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Randomness in a Galton board from the viewpoint of predictability:
Sensitivity and statistical bias of output states
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The Galton board is a classic example of the appearance of randomness and stochasticity. In the dynamical
model of the Galton board, the macroscopic motion is governed by deterministic equations of motion, and
predictability depends on uncertainty in the initial conditions and its evolution by the dynamics. In this sense the
Galton board is similar to coin tossing. In this paper, we analyze a simple dynamical model which is inspired by
the Galton board. Especially, we focus on the predictability, considering the relation between the uncertainty of
initial states and the structure of basins of initial states that result in the same exit state. The model has basins
with fractal basin structure, unlike the basins in coin tossing models which have only finite structure. Arbitrarily
small uncertainty of initial conditions can cause unpredictability of final states if the initial conditions are chosen
in fractal regions. In this sense, our model is in a different category from the coin tossing model. We examine
the predictability of a small Galton board model from the viewpoint of the sensitivity and the statistical bias of
final states. We show that it is possible to determine the radii of scatterers corresponding to a given predictability
criterion, specified as a statistical bias, and a given uncertainty of initial conditions.
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I. INTRODUCTION

Random sequence generators are key technologies for
ciphers [1] and numerical simulations [2,3]. Various algo-
rithms executed in computers and physical devices using
thermal or quantum noise have been developed to generate
random sequences. Algorithms such as the linear congruential
generator [4] and the Mersenne twister [5] can be used to
generate so-called pseudorandom sequences in computers.
These pseudorandom sequences are completely reproducible
if we know the algorithm and the seeds of the sequences,
and on a finite state computer they are eventually peri-
odic, although pseudorandom sequences of finite length can
be difficult to distinguish from sequences generated by a
truly random sequence generator. However, pseudorandom
sequences are not suitable for some security applications
which rely on the nonreproducibility of sequences. On the
contrary, unreproducible random sequences can be obtained
using well-designed physical devices.

Typically, practical physical devices which are used to
produce unreproducible and unpredictable random sequences
are dynamical randomizers, which make use of complicated
dynamical behavior together with some kind of inherent
uncertainty. Mechanical randomizers such as coin tossing and
dice throwing are examples of dynamical randomizers. Their
motions are modeled with a deterministic dynamical system
governed by Newton’s laws, but they also have nondetermin-
istic properties such as uncertainty of the initial configuration
and the effects of environmental noise. Generation of random
sequences using nonmechanical dynamical randomizers based
on electronic and optical devices has been proposed. For
example, a method to generate random sequences using chaotic
semiconductor lasers has recently been proposed [6,7], which
achieves very high generation rates.
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Dynamical randomizers can be distinguished into two
categories from the view point of output sequence lengths.
In one case the output is an unbounded sequence, while in the
other it is bounded. Periodically repeated measurements on a
steady system, such as devices using chaotic semiconductor
lasers, provide examples of the first category. Coin tossing
and dice throwing are typical examples of the second category
since their outputs are a finite set of states. The Galton board [8]
is also classified into this category. It consists of pegs arranged
on a vertical board in a hexagonal array. There is a funnel at the
top of the board, and balls are thrown into the board through the
funnel. In the lower part of the board, there is a number of slots
which are divided by slats. The balls fall under the influence
of gravity, bouncing off pegs on their way down. Eventually,
the balls fall into one of the slots at the bottom of the device.
The balls collect in the slots at the bottom, and the distribution
of the balls is typically close to a binomial distribution, which
approaches a Gaussian distribution for a large sized board,
consistent with the “laws of probabilities” [9]. In this sense,
although coins, dice, and the Galton board are all mechanical
randomizers and their outputs are bounded, the determination
of the final states of the Galton board are somewhat different
from the coin and dice cases, where the final state is determined
by the coin or dice spontaneously coming to rest.

