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Effects of electrostatic correlations on electrokinetic phenomena
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The classical theory of electrokinetic phenomena is based on the mean-field approximation that the electric field
acting on an individual ion is self-consistently determined by the local mean charge density. This paper considers
situations, such as concentrated electrolytes, multivalent electrolytes, or solvent-free ionic liquids, where the
mean-field approximation breaks down. A fourth-order modified Poisson equation is developed that captures
the essential features in a simple continuum framework. The model is derived as a gradient approximation for
nonlocal electrostatics of interacting effective charges, where the permittivity becomes a differential operator,
scaled by a correlation length. The theory is able to capture subtle aspects of molecular simulations and allows
for simple calculations of electrokinetic flows in correlated ionic fluids. Charge-density oscillations tend to
reduce electro-osmotic flow and streaming current, and overscreening of surface charge can lead to flow reversal.
These effects also help to explain the suppression of induced-charge electrokinetic phenomena at high salt
concentrations.
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I. INTRODUCTION

The classical theory of the electric double layer and elec-
trokinetic flow near a charged surface is over a century old and
remains in wide use today [1]. The classical theory has been ex-
tremely powerful in a number of diverse fields such as colloidal
science, biophysics, micro- and nanofluidics, and electrochem-
istry. While the usefulness of the classical electrokinetic theory
is not in question, there is a long history of recognizing the
limitations and offering new formulations [2,3].

The equations are built on a set of assumptions which
are clearly violated in various instances. The classical theory
was developed for a surface in chemical equilibrium with
a dilute solution of point ions with a double-layer voltage
on the order of the thermal voltage kBT /e = 25 mV [4–6].
Stern recognized in 1924 that the assumption of point ions
leads to predicted concentrations that are impossibly high at
modest voltages. Stern introduced the idea of a molecular
layer of finite size to reduce (but not eliminate) this unphysical
divergence by imposing a distance of closest approach of
ions to the surface [7]. In many practical situations when the
surface is unknown or uncontrolled, the macroscale observable
quantities such as capacitance or fluid slip velocity are fit with
effective Stern layer properties to bring the classic model into
agreement with experiment.

There has been recent interest in including finite ion size ef-
fects into the continuum electrokinetic model to go beyond the
simple Stern layer approach [2]. It is apparently not well known
that Stern proposed such an approach as the final (underived)
equation in his 1924 paper [7]. One driver for interest in
steric effects are applications where electrokinetic phenomena
are exploited in devices with electrodes placed in direct
contact with the fluid [8–11]. These “induced-charge elec-
trokinetic phenomena” [12] have shifted attention to a regime
where double-layer voltage reaches several volts ≈ 100 kT /e,
a regime where the point ion theory is certainly invalid. To
account for finite-sized ions, a variety of “modified Poisson-

Boltzmann equations” (MPB) have been proposed [2,13].
The simplest possible MPB model is the one proposed (and
subsequently forgotten) by Bikerman in 1942 [14], which
is a continuum approximation of the entropy of ions on a
lattice [15]. Such modifications to the continuum theory can
predict an otherwise unexplained high frequency flow reversal
in ac electro-osmotic pumps [16], and capacitance of surfaces
with no adsorption [2].

In any electrolyte, it is also important to account for
variations in the local dielectric permittivity. The solvation
shell around an ion lowers the local permittivity and leads
to an additional dielectrophoretic force in a field gradient.
These “excess ion polarizability” phenomena were perhaps
first noted by Bikerman [14] and recently included by Hatlo,
van Roij, and Lue in an MPB model, which improves
predictions of double-layer capacitance [17]. Bonthuis and
Netz have also shown that continuous variations in dielectric
permittivity near a surface can improve the description of
electrokinetic phenomena [18,19]. In this work, we neglect
such spatial variations in dielectric permittivity, which can still
be described by mean-field theories. Instead, our focus is on
describing electrostatic correlations between discrete ion pairs
via a theory that approximates nonlocal dielectric response.

Extensions of the classical electrokinetic theory are also
required for room-temperature ionic liquids (RTILs). RTILs
typically have large organic cations and similar organic or
smaller inorganic anions and hold promise as solvent-free
electrolytes for supercapacitors, batteries, solar cells, and
electroactuators [20–27]. For these applications, data for the
RTIL-metal interface has typically been interpreted through
models based on the classical theory despite the fact that this
dense mixture of large ions bears little resemblance to a dilute
solution of pointlike ions. Recently, Kornyshev [28] stressed
the importance of finite-sized ions and developed a theory
equivalent to Bikerman’s, where the bulk volume fraction can
be tuned to describe electrostriction of the double layer.
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In spite of some success in applying a theory which accounts
for steric hindrance in electrolytes at high voltage and RTILs,
these models are unable to describe short-range Coulomb
correlations [29]. In many important situations, classical
theory breaks down due to strong correlations between nearby
ions. In concentrated solutions, systems with multivalent ions
(relevant for biology), RTILs, or molten salts, electrostatic
correlations which go beyond the mean electrostatic potential
become dominant. Correlations generally lead to overscreen-
ing of a charged surface, where the first layer provides more
countercharge than required; the next layer then sees a smaller
net charge of the opposite sign, which it overscreens with
excess coions; and so-on.

Such overscreening is usually studied with molecular
dynamics simulations, Monte Carlo simulations (MC), density
functional theory (DFT), or integral equation methods based
on the statistical mechanics of charged hard spheres. While
these simulations are based on more realistic assumptions than
classic theory, the complexity prohibits analytical progress and
the computational cost and complexity can be high. In many
applications, we are interested in charging dynamics, fluid
flow, or other macroscale behavior where a simple model is
needed. To date, essentially all modeling of electrokinetic flow
has been based on the mean-field approximation, where the
electric field acting on the ions is self-consistently determined
by the mean charge density.

