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Multistate intermittency and extreme pulses in a fiber laser
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In our recent Letter [Phys. Rev. Lett. 107, 274101 (2011)], we demonstrated that slow random perturbations of
a system parameter were responsible for the emergence of rogue waves in a fiber laser with coexisting attractors.
In this paper we investigate how the probability of a particular state to appear in multistate intermittency can be
controlled by low-pass noise filtering. We show that the probability of some states depends nonmonotonously on
the noise amplitude and cutoff frequency. The conditions for the emergence of extreme pulses in a erbium-doped
fiber laser are analyzed numerically and experimentally.

DOI: 10.1103/PhysRevE.86.056219 PACS number(s): 05.45.−a, 05.40.Ca, 42.55.Wd, 42.60.Mi

I. INTRODUCTION

Because all natural systems have a stochastic component
that affects their dynamics, many researchers in dissimilar
areas of science have shown a great interest for the interaction
between stochastic and deterministic processes. This is essen-
tially appealing for multistable systems, where noise changes
certain states stability, resulting in multistate intermittency.
Such a behavior has been observed in many discrete and
continuous systems.

The influence of noise on a system with coexisting
attractors was first studied by Arecchi et al. [1], who observed
noise-induced jumps between two coexisting states (two-
state intermittency) in the forced Duffing oscillator with a
double-well potential. Later a similar effect was found in
multistable systems [2] and called attractor hopping [3] or
multistate intermittency [4,5]. Relatively strong noise converts
a multistable system into a metastable one, so that the phase-
space trajectory, for a finite time, visits domains of different
attracting sets.

In general, when discussing effects of noise on a multistable
system, two distinct behaviors can be distinguished for weak
noise and strong noise. While weak noise does not change
the number of coexisting attractors and just modifies their
basins of attraction, strong noise merges the basins in a
new intermittent attractor, meaning that a trajectory visits
intermittently distinct areas of phase space. Intermediate noise
can induce bifurcations giving rise to multistability [6,7]
and providing preference for some of attractors over the
others [8–14]. These different noise effects have already been
verified experimentally in a multistable erbium-doped fiber
laser (EDFL) [4,5,15]. In particular, rare giant pulses referred
to as laser rogue waves have been detected in the multistate
intermittency regime when external white noise was cut off
from the high-frequency side [5].

The study of rogue waves has increased drastically in
recent years [16–18]. The giant pulses were found in both
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conservative and dissipative systems. Apart from the ocean
[19], these waves have been discovered in the atmosphere [20],
optics [21,22], plasmas [23], superfluids [24], Bose-Einstein
condensates [25], capillars [26], and even finance [27]. The
rogue waves in dissipative systems have been experimentally
detected in semiconductor [28], Ti:sapphire [29], modulated
fiber [5], Raman fiber [30], and mode-locked fiber [31] lasers.
The laser rogue waves emerge as separate pulses of high
intensity. One of the defining features of rogue waves in
any system is an L-shape probability distribution function
(PDF) of the wave amplitude, the same as ocean freak
waves [32]. The manifestation of freak waves in different
systems is of great scientific interest; debates about their
common features and differences still continue [33]. Further
research on rogue waves in any field of science and in nature
enriches their concept leading towards a deeper understanding
of this interesting phenomenon which is not yet widely
explored.

In this work, we study noise-induced multistate intermit-
tency in the EDFL with coexisting attractors. The EDFL is a
very practical dynamical system for studying multistability and
its control [4,5,13,15,34–38] because the coexisting attractors
can be easily distinguished by their pulse frequencies and
amplitudes, which make the laser rogue waves measurement
less demanding. It is widely accepted by many researchers
that the amplitude of the extreme pulses should be at
least double of the most probable pulse amplitude. We will
analyze conditions for the emergence of rogue waves in the
EDFL and show how the probability of the appearance of
extreme pulses can be controlled by noise parameters, in
particular, noise amplitude and cutting frequency of a low-pass
filter.

