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Nonlinear traveling waves in confined ferrofluids
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Departamento de Fı́sica, Universidade Federal de Pernambuco, Recife, PE 50670-901 Brazil
(Received 2 August 2012; published 1 November 2012)

We study the development of nonlinear traveling waves on the interface separating two viscous fluids flowing
in parallel in a vertical Hele-Shaw cell. One of the fluids is a ferrofluid and a uniform magnetic field is applied in
the plane of the cell, making an angle with the initially undisturbed interface. We employ a mode-coupling theory
that predicts the possibility of controlling the speed of the waves by purely magnetic means. The influence of the
tilted magnetic field on the waves shape profile and the establishment of stationary traveling wave structures are
investigated.
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I. INTRODUCTION

Frontal fluid flows in the confined geometry of a Hele-Shaw
cell have been extensively investigated during the past five
decades. Under frontal flow, the motion of the fluids is normal
to the initially undisturbed interface between them and might
lead to the formation of viscous fingering phenomena [1,2].
Curiously, the related problem of fluids flowing parallel to
their separating interface and the development of interfacial
traveling waves in the Hele-Shaw setup have been much less
exploited in the literature [3–6]. Zeybek and Yortsos [3,4]
studied parallel flow in a horizontal Hele-Shaw cell. In the
limit of large capillary numbers and large wavelength they
have found Korteweg–de Vries dynamics leading to stable
finite-amplitude soliton solutions. Afterward, Gondret and
co-workers [5,6] examined, through experiments and theory,
the appearance of traveling waves for parallel flow in a
vertical Hele-Shaw cell. They observed that the interface is
destabilized above a certain critical flow velocity, so waves
grow and propagate along the cell. Such waves are initially
sinusoidal and then turn to localized structures presenting a
nonlinear shape.

The theoretical model presented in Ref. [5] was based
on a modified Darcy equation for the gap-averaged flow
with an additional term representing inertial effects. Within
this context a Kelvin-Helmholtz instability for inviscid fluids
was found. For viscous fluids Gondret and Rabaud derived
a Kelvin-Helmholtz-Darcy equation and verified that the
threshold for instability was governed by inertial effects, while
the wave velocity was determined by Darcy’s law of flow of
viscous fluids. Their theoretical analysis was backed up by
their own experimental results. Theoretical improvements in
the description of the system were proposed in Refs. [7–9],
where the gap-averaged approach utilized in Ref. [5] was
replaced by an alternative scheme directly based on the fully
three-dimensional Navier-Stokes equation. In the end, the
calculations in Refs. [7–9] lead to an equation of motion
similar to the one derived in Ref. [5], but with slightly different
coefficients.

One additional example of parallel flow in vertical Hele-
Shaw cells is the linear stability analysis performed by Miranda
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and Widom [10]. The major differences between their work
and the ones performed in Refs. [3–9] are that one of the fluids
is a ferrofluid [11,12] and an external magnetic field is applied.
The field could lie in the plane of the Hele-Shaw cell, either
tangential or normal to the fluid-fluid interface. A ferrofluid is
a stable colloidal suspension of nanometric magnetic particles
that behaves as a regular viscous fluid except that it can
experience forces due to magnetic polarization [13]. This
opens up the possibility of investigating the role played by
the magnetic field in the dynamics of the parallel flow. It has
been shown [10] that the dispersion relation governing mode
growth is modified so that the magnetic field can destabilize the
interface even in the absence of inertial effects. However, it has
been deduced that the magnetic field would not affect the speed
of wave propagation. Despite all that, a study addressing the
effect of the magnetic field on the morphological structure and
nonlinear evolution of the propagating waves is still lacking.

In this work we reexamine the problem initially proposed
in Ref. [10] by considering the action of an in-plane tilted
applied magnetic field that makes an arbitrary angle with the
direction defined by the unperturbed fluid-fluid interface. This
apparently naive modification proves to be crucial in creating a
connection between the applied field and the propagating wave
velocity. Moreover, in contrast to what was done in Ref. [10],
we go beyond the linear regime and tackle the problem by using
a perturbative weakly nonlinear approach. This particular
theoretical tool enables one to extract valuable analytical
information at the onset of nonlinearity. As a consequence,
one can investigate the influence of the magnetic field on the
nonlinear dynamics and the ultimate shape of the traveling
surface waves.