In this paper, we maintain a continuum formulation and
develop a modified Poisson equation which accounts for
electrostatic correlation effects in diffuse electric double
layers. This model is applicable to concentrated or multivalent
electrolytes, room-temperature ionic liquids, and molten salts.
Recently, we (along with Kornyshev) derived and applied
this continuum model for RTILs [30]. In that work, we
found good agreement in terms of the double-layer structure
and the capacitance when compared to molecular dynamics
simulations. In this work, we present the derivation in detail
and apply the same continuum model to electrolytes, where
correlations become important at high salt concentration and
with multivalent ions. We also couple the modified electrostatic
theory to the Navier-Stokes equations, as we (along with
Kilic and Ajdari) recently proposed [2]. From this theoretical
framework, we compute electrokinetic flows beyond the mean-
field approximation. The model predictions are also compared
to molecular simulations and some experimental data.

Before we begin, we emphasize that any attempt to develop
and modify continuum models for molecular scale phenomena
is fundamentally limited. Nevertheless, our goal is to develop
and test models that are simple enough to facilitate a better
understanding of electrokinetics in macroscale experiments
and devices. In particular, we describe flows in correlated
electrolytes and ionic liquids with only one new parameter,
an electrostatic correlation length.

II. CONTINUUM ELECTROKINETIC EQUATIONS

A. Classical mean-field theory

The classic theory of electrokinetics assumes a dilute
solution of point ions. The electrochemical potential μi of

the ith ionic species in an ideal dilute solution is

μideal
i = kBT lnci + zieφ, (1)

where k is Boltzmann’s constant, T is the temperature, ci is
the concentration, zi is the charge number, e is the elementary
charge, and φ is the electric potential. We relate the flux of
each species Fi to the gradient in the chemical potential, and
conservation of mass yields

∂ci

∂t
= −∇ · Fi = −∇ ·

(
ciu − Di

kBT
ci∇μi

)
. (2)

where Di is the diffusivity and u is the mass averaged velocity.
It is important to remember that directly relating the flux of
each species to its own gradient in chemical potential is an
assumption that is strictly only valid in dilute solutions. This
relationship assumes that the diffusivity tensor is diagonal.
The system is traditionally closed by making the mean-field
approximation in which the electric potential satisfies the
Poisson equation

−∇ · ε∇φ = ρ =
∑

i

zieci, (3)

where ρ is the charge density and ε is the permittivity. Equa-
tions (2) and (3) are typically referred to as the Poisson-Nernst-
Planck (PNP) equations. The PNP equations are coupled to
the Navier-Stokes (NS) equations for fluid flow, where an
electrostatic force density ρ∇φ is added:

ρm

(
∂u
∂t

+ u · ∇u
)

= −∇p + η∇2u − ρ∇φ, (4)

∇ · u = 0, (5)

where η is the viscosity, ρm is the mass density, and P is the
pressure. In the classical theory, the fluid properties such as
the viscosity and permittivity are usually taken as constants.

Solutions to Eqs. (2)–(5) require boundary conditions.
Boundary conditions can vary depending on the physical
situation. Typically, the no-slip condition for fluid velocity is
assumed, but modifications can allow for slip at a solid surface.
A common boundary condition for the ion conservation
equation is that there is no flux of ions at a solid surface.
However, in cases with electrochemical reactions or ion
adsorption, other boundary conditions are required.

The boundary condition for the potential depends upon the
physics of the interface. Our interest is on metal electrode
surfaces where one can simply fix the applied potential
φ = φ0 or allow for a thin dielectric layer (or compact Stern
layer) on the electrode surface through the mixed boundary
condition [31]

�φS = φ − φ0 = λSn̂ · ∇φ − qS

CS

, (6)

where λS = εhS/εS is an effective thickness of the layer, equal
to the true thickness hS multiplied by the ratio of permittivities
of the solution ε and the layer εS , and CS = εS/hS is its
capacitance. When applying (6) to a metal electrode, one can
set qS = 0 to model the Stern layer as a thin dielectric coating
of solvent molecules [32], while specific adsorption of ions
would lead to qS �= 0.

While the PNP + NS formulation is widely studied and
widely used, the mathematical solution can be complicated.
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In many cases, we can make mathematical simplifications
that allow for analytical progress or simple models to be
derived from the PNP + NS starting point. In this work, we
are developing a physical modification to the equations.

B. Modifications for chemical effects

In a recent review article, we (along with Kilic and Ajdari)
discuss in detail a number of ways in which the classical
mean-field theory of electrokinetics breaks down and propose
some simple modifications for large voltages and concentrated
solutions [2]. We stress that attempts to go beyond the classic
equations have a long history, and refer the interested reader
to Ref. [2] for a more complete account of the literature.

To account for various thermodynamic nonidealities in
concentrated solutions, we can extend the chemical potential
by adding an excess term to that of the ideal solution

μi = kBT lnci + zieφ + μex.

In the case of volume constraints for finite-sized ions,
following Bikerman [14], this excess chemical potential could
be written as

μex
i = −kBT ln(1 − 	), (7)

where 	 is the local volume fraction of ions. The same model
of the excess chemical potential can also be derived from the
configurational entropy of ions in a lattice gas in the continuum
limit, as first noted by Grimley and Mott [15]. We attribute
this model to Bikerman, although it has been independently
rediscovered at least seven times since then and was possibly
first discussed by Stern in 1924. Other approaches can be used
to modify the chemical potential for volume constraints, such
as Carnahan-Starling equation of state for the entropy of hard
spheres in the local density approximation [33–35]. Regardless
of the model for steric volume constraints, these modifications
all allow the formation of a condensed layer of ions very close
to the surface at high voltage. This layer forms at high voltage
as the classic theory allows for an impossibly high density
of ions.