The paper is organized as follows. In Sec. II we start with
model equations, and then we present results of numerical
simulations. Section III is devoted to the experimental study
of EDFL dynamics under periodic and stochastic modula-
tion. First, we describe our experimental setup and then
we present experimental results and compare them with
the numerical ones. Finally, main conclusions are given in
Sec. IV.
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II. NUMERICAL SIMULATIONS

A. Model

The dynamics of the diode-pumped EDFL is described by
the following equations [5,38]:

dP

dt
= 2L

Tr

P {rwα0[N (ξ1 − ξ2) − 1] − αth} + Psp, (1)

dN

dt
= −σ12rwP

πr2
0

(Nξ1 − 1) − N

τ
+ Ppump, (2)

where P is the intracavity laser power, N = (1/n0L)
∫ L

0 N2(z)
dz is the averaged (over the active fiber length L) population of
the upper lasing level, N2 is the upper level population at the z

coordinate, n0 is the refractive index of a “cold” erbium-doped
fiber core, ξ1 and ξ2 are parameters defined by the relationship
between cross sections of ground state absorption (σ12), return
stimulated transition (σ12), and exited state absorption (σ23). Tr

is the photon intracavity round-trip time, α0 is the small-signal
absorption of the erbium fiber at the laser wavelength, αth

accounts for the intracavity losses on the threshold, τ is the
lifetime of erbium ions in the excited state, r0 is the fiber core
radius, w0 is the radius of the fundamental fiber mode, and rw

is the factor addressing a match between the laser fundamental
mode and erbium-doped core volumes inside the active fiber.
The spontaneous emission into the fundamental laser mode is
derived as

Psp = N
10−3

τTr

(
λg

w0

)2
r2

0 α0L

4π2σ12
, (3)

where λg is the laser wavelength. The pump power is expressed
as

Ppump = Pp

1 − exp[−α0βL(1 − N )]

N0πr2
0 L

, (4)

where Pp is the pump power at the fiber entrance and β is a
dimensionless coefficient. We explore the following parameter
values: L = 0.88 m, Tr = 8.7 ns, rw = 0.308, α0 = 40 m−1,
ξ1 = 2, ξ2 = 0.4, αth = 3.92 × 10−2, σ12 = 2.3 × 10−17 m2,
r0 = 2.7 × 10−6 m, τ = 10−2 s, λg = 1.65 × 10−6 m, w0 =
3.5 × 10−6 m, β = 0.5, and N0 = 5.4 × 1025 m−3. These
parameters correspond to the real experimental conditions
described in Sec. III. Although the model was designed for
a single-mode laser, it describes well the dynamics of a
longitudinally multimode erbium-doped fiber laser if only
power characteristics are exploited.

B. Coexisting attractors

Under harmonic modulation

Pp = p[1 − m sin(2πfdt)] (5)

applied to the diode pump current, the EDFL described by
Eqs. (1) and (2) exhibits the coexistence of up to four attractors:
period 1 (P1), period 3 (P3), period 4 (P4), and period 5 (P5).
In Eq. (5), p is the pump power without modulation, i.e.,
when m = 0. The branches of the coexisting attractors are
clearly seen in the bifurcation diagrams of the laser peak
power shown in Fig. 1. These diagrams are obtained by
varying initial conditions and using the modulation frequency
fd and amplitude m as control parameters. The stable periodic

FIG. 1. Numerical bifurcation diagrams of laser peak power as
functions of (a) driving frequency fd for m = 1 and (b) driving
amplitude m for fd = 80 kHz. The diagrams are calculated by varying
initial conditions and using the continuation method. The branches
of the coexisting periodic orbits P1, P3, P4, and P5 are shown by the
arrows.

orbits on subharmonic frequencies (P3, P4, and P5) are born
in saddle-node bifurcations when the control parameter is
increased.

Figure 2 shows the basins of attraction of the coexisting
stable periodic orbits for fixed fd = 80 kHz and different m.
While for low modulation amplitudes, the laser is monostable
with a single P1 [Fig. 2(a)], the subharmonic attractors of P3
[Fig. 2(b)] and P4 [Fig. 2(c)] emerge, and the sizes of their
basins of attraction enlarge when m is increased, while the P1
basin’s volume decreases, as shown in Fig. 3.

C. Stochastic modulation

When both harmonic and random signals are added to the
pump current as

Pp = p[1 − md sin(2πfdt) + ηG(ζ,fn)], (6)
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FIG. 2. (Color online) Basins of attraction of four coexisting
attractors in EDFL under pump modulation with fd = 80 kHz and
(a) m = 0.4, (b) m = 0.6, (c) m = 0.8, and (d) m = 1. P1, P3, and
P4 are shown, respectively, by the red (gray), yellow (light gray), and
blue (dark gray) dots.

intermittent switches between different coexisting periodic
regimes occur. Here η is the noise amplitude and G(ζ,fn)
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FIG. 3. (Color online) Relative volumes of basins of attraction of
coexisting attractors in EDFL as a function of modulation amplitude
for fd = 80 kHz.

is the zero-mean noise function in terms of a random number
ζ ∈ [−1,1] and the noise low-pass cutoff frequency fn (white
noise is filtered with a fifth order discrete low-pass Butterworth
filter in LabVIEW 8.5). The application of Gaussian white
noise with the first order filter does not result in a significant
difference [39].