The layout of this work is as follows. Section II introduces
the governing equations of the parallel flow system with a
ferrofluid and presents our mode-coupling approach, which is
valid at the lowest nonlinear perturbative order [14,15]. Linear
and weakly nonlinear dynamics are discussed in Sec. III. We
show that the effect of the magnetic field on the velocity
and shape of the propagating waves can be accessed by
considering the interplay of a small number of Fourier modes.
One important result is the feasibility of sustaining, moving,
and controlling a traveling wave solely under the action of an
external magnetic field. Stationary wave profiles are found for
different values of the magnetic field tilting angle. Our main
conclusions are summarized in Sec. IV.

056301-11539-3755/2012/86(5)/056301(8) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.056301
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II. PROBLEM FORMULATION AND
GOVERNING EQUATIONS

Consider two semi-infinite immiscible viscous fluids, flow-
ing with velocities Uj , where j = 1 (j = 2) labels the lower
(upper) fluid. The flow takes place along the x direction
in a vertical Hele-Shaw cell of thickness b (Fig. 1). The
densities and viscosities of the fluids are denoted by ρj

and ηj , respectively. The cell lies parallel to the xy plane,
where the y axis is vertical. Between the fluids there exists a
surface tension σ ; the lower fluid is assumed to be a ferrofluid
(magnetization M), whereas the upper fluid is nonmagnetic
(zero magnetization). The acceleration of gravity g = −gŷ,
where ŷ is the unit vector on the y axis. The base flow is
horizontal with η1U1 = η2U2 [5] because the flows in the two
fluids are driven by the same pressure gradient.

A uniform external magnetic field H0 = H0(cos αx̂ +
sin αŷ) is applied in the plane of the cell. The shape of the
perturbed fluid-fluid interface is described as I(x,y,t) = y −
ζ (x,t) = 0, where ζ (x,t) = ∑+∞

k=−∞ ζk(t) exp (ikx) represents
the net interface perturbation with Fourier amplitudes ζk(t) and
wave numbers k.

For the quasi-two-dimensional geometry of the Hele-Shaw
cell, the three-dimensional fluid flow is reduced to an equiv-
alent two-dimensional one by averaging the Navier-Stokes
equation over the direction perpendicular to the plates. Using
no-slip boundary conditions and neglecting inertial terms, the
flow in such a confined environment is governed by a modified
Darcy law [16–19]

vj = − b2

12ηj

{
∇pj − 1

b

∫ b/2

−b/2
μ0(M · ∇)H dz + ρjgŷ

}
,

(1)

where pj denotes the pressure. The local magnetic field
appearing in Eq. (1) differs from the applied field H0 by a
demagnetizing field of the polarized ferrofluid H = H0 + Hd ,
where Hd = −∇ϕ, with ϕ a scalar magnetic potential. Since
H0 is spatially uniform it eventually drops out in the calculation
of the magnetic term in Eq. (1) and the magnetic effects are
actually due to the demagnetizing field.

FIG. 1. (Color online) Schematic configuration of the parallel
flow in a vertical Hele-Shaw cell. The lower fluid is a ferrofluid,
while the upper fluid is nonmagnetic. An external uniform magnetic
field H0 is applied, making an angle α with the initially undisturbed
interface separating the fluids.

The role of inertia in the problem can be quantified by
a Reynolds number (relative measure of inertial and viscous
forces) that is directly proportional to the cell gap thickness
and inversely proportional to the viscosity of fluid Rej =
ρjUjb/12ηj . Since most experimental and theoretical studies
of ferrofluid flow in Hele-Shaw cells deal with very thin
cell gaps and highly viscous fluids, the vanishing Reynolds
number limit is readily validated. Under such circumstances,
the fluid motion is perfectly described by the gap-averaged
modified Darcy law (1). As discussed in Refs. [5,20,21] in
unidirectional Hele-Shaw parallel flow, the inertial effects
can be neglected, even at relatively large Reynolds numbers
as long as Rej < Rec, where Rec is the Reynolds number
corresponding to the laminar-turbulent transition.

We follow the standard approximations used by other
researchers [11,12,16,17,22,23] and assume that the ferrofluid
is magnetized such that its magnetization is collinear with
the applied field M(H) = M(cos αx̂ + sin αŷ), where M =
M(H0). Only the lowest-order effect of the magnetic inter-
actions that would result in fluid motion is considered. As
originally proposed by Tsebers and Maiorov [22], we assume
that the magnetization of the magnetic fluid in a uniform
magnetic field is both uniform and constant. We emphasize
that although the magnetization is taken to be uniform, the
demagnetizing field is not, as discussed in Refs. [17,23–25].

