9]) and
widely assumed that, although the methods used in these
approaches are distinct, the resulting representations for 〈P f 〉
are equivalent. One of the purposes of this paper is to draw
attention to the fact that this is not so and to assess the
implications of the differences. A critical test of the validity of
any closure for 〈P f 〉 is provided by considering the limiting
form of the closure for fluid-point dispersion. This limiting
form must be consistent with the zero-drift (fully mixed)
condition for fluid points. Models which fail to satisfy this
physical criterion are said to possess spurious drift, and this
defect indicates that the model is not strictly consistent with
the underlying dynamics of the particle equation of motion
and the turbulent flow field. This issue is addressed in Sec. III.
This presents the main results of the paper, showing that only
one form of closure can be considered truly consistent with this

fully mixed condition. This then also establishes an appropriate
form of the passive-scalar PDF equation for ρ(x,t).

II. EXPRESSIONS FOR 〈P f 〉
A range of strategies for closing the flux 〈P f 〉 can be

found in the literature. The methodologies underpinning these
approaches can be divided into three distinct categories:
(a) Furutsu-Novikov-based methods [6,9–14], (b) Lagrangian
history direct interaction (LHDI) methods [15], and (c) van
Kampen (VK) operator representation methods [8,16].

In this section results from each of these three methods are
presented and analyzed. This highlights that fact that these
approaches do not lead to the same result, even though it is
often claimed that they do (e.g., [6,8,9]).

A. The Furutsu-Novikov approach

A formula developed independently by Furutsu [17] and
Novikov [18] can be used to reformulate correlations of
the type 〈P f 〉. (See [19] for an extensive discussion of the
application of this approach.) The method is quite general but
the result takes a particularly simple (and exact) form when f
is a Gaussian field. The result, based on that given in Ref. [12],
is

〈Pfi〉 = −
(

∂

∂xk

pλki + ∂

∂vk

pμki − pκi

)
, (5)

where the dispersion tensors λ(x,v,t), μ(x,v,t), and κ(x,v,t),
are given by

λki =
∫ t

0
〈�kj (t ; t ′)Rji(xp(t ′),t ′; x,t)〉x,vdt ′, (6)

μki =
∫ t

0
〈�̇kj (t ; t ′)Rji(xp(t ′),t ′; x,t)〉x,vdt ′, (7)

κi =
∫ t

0

〈
�kj (t ; t ′)

∂

∂xk

Rji(xp(t ′),t ′; x,t)
〉

x,v

dt ′, (8)

where 〈·〉x,v denotes a conditioned ensemble average in which
only values of � and R evaluated along particle trajectories
satisfying xp(t) = x,vp(t) = v contribute to the average. In
these expressions R denotes the Eulerian two-point, two-time
correlation tensor for the field f , that is,

Rji(x′,t ′; x,t) = 〈fj (x′,t ′)fi(x,t)〉. (9)

Further, in Eq. (8), the gradient operator ∂/∂xk acts on the
second spatial variable of R, that is,

∂

∂xk

Rji(x′,t ′; x,t) =
〈
fj (x′,t ′)

∂

∂xk

fi(x,t)

〉
. (10)

The response tensor � in Eqs. (6)–(8) is a functional derivative,

�kj (t ; t ′) = δx
p

k (t)

δfj (xp(t ′),t ′)dt ′
. (11)

This describes the effect of a perturbation in the field f at the
particle position at time t ′ upon the position of the particle at
time t . The evolution of � with respect to t (with t � t ′) is
governed by Refs. [19,20]

d2

dt2
�kj = ∂Fk

∂vi

d

dt
�ij +

(
∂Fk

∂xi

+ ∂fk

∂xi

)
�ij , (12)
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with “initial” conditions �ij (t ′; t ′) = 0, �̇ij (t ′; t ′) = δij . In
Eq. (12) the derivatives of F and f are evaluated on the particle
phase-space trajectory (xp(t),vp(t)).

Note that the representation of 〈P f 〉 provided by Eq. (5)
does not, by itself, constitute a complete closure of this flux
since the integrands in Eqs. (6)–(8) still contain unclosed con-
ditional averages involving particle trajectories xp(t ′). Some
second closure step is necessary to model these trajectories.
Only then is the PDF equation properly closed. This second
modeling step is not the subject of this paper. Here attention
is restricted to the more fundamental question concerning
significance of differences resulting from the different basic
approaches. In passing it is noted that a new methodology for
closing the conditional averages in Eqs. (6)–(8) appropriate for
particle dispersion in strongly inhomogeneous turbulence typ-
ical of wall-bounded flows has recently been developed [21].

Several authors have made use of the Furutsu-Novikov (FN)
approach to close 〈P f 〉; see, in particular, Hyland et al. [6],
Derevich and Zaichik [10], Zaichik [9], and Swailes and
Darbyshire [12]. However, there appear to be a number of
errors present in these works. In fact we would claim that none
of these present a strictly correct form: Both [6] and [12] cite
an incorrect form of Eq. (12), omitting the spatial gradient
term ∂fk/∂xi . The implications of this omission are discussed
later in Sec. III, where it will be seen that this gradient term
plays a pivotal role in ensuring the recovery of the fully mixed,
zero-drift condition in the fluid-point limit. The contribution
from the fluctuating acceleration gradient is implicit in the
derivation presented by Zaichik [9] (see also [10,19]), although
this contribution is subsequently neglected in the analysis (and
some later papers, e.g., [14]) where approximations for �

appropriate for quasihomogeneous flows are constructed.
Another important distinction to be made between the forms

of the dispersions tensors λ, μ, and κ given here and those cited
by Hyland et al. [6] and Zaichik [9] lies in the definition of R:
Instead of the deterministic form given here by Eq. (9) both
Hyland and Zaichik replace this with the stochastic form