The parameters of stochastic modulation, fn and η, are
varied to change the number of coexisting attractors and
the preference of different periodic regimes which appear
in multistate intermittency. Figure 4 shows the location of
different intermittency states in the space of the noise parame-
ters. This diagram is calculated for the fixed initial conditions
corresponding to P1. For small-amplitude noise, P1 is always
stable, and it coexists with other attractors (P3 and P4) for
any fn. For stronger noise, the laser works in the intermittent
regimes; depending on the noise parameters, the laser switches
either between P1 and P3, or between P1, P3, and P4, or
between P1, P3, P4, and P5. Note, that the P5 oscillations
appear only in the intermittent regime; i.e., for the explored
parameters the P5 is unstable, even in the absence of noise.

It is particularly remarkable that the large-amplitude sub-
harmonic oscillations appear in the intermittent regimes only
when noise contains just low frequency components, i.e.,
P4 is observed only for fn < 1 MHz [Fig. 4(a)] and P5 for
fn < 200 kHz [Fig. 4(b)]. As seen from Fig. 4(b), the minima
of the boundaries between the intermittency regions occur
at the fundamental (relaxation oscillation) laser frequency
fr ≈ 30 kHz. This means that when noise is cut off at this
frequency, it is much easier to obtain subharmonic oscillations.
Indeed, as seen in Fig. 5, the probability for the appearance of
the subharmonic pulses increases as fn is decreased, while the
probability of P1 goes down. Since the amplitudes of the P4 and
P5 pulses are much larger than the amplitude of the P1 pulses,
they can be treated as extreme pulses, but only when their
appearance probability is very low [5]. Therefore, the extreme
pulses (P4 or P5) can emerge only in a certain small region of
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FIG. 4. (Color online) Numerical state diagram in space of
noise parameters in (a) wide frequency range and (b) enlarged low
frequency range. Three attractors coexist in the brown (black) region
(P1, P3, and P4). Intermittency between two states (P1 and P3) is
observed in the yellow (gray) region, between three states (P1, P3,
and P4) in the blue (dark gray), and between four states (P1, P3, P4,
and P5) in the magenta (light gray) region. m = 1 and fd = 80 kHz.

noise parameters. The probability distributions obtained with
Gaussian white noise are very similar [39].

Figure 6 shows the probability as a function of the noise
amplitude for three fixed cutoff frequencies (5, 30, and
90 kHz). While P1 appears with 100% probability for small
noise (η < 0.2) [Fig. 6(a)], the probability diminishes as the
noise amplitude is increased, giving rise to other regimes.
The interesting feature of these dependencies is that the
probability of some states depends nonmonotonously on the
noise amplitude. In particular, the probability of P3 has a
maximum Wmax for a certain noise amplitude ηmax [Fig. 6(b)];
i.e., there exists a certain noise level for which the P3 regime
is more likely to occur than for any other noise amplitude. A
similar nonmonotonous dependence has been recently found
in preference of some attractors in the multistable Hénon
map subject to stochastic modulation [14]. Although more
detailed study of this phenomenon is required, our preliminary

FIG. 5. (Color online) Probability densities for (a) P1, (b) P3,
(c) P4, and (d) P5 regimes in (fn,η) parameter space. m = 1 and
fd = 80 kHz.
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FIG. 6. (Color online) Probability of (a) P1, (b) P3,
(c) P4, and (d) P5 oscillations versus noise amplitude η for
three fixed cutting frequencies fn of low-pass noise filter.
The position of the maximum (ηmax and W max) in the noise-
dependent probability of P3 is shown by the dashed lines
in (b).
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FIG. 7. (Color online) Position of noise-dependent probability
maximum for P3 as a function of noise cutoff frequency fn in
(a) wide frequency range and (b) enlarged low frequency range.

results allow us to hypothesize that such behavior originates
from stochastic resonance resulting from the interaction of the
driving frequency with the Kramers time of a particular state.

The position of the probability maximum depends on
fn. Both the maximum probability Wmax of P3 and the
corresponding noise amplitude ηmax are plotted in Fig. 7 as
functions of fn. One can see that the absolute probability
maximum occurs when fn is close to fr at the minimum noise
amplitude.