Another modification we have discussed in detail is charge-
induced thickening, where one supposes that the viscosity of
the fluid depends upon the local charge density and typically
increases in the inner part of the double layer (effectively
moving the “shear plane” of no slip away from the surface).
Charge-induced thickening provides a possible explanation
for the decay in induced-charge electro-osmotic flow [12] that
is observed in many experiments at high salt concentration
and/or high voltage [2,36]. In the following, we will argue that
electrostatic correlations may also play a significant role in
explaining the data.

The permittivity ε of a polar solvent such as water is
usually taken as a constant in (3), but numerous models
exist for field-dependent permittivity ε(|∇φ|), as discussed
in [2]. The classical effect of dielectric saturation reduces the
permittivity at large fields due to the alignment of solvent
dipoles [32,37–39], although an increase in dipole density
near a surface may have the opposite effect [40]. A recent
model which included excess ion polarizability demonstrated
excellent agreement with experimental capacitance data on
surfaces with no adsorption [17]. While these and many

other modifications have been explored, in this work we only
consider the additional chemical effect of finite ion size, so we
can focus on effects of electrostatic correlations.

C. Simple modification for Coulomb correlations

The most fundamental modification of the classical theory,
which has resisted a simple treatment, would be to relax the
mean-field approximation. While the study of electrostatic
correlations in electrolytes has a long history, we are not aware
of any attempts to go beyond the mean-field approximation
(3) in dynamical problems of ion transport or electrokinetics.
Dynamical problems with bulk flow would seem to require
a simple continuum treatment of correlation effects, ideally
leading to a general modification of Eq. (3).

In recent work on RTIL, we (along with Kornyshev) derived
a Landau-Ginzburg–type continuum model which accounts
for electrostatic correlations in a very simple and intuitive
way [30]. A general derivation based on nonlocal electrostatics
will be developed in the next section, but first we present the
final result, which is a modified fourth-order Poisson equation

∇ · D ≡ ε
(

2

c∇4φ − ∇2φ
) = ρ, (8)

and a modified electrostatic boundary condition

n̂ · D ≡ n̂ · ε
(

2

c∇2 − 1
)∇φ = qs, (9)

where D is the displacement field. Due to Coulomb correla-
tions, the effective permittivity ε̂, defined by D = −ε̂∇φ, is a
linear differential operator

ε̂ = ε
(
1 − 
2

c∇2
)
. (10)

This unusual dielectric response, signifying strong correla-
tions, is consistent with some well known properties for molten
salts, although we extend it here to more general situations.
In particular, for small, sinusoidal perturbations of the electric
field of wave number k, the corresponding small-k expansion
of the Fourier transform of the permittivity

ε̂(k) = ε[1 + (
ck)2] (11)

grows with k in the case α0 > 0 where correlations promote
charge-density oscillations and discrete cation-anion-cation-
anion... ordering. This matches known results for molten salts,
although at smaller wavelengths (larger k) the permittivity
transform ε̂(k) has divergences due to electronic relaxation
and other phenomena [41,42]. Here, we do not use the notion
of wavelength-dependent permittivity, which only applies to
small periodic bulk perturbations. Instead, we introduce the
concept of a permittivity operator in Poisson’s equation, which
can be applied to general nonlinear response in asymmetric
geometries and near surfaces. The new parameter 
c is
an effective length scale over which correlation effects are
important, discussed in the following. Its value is not precisely
known, although we can place approximate bounds on its
value.

Similar higher-order Poisson equations have been derived
as approximations for the equilibrium statistical mechanics of
pointlike counterions (one component plasma) near a charged
wall [43–45]; Santangelo [43] showed that (8) is exact for
both weak and strong coupling and a good approximation
at intermediate coupling with 
c set to the Bjerrum length;

056303-3



BRIAN D. STOREY AND MARTIN Z. BAZANT PHYSICAL REVIEW E 86, 056303 (2012)

Hatlo and Lue [45] developed an approximation for 
c. The
extension to electrolytes and nonideal solutions was first
proposed in our review paper [2] as part of a general modeling
framework for electrokinetics, but without a derivation or any
example calculations. In our recent work on RTILs [30], we
presented a general variational derivation of the model and first
applied this modified Poisson equation to predict double-layer
structure and capacitance (RTIL), using the ion size as the
correlation length scale.

Since Poisson’s equation (8) is now fourth order, we
need an additional boundary condition. For consistency with
our derivation below, we neglect correlations very close to
the surface (at the molecular scale) and apply the standard
boundary condition −εn̂ · ∇φ = qs . Equation (9) then implies

n̂ · ∇(∇2φ) = 0, (12)

which requires that the mean-field charge density is “flat” at
the surface. Although this boundary condition is consistent
with the derivation of our model, we stress that it is neither
unique nor rigorously derived. Alternative boundary condi-
tions should be considered in the future, including the possi-
bility of nonlocal models (e.g., which are required to describe
density oscillations resulting from packing constraints [29]).
Here, we use Eq. (12) partly for its elegant simplicity and partly
since it seems to consistently produce remarkably good results
with our model in comparison to molecular simulations, not
only for RTIL [30], but also for concentrated electrolytes, as
described in the following.

III. DERIVATION OF THE MODIFIED
POISSON EQUATION

The following derivation is adapted from the supporting
information of our recent publication with Kornyshev [30],
providing some more details and explanations of the steps.