Rji(x′,t ′; x,t) = fj (x′,t ′)fi(x,t). (13)

Clearly (9) and (13) are intrinsically different. The form given
by Eq. (13) is more in keeping the the closure obtained via the
LHDI approach discussed below, but in the context of the FN
approach this form would appear to be incorrect. The outline
of the FN approach presented in the Appendix emphasizes this
point, and a simple illustration of the significance of replacing
R by R is discussed in Ref. [22].

For homogeneous systems the introduction of R in place
of R is not critical since Corrsin’s hypothesis [23] can be
invoked to justify the claim that the two forms lead to
equivalent definitions of the dispersion coefficients. However,
for inhomogeneous systems this seems doubtful; the use of
Eq. (13) will generate averages in which only those realizations
of f leading to the end condition (xp(t),vp(t)) = (x,v)
will contribute. In contrast, using (9) there is an implicit
contribution from all realizations of f , and it is the full
Eulerian statistics of this field that are sampled along particle
trajectories. Consequently, in inhomogeneous systems, there
is likely to be a bias induced by using (13).

A further relation between the dispersion tensors, as
introduced in the work by Zaichik, is also important to note.
In Ref. [9] (and in later papers such as [7,14,24] by Zaichik
and co-workers) it is stated (or at least implied) that

κi ≡ ∂

∂xk

λki . (14)

At first sight this might appear reasonable since, by comparing
(6) and (8), this amounts to interchanging the order of
averaging and differentiation in Eq. (8). However, this fails to
take into account the fact that the averages are conditional on
the end point x so that this interchange is not valid. Formally,
κi − ∂

∂xk
λki can be written as

−
∫ t

0

∫
x′

Rji(x′,t ′; x,t)
∂

∂xk

Qkj (x′,t ′; x,v,t) dx′dt ′, (15)

where

Qkj (x′,t ′; x,v,t) = 〈�kj (t ; t ′)δ(xp(t ′) − x′)〉x,v, (16)

and there is no reason to assume that, in general, the derivative
of Q with respect to x [the end-point condition on the
average in Eq. (16)] is identically zero. The relation given
by Eq. (14) can only be considered appropriate for fully
homogeneous systems. A conclusive demonstration that (14)
does not hold in general can be found in a recent paper [21],
where the dispersion tensors were computed explicitly from
the simulation of particle trajectories in an inhomogeneous
flow. This shows that there is an important contribution to the
particle mass flux modeled by the term κ − ∇ · λ. If relation
(14) is assumed then this flux will not be taken into account.
This issue is intimately related to the concept of spurious drift
and the realization of the fully mixed condition for fluid points.
This is addressed in Sec. III.

Finally, in Ref. [6] an approximation is made which results
in the trajectories xp(t ′) introduced in the definition of the dis-
persion tensors being treated as deterministic (i.e., independent
of f ; see pages 6182 and 6185 in Ref. [6]). This approximation
is said to be invoked to allow the evaluation of the spatial
integral that appears in the FN derivation. As shown in the
Appendix this is both incorrect and unnecessary. Furthermore,
it is claimed in Ref. [6] that a similar approximation is
necessary in the LHDI formulation of the dispersion tensors
(see page 6182 in Ref. [6]). This is not the case. The LHDI
approach is considered next.

B. The LHDI approach

In Ref. [15] Reeks derived an expression for 〈P f 〉 using
the method of Lagrangian history direct interaction. The
framework used in LHDI is fundamentally different to that
using the FN approach. The FN closure is based upon the
statistical properties of the underlying turbulent carrier phase
in an Eulerian framework, and the closure is exact when the
Eulerian field f is Gaussian. In contrast, the LHDI closure is
developed based upon the statistical properties of f evaluated
along particle trajectories, i.e., f (xp(s),s), the statistics of
which are a subset of those of the field f . In the LHDI approach
it is the process φ(s) ≡ f (xp(s),s) which is considered to be
(or approximated as) Gaussian.
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The LHDI result for the phase-space diffusion flux, as given
in Ref. [15], is

〈Pfi〉 = −
(

∂

∂xk

pLki + ∂

∂vk

pMki − pKi

)
, (17)

with tensors L(x,v,t), M(x,v,t), and K(x,v,t) given by

Lki =
∫ t

0
〈Gkj (t ; t ′) fj (xp(t ′),t ′) fi(x,t)〉x,vdt ′, (18)

Mki =
∫ t

0
〈Ġkj (t ; t ′) fj ((xp(t ′),t ′) fi(x,t)〉x,vdt ′, (19)

Ki =
∫ t

0

〈
Gkj (t ; t ′) fj (xp(t ′),t ′)

∂fi

∂xk

(x,t)

〉
x,v

dt ′. (20)

There are two major differences between these forms and those
obtained from the FN approach, Eqs. (6)–(8): The first of these
differences, as already indicated, lies in the inclusion of the
stochastic R, as given by Eq. (13), rather than the deterministic
R given by Eq. (9). The second difference is between the LHDI
tensor G and the FN response tensor �. The evolution of G is
given by [compare with (12)]

d2

dt2
Gkj = ∂Fk

∂vi

d

dt
Gij + ∂Fk

∂xi

Gij , (21)

with Gkj (t ′; t ′) = 0, Ġkj (t ′; t ′) = δkj . The absence of spatial
gradients ∂fk/∂xi in Eq. (21) is a consequence of the fact
that it is a process, φ, rather than a field, f , that forms the
stochastic input to the model. In Sec. III both the FN and the
LHDI formulations are considered in the context of spurious
drift. That the FN formulation is drift free while the LHDI
formulation is not will be seen to stem from this fundamental
difference between � and G.