Taking into consideration the physical assumptions men-
tioned above and the particular geometry of our system, Eq. (1)
can be rewritten as

vj = − b2

12ηj

∇
{

pj + ρjgy

+μ0
M

b

∫ b/2

−b/2

[
cos α

∂ϕ

∂x
+ sin α

∂ϕ

∂y

]
dz

}
, (2)

where

ϕ = 1

4π

∫
S

M · n′

|r − r′|d
2r ′

= 1

4π

∫ +∞

−∞

∫ b/2

−b/2

M(cos αx̂ + sin αŷ) · n′dx ′dz′√
(x − x ′)2 + (y − y ′)2 + (z − z′)2

.

(3)

The unprimed coordinates r denote arbitrary points in space,
the primed coordinates r′ are integration variables within the
magnetic domain S, and d2r ′ = dx ′dz′ denotes the infinitesi-
mal area element. The vector n′ represents the unit normal to
the magnetic domain under study.

By inspecting Eq. (2) we observe that the velocity depends
on a linear combination involving gradients of hydrodynamic
pressure, gravity, and magnetic potential, respectively. Thus
the term in curly brackets in Eq. (2) can be seen as an
effective pressure. Therefore, as in the Hele-Shaw problem
with nonmagnetic fluids [1,2], the flow is potential vj =
−∇φj , but now with a velocity potential given by

φj = b2

12ηj

{pj − μ0M
2I (x,y) + ρjgy}, (4)
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where

I (x,y) = 1

4πb

∫ ∞

−∞

∫ b/2

−b/2

∫ b/2

−b/2

− cos α
∂ζ (x ′)
∂x ′ + sin α√

1 + (
∂ζ (x ′)
∂x ′

)2

× {cos α(x − x ′) + sin α[y − ζ (x ′)]}dx ′dz′dz√
(x − x ′)2 + [y − ζ (x ′)]2 + (z − z′)2

.

(5)

In Eq. (5) the integral in dz is related to the gap-average
calculation [see Eq. (2)], while the integrals in dx ′ and dz′
come from the surface integral in the magnetic domain of
interestS [see Eq. (3)]. Notice that incompressibility (∇ · vj =
0) then yields Laplace’s equation for the velocity potential.

The problem is specified by two boundary conditions

p1 − p2 = σκ − 1
2μ0(M · n)2, (6)

n · ∇φ1 = n · ∇φ2. (7)

Equation (6) is an augmented pressure jump condition at the
interface, where κ denotes the interfacial curvature. A crucial
difference of this expression from the one utilized in the
nonmagnetic situation is given by the second term on the right-
hand side: the so-called magnetic normal traction [11,12],
which considers the influence of the normal component
of the magnetization at the interface. For the current field
configuration this magnetic piece is at least of second order in
ζ , being legitimately nonlinear. This magnetic term contributes
to determine the shape of the traveling wave profiles at the
onset of nonlinear effects. The second boundary condition (7)
simply states the continuity of the normal flow velocity at the
interface.

Our next task is to derive an equation of motion for the
perturbation amplitudes that is able to capture the essential
physics at the lowest nonlinear level. This is done by following
standard steps performed in previous weakly nonlinear studies
[14,15,18]. First, we define Fourier expansions for the velocity
potentials. Then we express φj in terms of the perturbation am-
plitudes ζk by considering the kinematic boundary condition
(7). Substituting these relations and the modified pressure jump
condition (6) into Eq. (4), always keeping terms up to second
order in ζ , and Fourier transforming, we find the dimensionless
equation of motion (for k �= 0)

ζ̇k = �(k)ζk +
∑
k′ �=0

[F (k,k′)ζk′ζk−k′ + G(k,k′)ζ̇k′ζk−k′], (8)

where the overdot denotes total time derivative,

�(k) = λ(k) − ik

[
c0 + NB |k| sin 2α

2

]
(9)

is a complex linear growth rate, and

λ(k) = |k|{NB[sin2 αW1(k) − cos2 αW2(k)]

− k2 − NG} (10)

is its real part.