A. Electrostatic energy functional

We begin by postulating a general free energy functional
broken into chemical and nonlocal electrostatic contributions.
Let G = Gel + Gchem, where Gel is the electrostatic energy
and Gchem = ∫

V
dr g is the chemical (nonelectrostatic) part of

the total free energy G. Suppose that Gchem is known, and
let us focus on electrostatic correlation effects in Gel. The
electrostatic potential φ is defined as the electrostatic energy
per ion (free charge). The electrostatic energy cost for adding
a charge δρ in the bulk liquid volume V or δqs on the metal
surface S is

δGel =
∫

V

dr φ δρ +
∫

S

dr φ δqs. (13)

The charge is related to the displacement field D via Maxwell’s
equation

∇ · D = ρ ⇒ δρ = ∇ · δD. (14)

The corresponding boundary condition for an ideal metal
surface (where D = 0) is

[n̂ · D] = n̂ · D = −qs ⇒ δqs = −n̂ · D. (15)

Substituting these expressions into (13) and using Gauss’ the-
orem, along with the definition of the electric field E = −∇φ,

we recover the standard electrostatic free energy equation [46]

δGel =
∫

V

dr E · δD. (16)

In the linear response regime (for small external electric
fields), we have

D = ε̂E, (17)

where ε̂ is a linear operator, the Fourier transform ε̂(k) of which
encodes how the permittivity depends on the wavelength 2π/k

of the k-Fourier component of the field, due to discrete ion-ion
correlations, as well as any nonlocal dielectric response of the
solvent. A crucial feature of our approach, however, is that
we do not restrict ourselves to small amplitude perturbations
in Fourier space. Instead, we consider a general linear
permittivity operator in real space and focus on correlation
effects.

By linearity, we can integrate (16) over δD through a
charging process that creates all the charges in the bulk and
surface from zero to obtain

Gel = 1

2

∫
V

dr E · D. (18)

For a given distribution of charges ρ and qs , with associated
displacement field D, the physical electric field E is the one
that minimizes Gel, subject to the constraint of satisfying
Maxwell’s equations (14) and (15). Since E = −∇φ to enforce
∇ × E = 0, we can minimize Gel with respect to variations
in φ, using Lagrange multipliers λ1 and λ2 to enforce the
constraints

Gel[φ] =
∫

V

dr
[

1

2
E · D + λ1(ρ − ∇ · D)

]

+
∮

S

drs λ2(qs + n̂ · D). (19)

To calculate the extremum, we use the Fréchet functional
derivative

δGel

δφ
= lim

ε→0

Gel[φ + εφ0δε] − Gel[φ]

εφ0
, (20)

where δφε = φoδε(r,r′) is a localized perturbation of the
potential (with compact support), which tends either to a
three-dimensional (3D) delta function in the liquid (r ∈ V )
or to a two-dimensional (2D) delta function on the surface
(r ∈ S) as ε → 0, and φ0 is an arbitrary potential scale for
dimensional consistency. By setting δGel/δφ = 0 for both
surface and bulk variations, we find λ1 = λ2 = φ. Finally,
using vector identities, we arrive at a general functional for
the electrostatic energy

Gel[φ] =
∫

V

dr
(

ρφ + 1

2
∇φ · D

)
+

∮
S

drs qsφ, (21)

the variational derivative with respect to φ of which will be
set to zero, once we know the relationship between D and
E = −∇φ.

B. Nonlocal electrostatics for correlations

To model the field energy, we assume linear dielectric
response of the individual molecules (ions and solvent)
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with constant mean permittivity ε, plus a simple nonlocal
contribution for Coulomb correlations. Here, the permittivity
ε describes the electronic polarizability of the ions (for RTIL)
as well as (in the case of electrolytes) the dielectric relaxation
of the solvent. There is an extensive literature on nonlocal
electrostatic models of the form D(r) = ∫

dr′ε(r,r′)E(r′),
mainly focused on describing the nanoscale dielectric response
of water [47–50]. In this work, we take a very different
approach because our aim is to model the transient formation
of correlated ion pairs of opposite sign (zwitterions), which act
as dipoles and contribute to the nanoscale dielectric response
of strongly correlated ionic liquids.

The theory begins by postulating a nontraditional form of
the energy density stored in the electric field in the dielectric
medium

gfield = −1

2
∇φ · D = ε

2

(
E(r)2 +

∫
V

dr′K(r,r′)ρ̄(r)ρ̄(r′)
)

,

(22)

where we define

ρ̄ = ε∇ · E = −ε∇2φ (23)

as the “mean-field charge density,” which would produce same
the electric field in the dielectric medium without accounting
for ion-ion correlations [30]. In this theory, nonlocal electro-
static effects are assumed to derive from pairwise interactions
between effective charges, defined in terms of the local
divergence of the electric field via the standard second-order
Poisson equation with constant permittivity ε. The nonlocal
kernel K(r,r′) is intended to describe correlations between
discrete pairs of fluctuating ions resulting from Coulomb
interactions in the liquid.

C. Electrostatic correlation kernel

In principle, the correlation kernel K(r,r′) could have
long-range power-law decay, as might be expected from
bare Coulomb interactions. The kernel must be isotropic
in a homogeneous bulk system, but it may have gradient
corrections for nonuniform ion profiles. More importantly,
near a boundary, the kernel should become anisotropic to
reflect interactions between the ions and charges on the surface.
For example, for metal surfaces, the kernel should include
multipolar interactions between ions and their images in the
metal. At least away from the surface, however, electrostatic
screening by mobile ions should lead to rapid, isotropic decay
of the kernel with the pair separation distance.

To take into account screening in the simplest possible way,
we assume that K(r,r′) is isotropic and decays exponentially
over a characteristic length scale 
c. Below this distance, ions
experience bare Coulomb interactions, and beyond it, thermal
agitation and many-body interactions act to suppress direct
electrostatic correlations. The correlation length is clearly
bounded below by the ion size a, which becomes the most
relevant length scale in a highly concentrated electrolyte
(including the solvent shell in the ion size) or a solvent-free
ionic liquid. In the simplest version of our theory for dense
ionic mixtures, it is possible to avoid adding any new parameter
by simply setting 
c = a, as in our work on RTIL [30]. In dilute
electrolytes, however, the correlation length should increase

with the mean ion spacing, and we expect it to be cut off at
the scale of the Bjerrum length 
B , which is the separation
distance between ions below which the bare Coulomb energy
exceeds the thermal energy kBT .