Reeks, aware that his original LHDI formulation suffered
from this drift, developed an alternative “Lagrangian-based”
kinetic equation [25,26]. As presented in these references the
approach presupposes the existence of a particle velocity field
V (x,t) such that ẋp = V (xp,t). Although this approach re-
solves the drift problem in a formal sense, from a practical per-
spective the introduction of a particle velocity field V presents
its own problems; this field, unlike u, is not a natural model
input, and an explicit representation of V (except in the limit
τp → 0) is not simple. Indeed, in general, this field need not
be unique. For these reasons this formulation is not considered
further here. A more natural comparator for the FN and LHDI
formulations is that obtained using the operator representation
technique introduced by van Kampen. This is considered next.

C. The VK approach

In Ref. [16] Pozorski and Minier derived a PDF kinetic
equation using an operator representation technique developed
by van Kampen (see, for example, [27,28]). Mashayek and
Pandya [8] recognized that the result given in Ref. [16] was
incorrect (a fact confirmed by the authors of Ref. [16]) and
gave a modified version of the kinetic equation obtained using
the VK approach. The method, as presented in Ref. [8], is
based on Eq. (4) written in the form

∂

∂t
p = A0p + α〈A1P〉, (22)

where the operators A0 and A1 are defined as

A0[ · ] = − ∂

∂xi

[vi ·] − ∂

∂vi

[Fi ·], (23)

αA1[ · ] = − ∂

∂vi

[fi ·]. (24)

The VK method is then used to provide a closure for α〈A1P〉.
The resulting representation is, in general, only appropriate
for ατc � 1, where τc is the correlation time for A1. It would
appear, therefore, that the VK result is not exact but only an
approximation valid in a small-parameter regime (and it is not
clear that such a condition is satisfied in general for a turbulent
flow). Based on this approach the closure of the phase-space
dispersion flux can be written as (using a notation that is in
keeping with the other closure representations)

〈Pfi〉 = −
(

Lik

∂

∂xk

p + Mik

∂

∂vk

p − Kip

)
(25)

(see Eq. (4.125) in Ref. [8]), where

Lik =
∫ t

0
〈Gkj (t ; t ′)fj (X (t ′),t ′)fi(x,t)〉dt ′, (26)

Mik =
∫ t

0
〈Ġkj (t ; t ′)fj (X (t ′),t ′)fi(x,t)〉dt ′. (27)

(The expression for Ki and the definition of X are given
below.)

While there is an evident similarity of form between (26),
(27) and (18), (19) there are significant differences. Most
obviously, the dispersion tensors L and M in Eq. (25) appear
to the left of the respective partial differential operators.
In both the FN and LHDI formulations, Eqs. (5) and (17),
the dispersion tensors emerge naturally from the analysis to
the right of the operators (which therefore act on the phase-
space dependence of these tensors). Moreover, other aspects of
the VK formulation that distinguish this from the LHDI form
preclude a straightforward reordering of terms in Eq. (25) to
place the tensors to the right of the derivatives. Specifically,
X is not the same as xp, and G is not the same as G or �.

First, X (unlike xp) is a deterministic trajectory, defined as
the solution to

d2

dt ′2
Xi(t

′) = d

dt ′
Vi(t

′) = Fi(X (t ′),V(t ′),t ′), (28)

subject to end (t ′ = t) conditions X (t) = x, Ẋ (t) = v. There-
fore X (t ′) should be considered an abbreviation for a more
precise notation X (x,v,t |t ′). This notation also assists in
specifying G precisely; if we define

Dmn( y,w,s|t) = ∂Xm

∂vn

( y,w,s|t), (29)

then

Gmn(t ; t ′) = Dmn(X (x,v,t |t ′),V(x,v,t |t ′),t ′|t). (30)

Loosely speaking, G describes the rate of change of X (x,v,t |t)
with respect to the rate of change of V(x,v,t |t ′). What this
shows is that G (unlike � and G) has an intrinsic dependence
on the end condition (phase-space coordinates) (x,v). Strictly
speaking it would be more precise to write G(x,v,t ; t ′). It is
this dependence of G (and X ) on the coordinates (x,v) that
precludes a simple rearrangement of the VK form Eq. (25)
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to place the dispersion tensors on the right-hand side of the
differential operators. Definition (30) also makes it clear that,
whereas both � and G are governed by simple ordinary
differential equations, Eqs. (12) and (21), there is no equivalent
(simple) characterization for G.