The system is characterized by three dimensionless param-
eters

NB = μ0M
2b

σ
, NG = (ρ1 − ρ2)gb2

σ
,

c0 = 12(η1U1 + η2U2)

σ
.

The magnetic Bond number NB measures the ratio of magnetic
to capillary forces, while the gravitational Bond number
NG accounts for the relative importance of the gravitational
force to the surface tension. The parameter c0 represents the
propagation contribution due to the parallel flow. Notice that c0

can be seen as a modified capillary number Ca = Ca1 + Ca2,
where Caj = 12ηjUj/σ is the capillary number of fluid j . In
addition,

W1(k) = 1

π

∫ ∞

0

(1 − cos kτ )

τ 2
[
√

τ 2 + 1 − τ ]dτ (11)

and

W2(k) = k

π

∫ ∞

0

sin kτ

τ
[
√

τ 2 + 1 − τ ]dτ (12)

originate from the contribution of the demagnetizing field.
The second-order mode-coupling terms are given by

F (k,k′) = NB |k|k
′(k′ − k)

2

{
cos2α

+ i sin 2α

[
W1(k′)

k′ − W2(k)

2k
+ W3(k,k′)

k′(k′ − k)

] }
(13)

and

G(k,k′) = A|k|[sgn(kk′) − 1], (14)

where

W3(k,k′) = 1

π

∫ ∞

0
[sin kτ − sin k′τ − sin (k − k′)τ ]

×
{

[
√

τ 2 + 1 − τ ]

τ 4
+ 1

2τ

[
1

τ
− 1√

τ 2 + 1

] }
dτ

(15)

is another demagnetizing integral. Notice the presence of the
imaginary part in Eq. (13) that is proportional to NB and sin 2α

and would vanish for a purely vertical or horizontal magnetic
field. The sign function equals ±1 according to the sign of its
argument and the viscosity contrast is defined as A = (η1 −
η2)/(η1 + η2). In Eqs. (8)–(15) the lengths and velocities are
rescaled by b and σ/[12(η1 + η2)], respectively. Without loss
of generality we focus on the situation in which ρ1 > ρ2 and
η1 � η2, so the interface is gravitationally stable (NG > 0)
and A ≈ 1. Since the gravitational Bond number plays a minor
role in our analysis, for the rest of this work we set its value as
NG = 1.4. We recover the results for the vertical magnetic field
configuration without flow, previously studied in Ref. [18],
by setting α = π/2 and c0 = 0. It should be noted that the
theoretical results presented in the following section utilize
dimensionless quantities that are extracted from the realistic
physical parameters used in the experiments of Refs. [5,19].
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III. PROPAGATING WAVES: DYNAMICS, MORPHOLOGY,
AND STABILITY

A. Linear regime

Before examining how we can use the mode-coupling
equation (8) to access important nonlinear aspects related to
the traveling waves, we briefly discuss a few useful concepts
associated with the linear growth rate (9). The real part of the
growth rate Re[�(k)] = λ(k) governs the exponential growth
or decay of the wave amplitudes at the linear regime. Since
a positive λ(k) leads to an unstable behavior, Eq. (10) tells
us that the term W1(k) [W2(k)], which is proportional to NB

and represents the contribution of the vertical (horizontal)
magnetic field component, is destabilizing (stabilizing). In
contrast, gravity and surface tension try to stabilize interfa-
cial disturbances. The interplay of these competing effects
determines the linear stability of the initially flat fluid-fluid
interface. This is illustrated in Fig. 2, which plots λ(k) in terms
of k for two values of NB and three increasingly larger values of
the angle α. By inspecting Eq. (10) it is clear that the magnetic
field (demagnetizing field contribution) causes the instability,
even in the absence of inertial effects [10,18].

It is evident from Fig. 2 that, for a given magnetic Bond
number and by increasing α, the transition from a stable to an
unstable situation occurs when λ(k) = 0 and dλ(k)/dk = 0,
which defines a critical value for α. Moreover, the maximum of
λ(k) takes place at k = kmax, which characterizes the dominant
wave number of the emergent pattern. It increases and moves
towards higher values of k as α approaches π/2. The behavior
of λ(k) as a function of α is magnified by increasing NB . We
point out that in order to observe any instability band, NB must
be above the critical value given by the vertical field situation
(NB > 11.12) [18].