D. Gradient expansion

In order to obtain a simple continuum model, we further
assume that charge variations mainly occur over length scales
larger than 
c (corresponding to small perturbation wave
numbers 
c|k| 
 1). In this limit, we perform a gradient
expansion for the nonlocal term

gfield ∼ ε

2

[
|∇φ|2 +

∞∑
n=0

αn

(

n−1

c

ε
∇nρ̄

)2
]
, (24)

where αn are dimensionless coefficients, which implies

Gel[φ] ∼
∫

V

dr

{
ρφ − ε

2

[
|∇φ|2 +

∞∑
n=2

αn−2
(

n−1

c ∇nφ
)2

]}

+
∮

S

drs qsφ. (25)

For simplicity, we typically truncate the expansion after
the first term, even though this may become inaccurate in
situations of interest with charge-density variations at the
correlation length scale.

From the gradient expansion of the nonlocal electrostatic
energy functional, we set δGel/δφ = 0 for bulk and surface
perturbations in (25). In this way, we recover Maxwell’s
equations (14) and (15), with

D = ε̂E, (26)

where the permittivity operator has the following gradient
expansion:

ε̂ = ε

(
1 −

∞∑
n=1

αn−1

2n
c ∇2n

)
. (27)

Equation (10) results from the first term in the gradient
expansion with the choice α0 = 1 (after suitably rescaling

c), where the overall negative sign of this term is chosen to
promote overscreening. The corresponding small-k expansion
of the Fourier transform of the permittivity

ε̂(k) = ε

[
1 +

∞∑
n=1

αn−1(−1)n−1(
ck)2n

]
(28)

grows with k at small wave numbers in the case where corre-
lations promote overscreening, α0 > 0, as noted above. This
is a hallmark of Coulomb correlations, promoting alternating
charge ordering.

IV. CORRELATED ELECTROKINETICS
AT A PLANAR SURFACE

A. Basic equations

To demonstrate how correlation effects may influence
double-layer structure and electrokinetic flows, we start by
exploring the behavior at a planar surface. We assume a
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one-dimensional (1D) double layer at equilibrium with con-
stant ε and a z+ : z− binary electrolyte.

The model we solve is thus

ε

(

2

c

d4φ

dx4
− d2φ

dx2

)
= ρ = z+ec+ − z−ec−. (29)

The boundary conditions at the electrode surface of fixed
potential are

φ = φ0,
d3φ

dx3
= 0. (30)

This electric potential equation is solved along with the
equations that the chemical potentials must be constant at
equilibrium. In this work, we consider the Bikerman model for
volume constraints only with equal sized cations and anions
such that the chemical potential of the ions is

μ± = kBT lnci − kBT ln[1 − a3(c+ + c−)] ± z±eφ. (31)

To calculate hydrodynamic slip, we start with the Navier-
Stokes equation and assume that in the electric double layer
we have a balance between the electric body force and viscous
forces,

0 = η
d2u

dx2
+ ρEt , (32)

where Et is the electric field tangential to the surface. In our
model, this becomes

0 = η
d2u

dx2
+ ε

(

2

c

d4φ

dx4
− d2φ

dx2

)
Et . (33)

As with the standard Helmholtz-Smoluchowski equation, we
can integrate this equation across the double layer twice to
obtain (with the convention that far from the wall, φ = 0)

u(∞) = −εEtφ(0)

η

(
1 − 
2

c

φ(0)

d2φ

dx2

∣∣∣∣
x=0

)
. (34)

In the above expression, we are assuming that the medium
permittivity and viscosity are constant within the double layer,
although this approximation can be relaxed. An important gen-
eral prediction is that the classical Helmholtz-Smolukowski
slip velocity UHS = −εEtφ(0)/η is modified by the inclusion
of correlation effects. This can be understood as a consequence
of nonuniform permittivity.

The total charge in the double layer is given as the integral
of the charge over the double layer

q =
∫ ∞

0
ρ dx =

∫ ∞

0
ε

(

2

c

d4φ

dx4
− d2φ

dx2

)
dx.

Evaluating this integral and using the boundary conditions at
a solid electrode stated above, we obtain

q =
∫ ∞

0
ρ dx = ε

dφ

dx

∣∣∣∣
x=0

, (35)

with the total capacitance defined as C = q/φ(0).

B. Dimensionless formulation

We assume a binary z+ : z− electrolyte such that the far field
concentrations of the cations and anions follow z+c+

∞ = z−c−
∞.

For simplicity, we assume that the cations and anions are of the

same diameter. We make the formulation dimensionless using
the scales c̃+ = c+/c+

∞, c̃− = c−/c+
∞, and φ̃ = φ(e/kBT ).

The dimensionless concentrations can be written as explicit
functions of the electric potential

c̃+ = β(φ̃)e−z+φ̃ , (36)

c̃− = z+

z− β(φ̃)ez−φ̃ , (37)

where the function β is given by

β(φ̃) = 1

1 − ν + ν
z−+z+ (z−e−z+φ̃ + z+ez−φ̃)

, (38)

where ν is the volume fraction in the bulk and has
a value ν = (1 + z+

z− )c+
∞a3. For the case of a 1:1 elec-

trolyte, note that β(φ̃) = 1/{1 + ν[cosh(φ̃) − 1]} = 1/[1 +
νsinh2(φ̃/2)] as has been used in previous works [13,28]. We
relate the lattice size parameter a to the spherical ion diameter
d as a3 = π

6 d3/0.63 = 0.83d3 where the factor of 0.63 is
the maximum volume fraction for random close packing of
spheres.

The Poisson equation is scaled by the Debye length, i.e.,
x̃ = x/λD where

λD =
√

εkBT

e2c+∞z+(z+ + z−)
.