The form of K in Eq. (25) is

Ki = −
∫ t

0
〈ψ(x,v,t |t ′)fi(x,t)〉dt ′, (31)

where

ψ(x,v,t |t ′) = Gkj (x,v,t ; t ′)
∂

∂xk

fj (x,v,t |t ′)

+ Ġkj (x,v,t ; t ′)
∂

∂vk

fj (x,v,t |t ′), (32)

with

fj (x,v,t |t ′) ≡ fj (X (x,v,t |t ′),t ′). (33)

As a final point note that the ensemble averages in Eqs. (26),
(27), and (31) do not (unlike the corresponding LHDI and FN
formulations) involve a conditionality on the realizations of
f contributing to these ensembles; all realizations of f are
involved. This again draws attention to the marked difference
between the VK formulation and the other two.

In summary, it has been demonstrated that the PDF kinetic
equations obtained using the FN, LHDI, and VK closures
are not equivalent but differ in some fundamental aspects.
Although the FN and LHDI formulations are not equivalent
they may both be “correct,” in the sense that each may be
exact within its respective Gaussian framework. On the other
hand, the VK result may be appropriate when ατc � 1. A
natural question therefore is: Which of the formulations is most
suitable for modeling particle dispersion in inhomogeneous
flow?

One way in which this question can be addressed is with
regard to the issue of spurious drift. For an initially uniform
distribution of fluid points in an inhomogeneous, incompress-
ible flow, the distribution of the fluid points necessarily remains
spatially uniform for all times. Models which fail to satisfy this
physical criterion are said to posses spurious drift, and such a
defect indicates that the model is not strictly consistent with
the underlying particle dynamics and turbulent flow field.

In the next section it will be shown that in order for a
kinetic equation to be free from spurious drift, the closure for
the phase-space flux must satisfy certain conditions in the limit
of fluid points. All three closures are examined in this limit.

III. PDF EQUATIONS IN THE LIMIT τ p → 0

The aim is to assess the closure methodologies in the context
of the fully mixed condition for fluid points, especially in the
case of inhomogeneous flows. There are two questions that
must addressed: The first concerns whether or not a closure
methodology is consistent with the fully mixed condition
when applied directly to the case of fluid-point dynamics. If
one assumes that it is consistent then the second, subsidiary
question concerns whether or not the closure, as formulated
for inertial particles, recovers the limiting form for fluid points
as τp → 0.

To make precise what is meant by the fully mixed
condition, and to answer these questions, consider fluid points
transported in a velocity field u(x,t), with trajectories xf (t)
defined by Eq. (1). As an initial condition set xf (0) = x0,
with x0 a random variable with some PDF ϕ0(x). Then,
treating the field u as stochastic (and independent of x0), we
define the following PDFs:

�(x,t) = δ(xf (t) − x), (34)

ϕ(x,t) = 〈�(x,t)〉x0

u , (35)

ρ(x,t) = 〈�(x,t)〉 = 〈ϕ(x,t)〉u. (36)

Here 〈 · 〉x0

u denotes an ensemble average over all realizations
of x0 for a given, single realization of the flow field u, and 〈 · 〉u

denotes an ensemble average over all u. The decomposition
〈 · 〉 = 〈〈 · 〉x0

u 〉u is used later in the analysis. From Eq. (34)

∂

∂t
�(x,t) = − ∂

∂xi

[�(x,t)]ui(xf (t),t). (37)

Averaging Eq. (37) over all realizations of x0 (for a single
realization of u) gives

∂

∂t
ϕ(x,t) = − ∂

∂xi

[ϕ(x,t)ui(x,t)]. (38)

The solution to Eq. (38) with initial condition ϕ(x,0) = ϕ0(x)
can be expressed as

ϕ(x,t) = ϕ0(xf (x,t |0))

× exp

[
−

∫ t

0

∂ui

∂xi

(xf (x,t |t ′),t ′)dt ′
]

, (39)

where xf (x,t |t ′) denotes the fluid-point trajectory xf (t ′)
which satisfies xf (t) = x. Now suppose that the fluid points
are are fully mixed (uniformly distributed) at t = 0, so ϕ0 is
independent of position. Suppose, further, that the velocity
field is incompressible. Then, from Eq. (39), it follows that
ϕ(x,t) ≡ ϕ0 for all x,t . Hence also ρ(x,t) ≡ ϕ0. The fluid
points remain fully mixed. Note that this result holds even
when the field u is inhomogeneous, and it is this condition
that must be respected by the PDF equation for ρ(x,t). This
equation follows from averaging Eq. (38) over all realizations
of u. With u decomposed into mean and fluctuating fields,
〈u〉 and u′ = u − 〈u〉, respectively, this averaging gives
[analogous to Eq. (4)]

∂

∂t
ρ = − ∂

∂xi

ρ〈ui〉 − ∂

∂xi

〈�u′
i〉. (40)

It is necessary to formulate a closure for the flux 〈�u′〉. Note
that if the system is fully mixed then

〈�u′
i〉 = 〈〈�u′

i〉x0

u

〉u = 〈ϕu′
i〉u = ϕ0〈u′

i〉u = 0. (41)

Thus, any closure for 〈�u′〉 must be shown to be consistent
with result (41) when applied to a fully mixed system of fluid
points. This, in turn, will ensure that the resulting solution of
the PDF equation (40) will preserve this fully mixed state. The
FN closure is considered first. As will be seen, this closure
does respect the fully mixed condition. The analysis involved
in demonstrating this fact then, in turn, draws attention to
deficiencies in the LHDI and VK formulations.
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A. FN drift analysis

Applying the FN methodology to 〈�u′〉 leads to the
representation [29]

〈�u′
i〉 = ρκ

f

i − ∂

∂xk

ρλ
f

ki, (42)

where λf (x,t) and κf (x,t) are given by [compare with Eqs. (6)
and (8)]