The behavior of kmax as a function of α is depicted in
Fig. 3. Here we see that as α approaches π/2 (α ≈ 1.57), kmax

reaches a maximum possible value for a given NB . The critical
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FIG. 2. Real part of the linear growth rate λ(k) as a function of
the wave number k for NG = 1.4. Continuous (dashed) curves refer
to NB = 20 (NB = 30). For each NB we plot curves for three values
of the angle α, where lighter gray curves correspond to higher values
of α.
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FIG. 3. Dominant wave number kmax as a function of the angle α

for NG = 1.4 and three different values of NB . The dots indicate the
critical values of α below which the interface is stable.

values of α are marked with dots and vertical dashed lines. By
increasing the magnetic field the curves move upward and the
critical values of α decrease.

The imaginary part of the growth rate (9) Im[�(k)] divided
by −k gives us the phase velocity of perturbations at the linear
regime. It presents a parallel flow contribution represented by
c0 and a magnetic one proportional to NB that comes from the
fact that the magnetic field has nonzero x and y components.
This last term is very important for our analysis of propagating
profiles and would not be present if the magnetic field was
simply vertical (α = π/2) or horizontal (α = 0) as considered
in Ref. [10]. In order to detect any influence of the magnetic
field on the phase velocity we must consider the interval
between these two limiting situations (0 < α < π/2). From
these comments the key role played by the tilted magnetic
field becomes evident: Now one could have wave propagation
even if c0 = 0 and it would be exclusively due to magnetic
effects.

B. Weakly nonlinear dynamics

At this point we turn our attention to the weakly nonlinear,
intermediate stages of interfacial pattern evolution. We use
the equation of motion (8) to investigate how the magnetic
field influences the shape and velocity of the propagating
waves. We employ a theoretical approach originally proposed
in Refs. [14,15] and focus on a mechanism controlling the
interface behavior through magnetic means. This is done by
considering the coupling of a small number of modes. For a
given α larger than the critical value, only discrete modes, in
multiples of the dominant wave number kmax, are selected due
to translational invariance. In this framework we examine the
interaction of the fundamental mode k with its own harmonic
2k. For the rest of this work we consider values of α above
the critical situation and take the fundamental wave number
k = kmax as the fastest growing mode.
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FIG. 4. Numerical time evolution of the absolute value of the
perturbation amplitudes for the fundamental mode 2

√
ζkζ−k and its

first harmonic 2
√

ζ2kζ−2k . The parameters considered correspond
to the continuous dark gray curve in Fig. 2 (NG = 1.4, c0 = 0.5,
NB = 20, and α = 1.30). As time increases, the amplitudes tend to
saturate and reach stationary values, indicating the propagation of an
unchanged shape profile.

Considering these two modes, the moving interface profile
can be described as

ζ (x,t) = ζk(t) exp (ikx) + ζ−k(t) exp (−ikx)

+ ζ2k(t) exp (2ikx) + ζ−2k(t) exp (−2ikx), (16)

with ζk and ζ−k (also ζ2k and ζ−2k) being complex conjugates.
Specifically, one needs to solve the coupled nonlinear differ-
ential equations

ζ̇2k = �(2k)ζ2k + [F (2k,k)ζk + G(2k,k)ζ̇k]ζk, (17)

ζ̇k = �(k)ζk + [F (k, − k)ζ−k + G(k, − k)ζ̇−k]ζ2k

+ [F (k,2k)ζ2k + G(k,2k)ζ̇2k]ζ−k. (18)

The interface evolution is obtained by numerically solving
Eqs. (17) and (18). We have verified that the amplitudes and
relative phase of the solutions saturate for later times, leading
to stationary propagating profiles. Figure 4 shows the time
evolution of the absolute value of the perturbation amplitudes.
We consider very low initial amplitude values (ζk = 0.001 and
ζ2k = 0.0001) and parameters NG = 1.4, c0 = 0.5, NB = 20,
and α = 1.30. This figure depicts the amplitude’s evolution
beginning from a nearly flat interface, exponentially growing
at the linear stage, and then saturating at later times. Thus,
after a transient period of growth the perturbation amplitudes
remain unchanged as time progresses. The main difference
between these findings and the results in Ref. [18] is that
here the saturated modes ζk and ζ2k now maintain a locked
phase difference between them in such a way to lead to a
steady profile propagation. It is also evident from Fig. 4 that
the weakly nonlinear coupling naturally dictates the enhanced
growth of a positive harmonic mode.