Under this scaling, our governing equation becomes(
d2φ̃

dx̃2
− δ2

c

d4φ̃

dx̃4

)
= β(φ̃)

e−z+φ̃ − ez−φ̃

(z+ + z−)
, (39)

where δc = 
c/λD . This equation is subject to the boundary
conditions that the potential at the electrode is fixed, the third
derivative of the potential is zero, and the potential goes to
zero smoothly at infinity.

There are three dimensionless parameters which emerge
from our formulation, the bulk volume fraction ν, the correla-
tion length scale δc, and the applied voltage (or known surface
charge). The solution also depends on the valences of the ions
z+ and z−. In dimensionless terms, the slip velocity relative to
the Helmholtz-Smulokowski velocity is

u(∞)

UHS
=

(
1 − δ2

c

φ̃(0)

d2φ̃

dx̃2

∣∣∣∣
x̃=0

)
, (40)

where UHS = εEtφ(0)/η. The capacitance relative to the
Debye-Huckel capacitance CDH = ε/λD is simply

C

CDH
= − 1

φ̃(0)

dφ̃

dx̃

∣∣∣∣
x̃=0

. (41)

For the remainder of the paper, we will drop the tilde notation
and only refer to dimensionless quantities in our equations.

C. Low voltage analytical solutions

When the voltage is small relative to the thermal voltage
kBT /e, the problem is drastically simplified and the right-hand
side of our equation becomes(

d2φ

dx2
− δ2

c

d4φ

dx4

)
= φ. (42)
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This equation can be solved analytically, although the form
depends upon whether the value of δc is less than, greater than,
or equal to 1/2.

1. Solution δc < 1/2, “weak” correlation effects

When δc < 1/2, the analytical solution at low voltage has
the form

φ(x) = φ(0)

1 − k3
1/k3

2

(
e−k1x − k3

1

k3
2

e−k2x

)
, (43)

where

k1 =
√

1 − √
1 − 4δ2

c

2δ2
c

, k2 =
√

1 + √
1 − 4δ2

c

2δ2
c

.

The capacitance of the double layer is

C

CDH
=

k1
(
1 − k2

1

k2
2

)
1 − k3

1/k3
2

, (44)

and the slip velocity is

u(∞)

UHS
=

(
1 − δ2

c

k2
1

(
1 − k1

k2

)
1 − k3

1/k3
2

)
. (45)

In the limit of δc going to zero, k1 = 1 and k2 = ∞, thus, we
recover the Debye-Huckel solution φ(x) = φ(0)e−x . This new
solution has a functional form very similar to the classic double
layer. The structure is given as the sum of two exponentials
with decay lengths on the order of unity, although slightly
modified.

2. Solution for δc > 1/2, “strong” correlation effects

When δc > 1/2, the analytical solution at low voltage has
the form

φ(x) = φ(0)e−k1x[cos(k2x) − A sin(k2x)], (46)

where

k1 =
√

2δc + 1

2δc

, k2 =
√

2δc − 1

2δc

, A =
√

2δc + 1(δc − 1)√
2δc − 1(δc + 1)

.

The capacitance of the double layer is

C

CDH
=

√
2δc + 1

δc + 1
, (47)

which decays with increasing correlations. The slip velocity is

u(∞)

UHS
=

(
1 − δ2

c

δc + 1

)
. (48)

The slip velocity changes sign if δc is sufficiently large.
In particular, there is an electro-osmotic flow reversal or
electrokinetic charge inversion of the surface when the
dimensionless correlation length exceeds the golden mean:
δc > (1 + √

5)/2 = 1.618. The form of the double layer
becomes modified as δc increases. We find that the functional
form consists of decaying sinusoids with a length scale
provided explicitly by k1 and k2. At relatively large values
of δc, the length scale of the decay and the oscillations is
approximately

√
2δc.

D. Numerical results

At low voltage, the solution has only one free parameter,
the correlation length scale δc. The structure of the double
layer as δc is varied is shown in Fig. 1. We see that as the
strength of the correlations is increased, the double layer shows
charge-density oscillations. From the analytical solution, we
see that the oscillations emerge when δc is greater than 1/2. The
length scale for the whole double layer also increases as the
correlations are increased. From the analytical solution, we can
easily see at large δc that the size of the double layer grows with
the square root of δc. For small values of δc, the results become
indistinguishable from the classic Debye-Huckel solution.

In Fig. 1(b) we show the capacitance and in Fig. 1(c) the
slip velocity as a function of δC . We see a decrease in the slip
velocity and the capacitance with increasing δc. As correlation
effects become stronger, the flow is quenched and then reverses
direction. Note that from the analytical solution that at δc = 1,
the flow velocity is half of UHS and the flow reverses when
δc > 0.618. These values of δc are easily reached at high
concentration in aqueous electrolytes, as we will soon see.

At higher applied voltage, the structure of the solution
changes dramatically as we show in Fig. 2. Here, we show
sample solutions for a 1:1 and 2:1 electrolyte of 0.3 nm

(a) (b) (c)