λ
f

ki =
∫ t

0

〈
�

f

kj (t ; t ′)Rf

ji(xf (t ′),t ′; x,t)
〉
xdt ′, (43)

κ
f

i =
∫ t

0

〈
�

f

kj (t ; t ′)
∂

∂xk

R
f

ji(xf (t ′),t ′; x,t)
〉

x
dt ′, (44)

with

R
f

ji(x′,t ′; x,t) = 〈u′
j (x′,t ′) u′

i(x,t)〉 (45)

and

�
f

kj (t ; t ′) = δx
f

k (t)

δu′
j (xf (t ′),t ′)dt ′

. (46)

Note that if the flow is incompressible (∂uj/∂xj = 0) then

∂

∂x ′
j

Rji(x′,t ′; x,t) = 0. (47)

The FN methodology underpinning this representation for
〈�u′〉 is such that the result should be exact provided only
that the field u′ is Gaussian. This field can be inhomogeneous,
and the result should still be exact. The fully mixed condition
provides a stringent test of this statement. To establish that the
FN formulation is consistent with the fully mixed condition
first note the closure expression given by Eq. (42) will satisfy
(41) in the fully mixed case provided that the corresponding
forms of λf and κf satisfy

κ
f

i − ∂

∂xk

λ
f

ki = 0, all i. (48)

The challenge, then, is to demonstrate directly that the
expressions for λf and κf given by Eqs. (43) and (44) satisfy
(48) in the case of fully mixed points in an incompressible flow.
That this is the case is far from obvious and requires a formal
demonstration. Such a demonstration, which is nontrivial, is
given below.

An important point is that relation (48) need not hold
for a passive scalar that is not fully mixed. In the case of
scalar dispersal from localized sources the left-hand side of
Eq. (48) will contribute to the scalar flux. In contradiction to
this, the relation (14) introduced by Zaichik et al. [7,9,24]
would imply that (48) was invariably recovered as τp → 0,
irrespective of whether the initial distribution of points was
uniform. Not only is the relation given by Eq. (14) invalid for
inertial particles, it cannot, in general, be considered a reliable
asymptotic approximation.

For a given realization of the field u let xf ( y,t |s) denote a
fluid-point trajectory xf (s) satisfying xf (t) = y. There is no

restriction or presumption here on the sign of t − s. For an
incompressible flow field this trajectory will be unique. The
key to establishing that the fully mixed condition is preserved
by the FN formulation is the corresponding Jacobian tensor
J( y,t,s) defined by

Jmn( y,t,s) = ∂

∂yn

xf
m( y,t |s). (49)

The Jacobian tensor J possesses an inverse relation with the
response tensor �f . To see this, consider the evolution of J
with respect to s,

∂

∂s
Jmn( y,t,s) = ∂um

∂xk

(xf ( y,t |s),s)Jkn( y,t,s). (50)

By noting that Jij ( y,t,t) = δij (all y,t), it follows that

J( y,t,s) = exp

(∫ s

t

∇u(xf ( y,t |s ′),s ′)ds ′
)

, (51)

where (∇u)mk = ∂um/∂xk . Now consider the response tensor
�f (t ; t ′) given by Eq. (46). The evolution of this with respect
to t (t � t ′) is given by Refs. [19,20]

∂

∂t
�

f

kj (t ; t ′) = ∂uk

∂xi

(xf (t),t)�f

ij (t ; t ′) (52)

with �
f

kj (t ′; t ′) = δkj . Thus

�f (t ; t ′) = exp

(∫ t

t ′
∇u(xf (t ′′),t ′′)dt ′′

)
. (53)

If the trajectory xf is given by xf (t ′′) = xf ( y,t |t ′′), then
�f (t ; t ′) becomes dependent on ( y,t). We write

H( y,t,t ′) = exp

(∫ t

t ′
∇u(xf ( y,t |t ′′),t ′′)dt ′′

)
. (54)

Comparing Eqs. (54) and (51) indicates that

H( y,t,t ′) = J−1( y,t,t ′). (55)

This inverse relation between the Jacobian and response
tensors is central to the following drift analysis. From Eq. (49)
it also follows that

J(xf ( y,t |t ′),t ′,t) = J−1( y,t,t ′). (56)

Now consider the left-hand side of Eq. (48) with λf and κf

given by Eqs. (43) and (44):

κ
f

i − ∂

∂xk

λ
f

ki =
∫ t

0

〈
�

f

kj (t ; t ′)
∂

∂xk

R
f

ji(xf (t ′),t ′; x,t)
〉

x

− ∂

∂xk

〈
�

f

kj (t ; t ′)Rf

ji(xf (t ′),t ′; x,t)
〉
xdt ′. (57)

In the first term of the integrand in Eq. (57) the operator ∂/∂xk

acts only on the second spatial input of Rf . In the second
term the differentiation is with respect to both this dependence
in Rf and also the conditionality xf (t) = x on the average.
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Consequently, Eq. (57) can be written as

κ
f

i − ∂

∂xk

λ
f

ki

= −
∫ t

0

∂

∂yk

〈
�

f

kj (t ; t ′)Rf

ji(xf (t ′),t ′; x,t)
〉

ydt ′
∣∣

y=x,

(58)

where ∂/∂yk is now used instead of ∂/∂xk to emphasize that
this differentiation is now with respect to the condition xf (t) =
y and not the x dependence in R.