An example of a steady propagating profile found numeri-
cally is plotted in Fig. 5 for NG = 1.4, c0 = 0.5, NB = 20, and

FIG. 5. (Color online) Propagating wave profile for c0 = 0.5,
NB = 20, and α = π/2, resulting in vf = 0.56. The profile and
velocity are reflected in relation to the y axis if we perform the
transformation c′

0 = −c0.

α = π/2 (kmax = 5.07). Its real growth rate is represented by
the light gray solid curve in Fig. 2. The resulting wave pattern
shows a sequence of sharp peaked structures separated by
wider troughs. These shapes are similar to the ones obtained
in the situation in which there is no parallel flow and the
magnetic field is vertical [18]. There is little morphological
difference produced by the introduction of the parallel flow,
represented by a nonvanishing c0, if α = π/2, but now we have
a propagating profile instead of a stationary one. We define vf

as the final propagation velocity of the saturated profile, which
in Fig. 5 equals 0.56. Note that vf is not given solely by the
linear phase velocity in Eq. (9), but it is a result of the weakly
nonlinear coupling between the modes in the saturated regime.

Since c0 has very little influence on the morphology of
the rising wave patterns (independently of the angle α), we
take c0 = 0 in Fig. 6 and focus on the role of the magnetic
field tilting angle α in determining the morphology of the
propagating solutions. In practical terms, for finite surface
tension flows, the limit c0 = 0 can be obtained by setting
the velocities U1 = U2 = 0. For α close to the critical value,
as shown in Fig. 6(a), the solution is dominated by the
fundamental mode and the shape of the profile resembles
a pure propagating cosine wave. As α increases, the wave
morphology changes and we see a series of slightly inclined
peaks, as exemplified in Fig. 6(b). This is possible due to
the significant magnitude of the first harmonic mode. For
higher values of α we get peaked structures similar to the
ones depicted in Fig. 5 (where α = π/2). Notice that it is
sufficient to explore the influence of the tilted magnetic field
in the range 0 � α � π/2. This is justified by the fact that the
propagating wave problem is reflected in relation to the y axis
under the transformation α′ = π − α and is symmetric under
the transformation α′ = π + α. Complementary information
about the influence of α on the magnitude of the final
propagating velocities will be exploited in the discussion of
Fig. 7.

C. Analytical approach to steady solutions

In order to have a more quantitative account of the
propagating steady profiles numerically predicted in Sec. III B,
we now carry out an analytical study, aiming to find wave
solutions to our problem, and analyze their stability.

To obtain a steady propagating solution we impose
that ζ (x,t) = ζ (kx − ωt), where ω is real and vf = ω/k
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FIG. 6. (Color online) (a) Propagating wave profile for NB = 20 and α = 1.17, resulting in vf = 17.83. (b) Propagating wave profile for
NB = 20 and α = 1.30, resulting in vf = 16.98. The profile and velocity are reflected in relation to the y axis if we perform the transformation
α′ = π − α. Note that here c0 = 0.

is the final propagating velocity. Therefore, we can write
ζk(t) = c1 exp(−iωt) and ζ2k(t) = c2 exp(−i2ωt) as propagat-
ing modes with constant amplitudes. We may take c1 as a real
constant without loss of generality since an imaginary part of it
would simply translate the resulting profile. However, we keep
c2 as a complex number, so there is a phase difference between
the modes ζk and ζ2k , something that is relevant for the profile
morphology. By inserting these conditions into Eqs. (17) and
(18) we get a complete set of nonlinear time-independent
equations that determine c1, c2, and ω [see Eqs. (A1) and
(A2) in the Appendix].