0 5 10
−0.2

0

0.2

0.4

0.6

0.8

1

x/λ

φ

0 1 2 3 4 5
0.5

0.6

0.7

0.8

0.9

1

δc

C
/C
D
H

0 1 2 3 4 5
−3

−2

−1

0

1

δc

U
/U
H
S

FIG. 1. (Color online) Low voltage solutions to the continuum model. (a) Double-layer structure at different values of δc. Solutions are
shown for δc = 0 (dashed line) and δc = 1, 2, and 5. As δc increases, the structure departs from that at δc = 0. (b) Capacitance and (c) slip
velocity as a function of the correlation length scale δc.
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FIG. 2. (Color online) Example solutions for a 1:1 [(a), (b), and (c)] and 2:1 electrolyte [(d), (e), and (f)] with 0.3-nm ion sizes.
(a) Double-layer structure showing the charge-density profiles at wall voltages of −1, −2, −5, and −10 in units of kBT /e for a 1 M
concentration of cations. (b) Dimensionless capacitance as a function of voltage for concentration of 0.01 (black solid line), 0.1 (red solid
line), and 1 (blue solid line) M from top to bottom. Corresponding solutions with no correlation effects (δc = 0) are shown as the dashed lines.
(c) Dimensionless slip velocity as a function of voltage for concentration of 0.01 (black solid line), 0.1 (red solid line), and 1 (blue solid line)
M from top to bottom. Without correlations, the slip velocity is always 1. Figures (c), (d), and (e) are the same, only for the 2:1 system. The
asymmetry is easily seen in the capacitance and slip velocity.

ions as the voltage is changed. In Fig. 2(a) we show the
structure of the double layer at different voltages at a cation
concentration of 1 M. Using the ion size as the correlation
length scale and as the volume fraction, then for the 1:1 system
δc = 0.988, ν = 0.0270 and for the 2:1 system δc = 1.71,
ν = 0.0405. As the voltage increases, the charge density at the
wall saturates to a value determined by the steric constraints.
This condensed layer of ions grows as the voltage is increased.
Without the correlations effect, the charge density would decay
monotonically from the maximum value to zero far from the
wall. However, with the correlation effects included in the
model, the charge density oscillates and changes sign. These
oscillations are more pronounced in the 2:1 system when
the divalent ions crowd the wall.

Turning to the capacitance in Fig. 2(b), we find that
correlation effects reduce the capacitance. The dimensionless
capacitance is always 1 at zero voltage when δc = 0, however,
when δc > 0, the capacitance at zero voltage reduces according
to Fig. 1(b). At higher voltage, the shape of the capacitance
curve is similar to when δc = 0: the values are simply lower.
This reduction in capacitance is consistent with previous work
on steric constraints with the Bikerman model, which found
generally that the theory needed ion sizes that were bigger than
one would expect physically to fit the experimental data [2,16].

The most dramatic departure from the classical model
comes when computing the slip velocity in Fig. 2(c). We see
that at high concentration, the model can predict reverse flow

even at small voltages in the 2:1 system. At low concentration,
we find that the model predicts classic slip at low voltage,
but predicts reverse flow as the voltage is increased even
moderately. As the voltage is increased further, the model
predicts the forward component of the flow begins to increase
as the condensed layer grows. At high voltage, the slip velocity
for all concentrations begins to come together as the condensed
layer begins to dominate the double-layer structure.

These preliminary flow results must be interpreted with
caution. The model currently does not account for changes
in the viscosity of the solution near the wall in the condensed
layer. It is also unclear (as it is in classical theory) where the slip
plane should be placed. Recent work by Jiang and Qiao shows
via molecular dynamics simulations that electro-osmotic flow
can be amplified by short wavelength hydrodynamics [51].
These effects (and others) are not included in our model
and may be required for more detailed comparisons with
experimental data.

V. VALIDATION

A. Comparison with molecular simulations

In order to determine whether this model has validity in the
context of aqueous electrolytes, we can compare the model
predictions to those made by more sophisticated simulations
such as Monte Carlo or density functional theory. Monte Carlo
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g(
x)

FIG. 3. (Color online) Comparison of the continuum model (solid
lines) to Monte Carlo simulations of Ref. [53]. The conditions here
are a 2:1 electrolyte with surface charge of −0.3 C/m2 and an ion
diameter of 0.3 nm. The points are the Monte Carlo simulation and
the solid lines are the continuum model.

simulations are often considered the standard for equilibrium
chemistry, while DFT has proven to quantitatively compare
well against Monte Carlo at a much lower computational
cost [52]. Our aim is to determine whether an even simpler
continuum model can capture the same features.

In a prior paper, we compared this correlation model to
molecular dynamics simulations of ionic liquids [30]. In that
work, we assumed that the potential at x = 0 in the continuum
theory was the potential offset from the wall by the radius of
the ion. In comparisons to data for electrolyte solutions that
follow, we find that here we obtain good results by taking the
voltage at x = 0 to be the electrode, i.e., not accounting for
the radius of the ion as it approaches the surface.

In Fig. 3, we compare the ion distributions g(x) = c(x)/c∞
predicted by the continuum model to those predicted by Monte
Carlo simulations of Boda et al. [53]. The conditions here are
a 2:1 electrolyte with surface charge of −0.3 C/m2 and an ion
diameter of 0.3 nm. We find that the continuum model predicts
much of the same structure as the Monte Carlo simulations,

10
−3

10
−2

10
−1

10
0

−1

−0.8

−0.6

−0.4

−0.2

0

C+
∞

 (M)

Q
 (

C
/m

2 )

V= −1

V= −2

V= −4

V= −6

V= −8

FIG. 5. (Color online) Comparison of the continuum model
accounting for correlation effects (blue solid lines) to the DFT
simulations of Gillespie et al. [52] (black dashed) to the continuum
model with δc = 0 (red dotted lines). The ion diameter is 0.3 nm in
the models and DFT.

although the length scale of the oscillations and the amount
of overscreening predicted by the continuum model is larger
than seen in the simulations. Better agreement can be obtained
by reducing the correlation length scale by about 50%.
However, the classic electrokinetic model can only predict
ion profiles which decay monotonically, so it is interesting
that this extension for correlation effects can provide the basic
double-layer structure with no fitting parameters.

In Figs. 4(a) and 4(b), we compare the continuum model
to the Monte Carlo simulations looking at the relationship
between the double-layer charge and electrode voltage. In
Fig. 4(a), we show results for a monovalent ion and in Fig. 4(b)
we show a 2:1 electrolyte at two different concentrations.
The continuum model predicts the basic trends of the more
complicated MC simulations, although underpredicts the
voltage for a given charge. The inclusion of correlation effects
brings the continuum results in better agreement with the MC
simulations than when we only account for finite-size effects.