A sufficient condition to ensure that Eq. (48) is satisfied is
therefore

∂

∂yk

〈
�

f

kj (t ; t ′)Rf

ji(xf (t ′),t ′; x,t)
〉

y = 0, all i. (59)

A simple manipulation of weighted averages shows that any
conditional average of the form 〈 · 〉 y can be decomposed in
the form

〈 · 〉 y = 1

ρ( y,t)

〈
ϕ( y,t)〈 · 〉x0

y,u

〉u
. (60)

The outer average is over all realizations of the field u,
while the inner average is over all realizations of the initial
condition x0 (for a given realization of u) such that the resulting
trajectories xf (s) satisfy xf (t) = y. If u is incompressible then
there is a single trajectory contributing to this inner average,
namely, xf ( y,t |s). By making use of this decomposition on
Eq. (59) it follows that, for a fully mixed system, it is sufficient
to show

∂

∂yk

[
Hkj ( y,t,t ′)Rf

ji(xf ( y,t |t ′),t ′; x,t)
] = 0, all i. (61)

The left-hand side of Eq. (61) can be written as

Hkj ( y,t,t ′)
[

∂

∂yk

R
f

ji(xf ( y,t |t ′),t ′; x,t)
]

︸ ︷︷ ︸
1

+
[

∂

∂yk

Hkj ( y,t,t ′)
]
R

f

ji(xf ( y,t |t ′),t ′; x,t)︸ ︷︷ ︸
2

. (62)

It is therefore sufficient to show that, in Eq. (62), both terms 1
and 2 are identically zero. Consider term 1:

Hkj ( y,t,t ′)
[

∂

∂yk

R
f

ji(xf ( y,t |t ′),t ′; x,t)

]

= Hkj ( y,t,t ′)
∂

∂yk

xf
n ( y,t |t ′) ∂

∂x ′
n

R
f

ji(xf ( y,t |t ′),t ′; x,t)

= Hkj ( y,t,t ′)Jnk( y,t,t ′)
∂

∂x ′
n

R
f

ji(xf ( y,t |t ′),t ′; x,t)

= ∂

∂x ′
j

R
f

ji(xf ( y,t |t ′),t ′; x,t) ≡ 0. (63)

The last line follows by virtue of the inverse relation between
H and J , Eq. (55), and the incompressibility condition,
Eq. (47).

It remains, therefore, to show that term 2 in Eq. (62) is
identically zero, that is,

∂

∂yk

Hkj ( y,t,t ′) ≡ 0, all j . (64)

This can be demonstrated by using (55) again. For incompress-
ible flow det[ J] = 1 and so, in three dimensions, the inverse
of J is given by

J−1 =
⎛
⎝+(J22J33 − J23J32) −(J12J33 − J13J32) +(J12J23 − J13J22)

−(J21J33 − J23J31) +(J11J33 − J13J31) −(J11J23 − J13J21)
+(J21J32 − J22J31) −(J11J32 − J12J31) +(J11J22 − J12J21)

⎞
⎠. (65)

Therefore, with j = 1,

∂

∂yk

Hk1 = + ∂

∂y1
(J22J33 − J23J32) − ∂

∂y2
(J21J33 − J23J31)

+ ∂

∂y3
(J21J32 − J22J31), (66)

and similarly for the j = 2,3 components of ∂Hkj /∂yk . Result
(64) then follows by making use of the fact that

∂

∂yk

Jij = ∂

∂yk

∂

∂yj

x
f

i = ∂

∂yj

∂

∂yk

x
f

i = ∂

∂yj

Jik. (67)

The conclusion, therefore, is that the FN formulation of the
kinetic equation for fluid-point dispersion preserves the fully
mixed condition in both homogeneous and inhomogeneous
flows, and so it is free of artificial drift.

It remains to demonstrate that the FN closure for inertial
particles reduces asymptotically to the corresponding fluid-
point form in the limit of τp → 0. To simplify the demonstra-
tion of this result assume, a priori, that the dependence of f on
u′ is linear. This avoids the need to introduce any linearization
and small-τp order analysis, and it ensures that f and u′ can
both be treated consistently as Gaussian. This case is realized
by the simple Stokes drag model for the particle equation
of motion: ẍp = τ−1

p (u(xp,t) − ẋp). We write f = τ−1
p u′, so

that

τp〈δ(xp(t) − x)fi〉 = 〈δ(xp(t) − x)u′
i〉. (68)

In the limit τp → 0 the right-hand side of Eq. (68) becomes
〈�u′

i〉 with the fluid-point closure given by Eq. (42). To see
that this limit is recovered independently from the left-hand
side of Eq. (68) using the closure for inertial particles given
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by Eq. (5) note that, from this equation,

τp〈δ(xp(t) − x)fi〉 = τp

∫
v

〈Pfi〉dv

= τp

(
ρpκi − ∂

∂xk

ρpλki

)
. (69)

Here the PDF ρp gives the particle spatial distribution,

ρp(x,t) = 〈δ(xp(t) − x)〉 =
∫

v

p(x,v,t)dv, (70)

and

λki = 1

ρp

∫
v

pλkidv

=
∫ t

0
〈�kj (t ; t ′)Rji(xp(t ′),t ′; x,t)〉xdt ′, (71)

κi = 1

ρp

∫
v

pκidv

=
∫ t

0

〈
�kj (t ; t ′)