III. EXPERIMENT

A. Experimental setup

The experimental setup shown in Fig. 8 consists of a
1560-nm EDFL pumped by a 977-nm laser diode (LD)
(PL980). The 4.81-m Fabry-Perot fiber laser cavity is formed
by an active 88-cm-long heavily erbium-doped fiber (EDF)
with a 2.7-μm core diameter and two fiber Bragg gratings
(FBG1 and FBG2) with 0.288-nm and 0.544-nm full widths
on half-magnitude bandwidth, having, respectively, 100% and
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FIG. 8. (Color online) Experimental setup. A fiber laser formed
by an erbium-doped fiber (EDF) and two fiber Bragg gratings
(FBG1 and FBG2) is externally driven by both harmonic and noisy
signals applied to a diode pump laser (LD) current via a laser
diode controller (LDC) from a wave function generator (WFG)
and a noise interface (IF) through a digital-to-analogical converter
(DAC). The fiber laser output after passing through a wavelength-
division multiplexer (WDM) and an optical isolator (OI) is recorded
with a photodiode (PD) and analyzed with a digital oscilloscope
(OSC).

95.88% reflectivities at the laser wavelength. All optical com-
ponents are connected by a single-mode fiber. The diode pump
laser is controlled by a laser diode controller (LDC) (Thorlabs
ITC510). In our experiments, the diode current is fixed at
145.5 mA, which corresponds to a 20-mW pump power, while
the EDFL threshold occurs at 110 mA. This pump current
is chosen to ensure the laser relaxation oscillation frequency
around fr = 30 kHz. To drive the EDFL, the sum of harmonic
and random signals, m sin(2πfdt) + ηG(ζ,fn), is applied to
the diode pump current from a wave function generator (WFG)
(Tektronix AFG3102) and a noise interface (IF), respectively.
The periodic and random signals are summed at the input of
the current controller of the diode laser through corresponding
independent resistors providing a 500-kHz bandwidth of the
summation circuit.

In our experiments, we explore the same noise as in
the numerical simulations; i.e., the noise is generated by
LabVIEW 8.5 and then converted to the analog signal using a
digital-to-analog converter (DAC) (Tektronix AFG3102) with
the 5MS/s sampling rate. Noise with η = 1 V results in a 50%
modulation depth of the pump current; both the average pump
current and fr are independent of the noise amplitude. The
influence of noise on the relaxation oscillation frequency has
been extensively studied in Ref. [15].

B. Bifurcation and state diagrams

Using fd and m as control parameters, we construct the
experimental bifurcation diagrams of the laser peak intensity
shown in Fig. 9. The diagrams are obtained using times
series for different values of the control parameters. The
experimental dynamics confirms the results of numerical
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FIG. 9. Experimental bifurcation diagrams of laser peak intensity
versus (a) driving frequency fd for m = 0.8 and (b) driving amplitude
m for fd = 90 kHz. The diagrams are calculated by switching on and
off the signal generator. The arrows point to the branches of the
coexisting periodic orbits P1, P3, P4, and P5.

simulations, providing a qualitative similarity (compare with
Fig. 1). Although the relaxation oscillation frequencies in
the experiment and numerical simulations coincide (fr =
30 kHz), there is a small difference for higher driving
frequencies, where the experimental bifurcation diagrams are
shifted by 10 kHz. We hypothesize that this shift may be caused
by internal noise inherent to semiconductor and fiber lasers,
which was not included in the model. The experimental noise
is also responsible for the broadening of the attractor branches
in the bifurcation diagrams in Fig. 9.

As in the simulations, we explore the parameter range where
EDFL exhibits coexistence of attractors. In particular, we fix
the modulation parameters at fd = 90 kHz and m = 0.8 V, for
which P1, P3, and P4 coexist, and apply additional random
modulation to the laser diode pump current.

The experimental state diagram in the (fn,η) parameter
space is presented in Fig. 10. Similarly to the numerical one
in Fig. 4, it confirms that P1 is stable only for small-amplitude
noise. When η is increased, P1 loses its stability, and the laser
switches among other coexisting periodic regimes resulting in
multistate intermittency [4]. Although in general the numerical
and experimental diagrams look similar, a small difference
appears for low fn. This difference can be explained by the
following reasons: first, in the simulations the initial conditions
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FIG. 10. (Color online) Experimental state diagram in the (fn,η)
noise parameters space. The subharmonic regimes P4 and P5 with
large-amplitude pulses appear in multistate intermittency when noise
is filtered for low frequencies. fd = 90 kHz and m = 0.8 V.

are fixed for P1, while in the experiment they are random
since the experimental control of initial conditions is next to
impossible; and second, there exist uncontrolled proper white
and 1/f noises inherent to semiconductor and fiber lasers
[40,41], which may result in intermittency for smaller level of
external noise.