By manipulating the equations of the system described
above we find a cubic algebraic equation for ω with real coef-
ficients that depends on the functions expressed by Eqs. (9)–
(15). We have verified that within our range of physical
parameters (taken from the experiments in Refs. [5,19]), this
polynomial equation has a positive discriminant and therefore
three different real roots are found (see the Appendix for
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FIG. 7. Propagating final velocity vf as a function of α for c0 = 0,
NB = 20 (black), NB = 25 (dark gray), and NB = 30 (light gray).
The dotted curves depict the linear prediction of the fastest growing
mode phase velocity, the solid curves correspond to the analytical
weakly nonlinear prediction, and the dots show the velocities obtained
by numerically evaluating the time evolution of Eqs. (17) and (18).
The dashed vertical lines indicate the critical values of α.

details). To find out which of these solutions gives the actual
propagating velocity we perform a stability analysis of the
propagating solution by perturbing the modes’ stationary
amplitudes ζk(t) = (ε1 + c1) exp(−iωt) and ζ2k(t) = (ε2 +
c2) exp(−i2ωt), with ε1 = ε1(t) real and ε2 = ε2(t) complex.
By inserting these conditions in Eqs. (17) and (18) and
expanding up to first order in ε, the stability analysis of the
solution leads to a set of equations that can be expressed in a
matrix form as(

ε̇1

ε̇2

)
=

(
A11 A12

A21 A22

) (
ε1

ε2

)
, (19)

where

A11 = �(k) + iω + [F (k,−k) + F (k,2k) + iG(k,−k)ω]c2

1 − G(k,−k)c2
,

A12 = [F (k, − k) + F (k,2k)]c1 + iG(k, − k)ωc1

1 − G(k, − k)c2
,

A21 = 2F (2k,k)c1,

A22 = �(2k) + i2ω.

If the real part of an eigenvalue of the matrix A is positive
(negative), it indicates that there is an unstable (stable) branch
of the dynamic system defined by Eqs. (17) and (18) and
consequently the perturbations increase (decrease) with time.
For each set of parameters analyzed there is only one root for
ω that makes negative the real parts of both eigenvalues of
A. Thus it defines the actual stable propagating solution. This
root is explicitly given in Eq. (A9) in the Appendix.

Figure 7 makes a comparison of the analytical weakly
nonlinear prediction for the final propagating velocity from
Eq. (A9) (plotted as continuous curves) with the one obtained
by numerically solving the differential equations (17) and
(18) (plotted as dots). Also shown is the linear prediction for
the fastest growing mode phase velocity Im[−�(kmax)/kmax]
displayed as dotted curves. This is done to investigate the
plausibility of the purely linear approximation. Here we plot
vf as a function of α for three values of NB = 20,25,30 with
black, dark gray, and light gray curves, respectively. Since
we are considering the case where c0 = 0, there are only
contributions to vf that come from the tilted magnetic field.
The vertical dashed lines indicate the critical values of α below
which the interface is stable and remains flat. As we can see,
the curves reach a maximum of vf for a value of α greater
than the critical one and then tend to zero as α approaches
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π/2, when there is no magnetic field tilting. In addition, it is
observed that for any value of α the final velocity gets larger
when NB is increased. Thus, by tuning α and NB one can
control vf .

By comparing the solid curves with the dotted ones we
notice that the linear prediction works well when α is near its
critical value or near π/2. This can be understood by the ob-
servation that near the critical value of α only the fundamental
mode kmax has a noticeable amplitude and there is effectively
just one mode acting and thus negligible nonlinear coupling.
For higher values of α there is a relevant difference between
the weakly nonlinear and the linear predictions, indicating that
the coupling between the kmax and its harmonic is significant.
Moreover, for α near π/2 there is no second-order contribution
to the propagation, so the agreement with the linear prediction
is good again. In contrast, by comparing the solid curves with
the dots, we verify that there is excellent agreement between
the analytical weakly nonlinear predictions and the numerical
results. Therefore, we conclude that the coupling between
the modes plays a fundamental role in determining the final
propagation velocity.

IV. CONCLUSION

Parallel flow in a Hele-Shaw cell occurs when two immis-
cible viscous fluids flow with relative velocity parallel to the
interface between them. By considering one of the fluids as
a ferrofluid, we examined the influence of an in-plane tilted
magnetic field on the profile shape and propagation velocity of
interfacial traveling waves. We performed a weakly nonlinear
analysis of the system that provides important analytic insight
into the dynamics of the propagating structures. This is
accomplished by utilizing a small number of coupled Fourier
modes at the lowest nonlinear order.

The action of the tilted magnetic field is revealed already
at the linear regime: It is shown that by tilting the field
one can sustain wave motion even in the absence of ex-
ternal flow. Moreover, it is found that the velocity of the
waves depends on the tilting angle. Our nonlinear results
indicate that the time evolving interfacial wave shapes tend
to approach stationary wave profiles. In fact, the shape of
such stationary wavy patterns can be manipulated by the
tilted magnetic field, resulting in different nonlinear wave
forms: sinusoidal, vertical peaked structures separated by wide
troughs, and skewed undulating forms. Finally, we found that
the nonlinear wave velocity is sensitive to variations on the
tilting angle, a mechanism that can be used to control its
magnitude.