∂

∂xk

Rji(xp(t ′),t ′; x,t)
〉

x
dt ′. (72)

Clearly ρp = 〈δ(xp(t) − x)〉 → 〈δ(xf (t) − x)〉 = ρ as
τp → 0. It follows that the closure for inertial particles given
by Eq. (69) will reduce to the fluid-point closure for 〈�u′〉
given by Eq. (42) in the limit τp → 0 provided

lim
τp→0

τpλ = λf , lim
τp→0

τpκ = κf . (73)

That these conditions are satisfied follows from consideration
of the relations among R, �, and Rf , �f . Namely, comparing
(45) and (46) to Eqs. (9) and (11) with f = τ−1

p ,u′, one has

Rji = τ−2
p R

f

ji and τ−1
p �kj → �

f

kj . (74)

B. LHDI drift analysis

The preceding analysis for the FN formulation can be
applied in a similar manner to the LHDI closure. This leads to
the fully mixed requirement

K
f

i − ∂

∂xk

L
f

ki = 0, all i, (75)

where now

K
f

i − ∂

∂xk

L
f

ki

= −
∫ t

0

∂

∂yk

〈
Gf

kj (t ; t ′)u′
j (xf (t ′),t ′)u′

i(x,t)
〉

ydt ′
∣∣

y=x .

(76)

The crucial difference lies in the distinction between �f and
Gf : Whereas the definition of �f , Eq. (52), involves gradients
of the instantaneous field u, the definition of Gf replaces this
with the mean field 〈u〉 [analogous to the difference between
(11) and (21)]. Thus, instead of H defined by Eq. (54), the
subsequent analysis will introduce

H̃( y,t,t ′) = exp

(∫ t

t ′
∇〈u〉(xf ( y,t |t ′′),t ′′)dt ′′

)
. (77)

The significance of this difference is that H̃ 	= J−1 [compare
with (55)] so that, in general, the integrand in Eq. (76) will not
be identically zero in the fully mixed case. The conclusion,
therefore, is that the LHDI methodology does not guarantee a
drift-free closure for 〈P f 〉, but it is only strictly valid for the
homogeneous case, and with 〈u〉 ≡ 0, so that Gf ≡ I .

C. VK drift analysis

Applying the VK methodology to 〈�u′〉 leads to the
representation

〈�u′
i〉 = ρK

f

i − L
f

ik

∂

∂xk

ρ, (78)

where [compare with Eqs. (26) and (31)]

L
f

ik =
∫ t

0

〈
G

f

kj (x,t ; t ′)u′
j (X f (x,t |t ′),t ′)u′

i(x,t)
〉
dt ′, (79)

K
f

i = −
∫ t

0
〈ψf (x,t |t ′)u′

i(x,t)〉dt ′. (80)

Here X f (x,t |t ′) satisfies

d

dt ′
X f

i = 〈ui〉(X f ,t ′), X f (x,t |t) = x, (81)

and Gf (x,t ; t ′) is defined by

Gf
mn(x,t ; t ′) = Df

mn(X f (x,t |t ′),t ′|t), (82)

with

Df
mn( y,s|t) = ∂X f

m

∂xn

( y,s|t). (83)

In Eq. (80)

ψf (x,t |t ′) = G
f

kj (x,t ; t ′)
∂

∂xk

u′
j (x,t |t ′), (84)

with

u′
j (x,t |t ′) ≡ u′

j (X f (x,t |t ′),t ′). (85)

Consideration of Eq. (78) shows that, in contrast to conditions
(48) and (75) for the FN and LHDI formulations, the VK
formulation requires Kf = 0 to be satisfied for a fully mixed
system.

Comparing (83) with Eq. (49) shows that Df is the Jacobian
associated with trajectories X f defined by the mean flow field
〈u〉. Therefore, comparing (82) with Eqs. (55) and (56), one has

Gf (x,t ; t ′) = (Df )−1(x,t |t ′). (86)

It follows that ψf = 0, and so also Kf = 0, provided only
that the flow is incompressible. This result holds irrespective
of whether or not the system is fully mixed. It would therefore
seem that the VK formulation fails to capture a scalar flux
contribution associated with nonuniform distributions in
inhomogeneous, incompressible flow.

There is a further issue with the VK formulation. Consider
the dispersion of an initially nonuniform distribution of fluid
points in incompressible isotropic turbulence. In such a system
the fluid points would disperse throughout the flow field until
their distribution ρ(x,t) became spatially uniform, and the
diffusion coefficient describing this dispersion process would
be related to the Lagrangian integral time scale of the flow.
In the VK formulation the diffusion coefficient for fluid
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points is given by Eq. (79), in which the correlations of u′
are determined along the deterministic trajectory X f (x,t |t ′).
For isotropic turbulence 〈u(x,t)〉 = 0, and consequently from
Eq. (81) we have X f (x,t |t ′) = x. The implication of this is
that for fluid-point dispersion in isotropic turbulence the VK
diffusion coefficient contains correlations of u′ evaluated at a
fixed point in space, x, so that the dispersion rate predicted
would be proportional to the Eulerian integral time scale of u′
rather than the Lagrangian integral time scale. This is clearly
incorrect and points to a serious defect in the dispersion tensors
resulting from the VK formulation of the PDF equation.