In Fig. 5, we compare the continuum model to results of
density functional theory simulations of Gillespie et al. [52]

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3
0

2

4

6

8

Q (in units of a2/e) Q (in units of a2/e)

V
 (

in
 u

ni
ts

 o
f 

kT
/e

)

(b)

−0.2 −0.1 0 0.1 0.2 0.3
−8

−6

−4

−2

0

2

4

6

8

V
 (

in
 u

ni
ts

 o
f 

kT
/e

)

FIG. 4. (Color online) Comparison of the continuum model with correlations (solid lines) to Monte Carlo simulations of Ref. [53] (points)
and the continuum model with only steric effects (dashed lines). The ion diameter is 0.3 nm. In (a) we show the result for a 1:1 electrolyte and
in (b) we show the result for a 2:1 electrolyte. The upper solid blue curve and dots are for 0.1 M and the lower red curve and asterisk are for
1 M concentration.
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FIG. 6. (Color online) Comparison of the continuum model
experimental nanochannel data of [54]. The electrolyte is a 2:1 with
an assumed ion size of 0.3 nm.

for a 2:1 electrolyte. In Fig. 5, we show curves of constant
voltage over a range of surface charge and concentration. The
results with the continuum model are in reasonable agreement
with the DFT results, especially at large concentrations and
high charge. Importantly, the shapes of these curves computed
with DFT are well predicted by this simple continuum model.
When δc = 0 and at high concentration, the continuum model
qualitatively departs from the DFT results. What is interesting
about the continuum model with correlations included is that
there are no fit parameters.

B. Comparison with experiments

We can also compare the model to an experiment, rather
than to other simulations, as a more definitive test. In Fig. 6, we
compare the model to the nanochannel electrokinetic data of
van der Heyden et al. [54] as was done by Gillespie et al. [52].
In the experiment, a nanochannel with a characterized surface
charge is driven by a pressure driven flow and the streaming
current is measured. In this case, the flow is driven by pressure
and not electro-osmotically. To compute the streaming current,
we simply multiply our charge-density profiles by the pressure
driven velocity profile

I = W

∫ H

0
ρ(x)u(x)dx, (49)

where W is the channel width of 50 μm, H is the channel
height of 450 nm, and u is the parabolic velocity profile. Since
the double layer is so thin relative to the channel height of
450 nm, we can safely assume that the pressure driven velocity
profile is locally linear at the wall; du/dx = 4�PH/(Lη) for
Pouiselle flow. Thus, to compute the current per unit pressure
drop for pressure driven flow, we calculate

I

�P
= 4WH

Lη

∫ ∞

0
ρ(x)x dx. (50)

The current per unit pressure as a function of concentration
is plotted in Fig. 6 comparing the continuum model to the
experiment. The agreement is qualitatively correct and predicts
a reversal in the current around the same concentration as seen
in the experiments. The slower velocities at high concentration

seen in the experiment is consistent with charge-induced
thickening, and increase in viscosity in a condensed layer
of ions [2]. There is still uncertainty in application of this
model for flow. It is unclear where the slip plane should sit and
whether the solution viscosity near the wall should be taken as
a constant. This uncertainty applies equally to the continuum
model and the DFT simulations, as in those simulations the
current is calculated in the same way it is here, only the charge
profile is calculated via DFT in their work is used. More
experimental data under controlled situations is needed for
further testing predictions of flow.

We also briefly draw attention to induced-charge electro-
osmotic flows (ICEO) [2,12], where the new model may help
to explain some puzzling experimental results (although we
do not report any new simulations here). In particular, we
(along with Edwards and Kilic) showed that flow reversal
in ac electro-osmotic micropumps (consisting of interdigi-
tated planar microelectrode arrays) could be explained by a
Bikerman-type model of the double layer, where the differen-
tial capacitance of the double layer decreases at high voltage
[16]. A difficulty with this interpretation of the experimental
data, however, was the fact that the inferred ion size was far
too large, whether considering a lattice gas or hard spheres.
The problem could be alleviated by considering the possibility
of reduction of the dielectric constant near the surface, and
we speculated that correlation effects might further reduce the
effective ion size in the model. From this work, we can see that
electrostatic correlations tend to reduce electro-osmotic flow
while also lowering the double-layer differential capacitance.
The former effect could be wholly or partly misinterpreted as a
sign of charge-induced thickening (i.e., an increase in viscosity
in a highly charged double layer that could also reduce the
net electro-osmotic flow), while the latter could reduce the
capacitance without invoking such strong steric effects with
large effective ion sizes. Based on this evidence, it seems
plausible that the new model might help to describe ICEO
flows at high voltage and high salt concentration, which have
otherwise resisted a complete theoretical understanding [2].

VI. CONCLUSIONS

We have developed a continuum model for electrokinetic
phenomena that accounts for electrostatic correlations and
applied this model to electro-osmotic flow and streaming
current in aqueous electrolytes of high valence and high
salt concentration at a flat, homogeneously charged surface.
The model predicts the basic electric double-layer structure
that has been observed in Monte Carlo simulations, namely,
oscillations in the charge density and reversal of apparent
charge of a surface based on electrokinetic flow. Without any
fitting parameters, the continuum model which also includes
finite ion size effects reproduces features of much more
complicated theories and simulations. While the quantitative
agreement between this model and Monte Carlo or DFT
simulations is only approximate, the trends are much closer
than found with the classical mean-field theory. As in the case
of RTIL [30], it is remarkable that such a simple continuum
theory can predict various subtle aspects of double-layer
structure and electrokinetic phenomena at the molecular scale.
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