It would be of interest to see our theoretical results verified
by laboratory experiments. However, we are not aware of any
existing parallel flow experiment with a ferrofluid subject to
a tilted uniform magnetic field. Interestingly, there is a recent
example in the literature in which a theoretical prediction [26]
about solitary wave propagation in ferrofluids has been realized
experimentally [27]. However, it considered the action of an
azimuthal magnetic field on a cylindrical ferrofluid surface.
In the same spirit, we hope our current results could pave the
way for future experimental and theoretical investigations into
propagating deformations and localized waves in Hele-Shaw
parallel flow with ferrofluids.

ACKNOWLEDGMENTS

We thank Brazilian Research Council (CNPq) for financial
support through the Instituto Nacional de Ciência e Tecnolo-
gia de Fluidos Complexos program and also through the
CNPq/FAPESQ Pronex program.

APPENDIX: NONLINEAR VELOCITY CALCULATION

In this Appendix we present the details of the analytical
calculation for the nonlinear wave velocity vf . We begin by
substituting the ansatz expressions ζk(t) = c1 exp(−iωt) and
ζ2k(t) = c2 exp(−i2ωt) in Eqs. (17) and (18) to obtain the
following equations involving c1, c2, and ω:

ω = i�(k) + ic2{F (k, − k) + F (k,2k)

+ i[G(k, − k) − G(k,2k)]ω}, (A1)

2ωc2 = i�(2k)c2 + ic2
1[F (2k,k) − iG(2k,k)ω], (A2)

where we have used that ζ−k(t) = ζ ∗
k (t) and c1 = c∗

1, with the
asterisk representing complex conjugation. By taking the real
and imaginary parts of these equations and eliminating the
variables c1 and c2, we find a third-order polynomial equation
for ω,

aω3 + bω2 + cω + d = 0, (A3)

whose coefficients are real and are given by

a = Re([G(k, − k) − G(k,2k)]{2F (2k,k)

+G(2k,k)[2�(k) + �(2k)]}
− 2G(2k,k)[F (k, − k) + F (k,2k)]), (A4)

b = Im([F (k, − k) + F (k,2k)]{2F (2k,k)

+G(2k,k)[2�∗(k) + �∗(2k)]}
+ [G(k, − k) − G(k,2k)]{F ∗(2k,k)[2�(k)

+�(2k)] + G(2k,k)�(k)�(2k)}), (A5)

c = Re([F ∗(k, − k) + F ∗(k,2k)]{G(2k,k)�(k)�(2k)

+F ∗(2k,k)[2�(k) + �(2k)]}
− [G(k, − k) − G(k,2k)]F ∗(2k,k)�(k)�(2k)), (A6)

d = Im{[F ∗(k, − k) + F ∗(k,2k)]F ∗(2k,k)�(k)�(2k)}.
(A7)

The problem is further simplified by noticing that Eq. (14)
imposes that G(k,2k) = G(2k,k) = 0. The discriminant of
Eq. (A3) is

� = 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2, (A8)

which is always positive for the range of physical parameters
considered in this work [5,19]. As a result, there are three
distinct real roots given by

ω1 = − b

3a
+ (1 − i

√
3)(−b2 + 3ac)

322/3ap
− (1 + i

√
3)p

324/3a
, (A9)

ω2 = − b

3a
+ (1 + i

√
3)(−b2 + 3ac)

322/3ap
− (1 − i

√
3)p

324/3a
,

(A10)

ω3 = − b

3a
+ 21/3(−b2 + 3ac)

3ap
− p

321/3a
, (A11)
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where

p =
[
−2b3 + 9abc − 27a2d

+
√

4(−b2 + 3ac)3 + (−2b3 + 9abc − 27a2d)2
]1/3

.

(A12)

By performing a stability analysis for each of these roots,
as described in Sec. III C, we verify that ω1 is the only one
that is indeed stable. Therefore, the solution related to ω1

[Eq. (A9)] is the one that prevails from the system dynamics,
so the observed final nonlinear propagating velocity is given
by vf = ω1/k.
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