C. Multistate intermittency and rogue waves

Figure 11(a) shows the oscilloscope traces recorded at
fixed fn = 30 kHz and various η, and the corresponding
PDFs of the pulse intensities are displayed in Fig. 11(b). The
extreme pulses of P4 are depicted for η = 0.25 V because in
this specific regime the PDF approximates an L shape. We
should underline that the extreme pulses usually appear at the
borders between the intermittent regimes in Fig. 10, where the
probability of such events is very low. Due to internal laser
noise, the rogue waves in the experiment emerge for lower
amplitude of external noise than in the simulations.

The variation of the noise amplitude and cutoff frequency,
fn and η, allows us to control the probability for different
coexisting states. Figure 12 shows the experimental probabil-
ities of the appearance of P1 [Fig. 12(a)], P3 [Fig. 12(b)], P4
[Fig. 12(c)], and P5 [Fig. 12(d)]. The rogue waves of P4 and
P5 can be seen as separated light dots in Figs. 12(c) and 12(d).

Last, the noise dependencies of the probability of every
periodic state in the intermittency regime are shown in
Fig. 13 for three different fn. The experiment confirms the
nonmonotonous character of these dependencies for some
coexisting states, which was predicted numerically in Sec. II.
This is clearly seen in Fig. 13(b), where the probability
of P3 for fn = 5,30, and 90 kHz has maxima at η ≈ 0.7,
0.35, and 0.95, respectively. The position of these maxima
as a function of fn is shown in Fig. 14. The maximum of
Wmax occurs close to fr = 30 kHz that corresponds to the
minimum ηmax; this also confirms the results of the numerical
simulations. A small discrepancy between the numerical and
experimental dependencies in Fig. 7(b) and Fig. 14 in the

FIG. 11. (a) Experimental time series of laser intensity and (b)
corresponding probability distributions of peak intensities for differ-
ent noise amplitudes. fn = 30 kHz, fd = 90 kHz, and m = 0.8 V.
The extreme pulses for η = 0.25 V exhibit a nearly L-shape PDF.

low-frequency range can be again explained by the presence
of 1/f quantum noise. Low-frequency components of the
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FIG. 12. (Color online) Experimental probabilities of different
intermittent states in (fn,η) parameter space for (a) P1, (b) P3, (c) P4,
and (d) P5. fd = 90 kHz and md = 0.8 V.

internal laser noise destabilizes the P1 attractor, thus leading
to increasing probability for the appearance of subharmonic
oscillations.
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FIG. 13. (Color online) Experimental probabilities of different
intermittent states as functions of noise amplitude for three different
fn for (a) P1, (b) P3, (c) P4, and (d) P5.

The above statistical analysis demonstrates good agreement
between experimental and numerical results, indicating that
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FIG. 14. (Color online) Experimental position of maximum
noise-dependent probability for P3 as a function of noise cutoff
frequency fn.

the model captures the fundamental aspects of our experimen-
tal system.

IV. CONCLUSION

In this work, we have demonstrated how multistate intermit-
tency in EDFL can be controlled by adjusting noise parameters,
i.e., by varying the noise amplitude η and the low-pass filter
frequency fn. The interaction of harmonic and stochastic
modulation with the laser relaxation oscillation frequency fr

induces preference for some states in a multistate intermittency
regime, which depends on the noise parameters η and fn. While
the maximum probability of subharmonic oscillations occurs
when fn is close to fr , laser rogue waves are detected for
fn < fr , where the appearance of the subharmonic states is
less probable.

Our model demonstrates a fundamental understanding of
the system dynamics and gives insight into the nontrivial
effects arising in the experiment, such as extreme pulses and
noise-induced preference of some states. Due to uncontrolled
internal laser noise, the extreme pulses in the experiment
appear for smaller amplitudes of external noise than in the
numerical simulations.

Finally, we have also shown that the preference of some
states in multistate intermittency depends nonmonotonously
on the noise amplitude; i.e., there exists a certain noise level
for which a particular state is more probable than for other
noise amplitudes. This result is in agreement with previously
reported nonmonotonous attractor preference observed in the
multistable Hénon map [14]. The resonance character of the
noise dependence may be of interest for potential applica-
tions in communication with multistable systems exploiting
stochastic resonances between different coexisting states,
which can be a topic for future research.
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