IV. CONCLUSIONS

The analysis presented in this paper has highlighted
important differences among three PDF kinetic equations
used to model the distribution of passive scalars or inertial
particles dispersing in a turbulent flow. The three forms of the
kinetic equation originate from three distinct methods (FN,
LHDI, and VK) used to construct a closed expression for a
turbulence induced mass (or number) density flux. The three
closure expressions exhibit superficial similarities, and in the
literature it is often claimed that the corresponding kinetic
equations are essentially equivalent. It has been shown that
this is not the case and that differences among the models have
an important bearing on the efficacy of these when applied to
inhomogeneous flows.

An important contribution of the work is the formal demon-
stration that one form of kinetic equation, obtained using the
FN closure, does not exhibit the defect of spurious drift and will
preserve the fully mixed state of fluid points transported in an
incompressible, inhomogeneous turbulent flow. Moreover, this
analysis explains why the kinetic equation obtained from the
LHDI closure fails to satisfy this condition and is only strictly
valid for homogeneous systems. The third form of the kinetic
equation, obtained from the VK closure, is formally consistent
with the fully mixed condition but fails to account for a nonzero
scalar flux contribution associated with nonuniform scalar
distributions in inhomogeneous, incompressible systems. Fur-
ther, this VK closure is based on an expansion in terms
of a small parameter reflecting the magnitude of turbulence
intensity relative to a rate scale for the decorrelation of
turbulent flow velocities. This approximation is manifest in the
formulation by the presence of mean (as opposed to stochastic)
particle trajectories in the definition of the VK dispersion
tensors. While this affords a significant simplification to the
closure problem—removing conditional averages within the
dispersion tensors—the validity of such an approximation in
strongly inhomogeneous flows is still a moot point.

However, even for the simpler case of dispersion in isotropic
turbulence there seems to be a serious issue with the VK
formulation. The VK diffusion coefficient for fluid-point
dispersion in isotropic turbulence suggests that the dispersion
rate should be proportional to the Eulerian integral time scale,
rather than the Lagrangian integral time scale. This is clearly
incorrect and arises precisely because the VK dispersion
tensors contain correlations of the fluid velocity field evaluated
along mean trajectories. Therefore the question of the validity
of the VK closure relates not only to inhomogeneous flows but
also to homogeneous, isotropic flows.
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APPENDIX: FN FLUX CLOSURE

This Appendix outlines the Furutsu-Novikov (FN) deriva-
tion of the flux closure. For a Gaussian field f the FN formula
gives the exact result [12,19]

〈Pfi〉 =
∫ t

0

∫
x′

Rij (x,t ; x′,t ′)
〈

δP
δfj (x′,t ′)dx′dt ′

〉
dx′dt ′.

(A1)

The functional derivative
δP

δfj (x′,t ′)dx′dt ′
(A2)

describes how a perturbation in f at (x′,t ′) will affect the
fine-grain, phase-space PDF P of the particle at time t . This
derivative can be rewritten [6,9,10,12] as

δP
δfj (x′,t ′)dx′dt ′

= − ∂P
∂xk

�kj (t ; t ′)δ(xp(t ′) − x′)

− ∂P
∂vk

�̇kj (t ; t ′)δ(xp(t ′) − x′), (A3)

where

�kj (t ; t ′) = δx
p

k (t)

δfj (xp(t ′),t ′)dt ′
, (A4)

and �̇ = d
dt

�. Therefore, noting that the averaging and
integration operations in Eq. (A1) commute, we have

〈Pfi〉 = −
∫ t

0

〈 ∫
x′

Rij (x,t ; x′,t ′)

×
(

∂P
∂xk

�kj + ∂P
∂vk

�̇kj

)
δ(xp(t ′) − x′)dx′

〉
dt ′

= −
∫ t

0

〈
Rij (x,t ; xp(t ′),t ′)

(
∂P
∂xk

�kj+ ∂P
∂vk

�̇kj

) 〉
dt ′.

(A5)

This can be rearranged further (by noting that R is a function
of x but that � is not) as

〈Pfi〉 = −
∫ t

0

∂

∂xk

〈P�kjRij (x,t ; xp(t ′),t ′)〉

−
〈
P�kj

∂

∂xk

Rij (x,t ; xp(t ′),t ′)
〉

+ ∂

∂vk

〈P�̇kjRij (x,t ; xp(t ′),t ′)〉dt ′. (A6)

Finally, by making use of the basic result [30]

〈P(x,v,t) · 〉 = p(x,v,t) 〈 · 〉x,v (A7)
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and the fact that Rij (x,t ; x′,t ′) = Rji(x′,t ′; x,t), the closure
becomes

〈Pfi〉 = − ∂

∂xk

[
p

∫ t

0
〈�kjRji(xp(t ′),t ′; x,t)〉x,vdt ′

]

− ∂

∂vk

[
p

∫ t

0
〈�̇kjRji(xp(t ′),t ′; x,t)〉x,vdt ′

]

+p

∫ t

0

〈
�kj

∂

∂xk

Rji(xp(t ′),t ′; x,t)
〉

x,v

dt ′, (A8)

which is the result given by Eqs. (5)–(8).

Two important points should be noted about this derivation
and result. First, and contrary to the assertion made in Ref. [6],
it is unnecessary (and incorrect) to replace the stochastic
particle trajectories xp appearing in the ensemble averages
with deterministic trajectories X governed by Ẍ = F(X,Ẋ,t).
Second, it is the correlation tensor R that must be used in
Eq. (A1) (and the subsequent conditional averages) and not
the nonaveraged form f (x,t) f (x′,t ′).
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