Due to the complicated motion of coins and dice, any
ambiguity in the knowledge of the state is amplified, and
the final states become difficult to predict. It is natural to
conjecture that chaotic motion plays an important role in the
complicated motion of mechanical randomizers and hence in
the predictability of the final state. The pioneering work by
Keller revealed that the preimages of heads are simple [10], and
Vulović and Prange reported numerical experiments showing
that coins are not unpredictable due to the finite size of
basins [11]. Some authors investigated the randomness in the
coin toss more precisely but agreed with the predictability
of the outcome of coin tossing [12–15]. Nagler and Richter
revealed that the same is true for dice throwing [16].
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In this paper, we discuss the randomness in the ideal Galton
board, which has not yet been studied from the point of view
of random output generation, although some features of the
Galton board have been studied from the view point of a
model of physical materials [17–22]. We deal with an ideal
dynamical model which is inspired by the Galton board. There
are some difference in behaviors between the dynamical model
and real physical devices, as discussed later. In our Galton
board model, point particles fall, deterministically governed
by the Newton’s laws of motion, and some uncertainty of
the initial condition is supposed to be unavoidable in the
same way as coin tossing and dice throwing. A statistical
distribution of initial states representing the uncertainty of
initial conditions is deterministically mapped into a discrete
set of final states in a way such that the final states become
nondeterministic, or stochastic. Suppose that initial states are
independently picked from a distribution which characterizes
the initial uncertainty. Then the corresponding final states
are also independent, but their distributions depend on the
dynamical evolution. It may be that we always have the same
final state even with the uncertainty of the initial conditions,
and so we can predict the final state completely. This is related
to the sensitivity of the final state [23,24]. Or it may be that the
final state is not completely predictable but the distribution of
the final states is strongly biased, so that the final state can be
predicted with high probability. On the other hand, when the
distribution of final states is evenly distributed, then they are
“completely” unpredictable, and we obtain true randomness.
The statistical bias is the key to the predictability of the final
states and the robustness of final state distributions. In this
paper, we study the predictability of the Galton board model,
specifically in terms of the sensitivity and the statistical bias
of the distributions of the final states.

The dynamical behavior of the Galton board is related
to the phenomenon known as chaotic scattering [25]. In
scattering systems, particles enter a scattering domain, interact
with scatterers, and then leave the domain. The dependence
of the departure states on the entry states is typically very
complicated. A chaos mirror [26] has been proposed as an
application of chaotic scattering in which a small change
in the input ray direction results in a complicated change
in the output ray direction. The chaotic nature of scattering
has been well studied in so-called billiard systems in which
point particles bounce elastically among a set of scatterers. The
billiard system corresponds to the physical model known as the
Lorentz gas. Barra et al. [22] studied the Galton board model
as a Lorentz gas with a uniform external field and showed
the nonequilibrium stationary density under the conditions of
absorbing boundaries and stochastic injection of particles. In
addition, the density of collisions on the Birkhoff coordinates
of each disk is shown to have fractality, and the fractality
is shown to be the key to a positive entropy production rate.
Bleher et al. showed the fractality of a billiard system with exits
through one of which an orbit can escape from the system [23].
In this paper, we investigate the fractality of the Galton board
model from the view point of the predictability of output states.
The predictability depends on the sensitivity of final states,
which is deeply affected by the relation between the uncer-
tainty of the initial states and the structures of the dynamical
basins that connect the initial states and the final states.

In this paper we will discuss the difference between a
Galton board model with coin tossing and dice throwing
models. There are differences between a Galton board and coin
tossing or dice throwing models from the viewpoint of how to
determine output states. In coin tossing, outputs are determined
by the final states of a coin when it is caught by the hands, that is
to say, a compulsive termination. In dice throwing, outputs are
determined by the final states of a die when its energy becomes
too low to continue to roll. With the compulsive termination or
the energy dissipation, the motions of coins or dice are finite;
otherwise, the outputs of coins and dice cannot be obtained.
In the Galton board model it is possible to determine the
output states even without dissipation by defining the output
states as the exits of the pin region. In a Galton board model
without dissipation there can be arbitrarily long trajectories
and an arbitrarily fine fractal structure, which affects the
sensitivities of the final states. A real Galton board has energy
dissipation, but its behavior approaches an ideal model by
carefully setting up an experimental system and refining the
experimental conditions. There can be significant differences
between the Galton board with no dissipation and coin tossing
with dissipation since the basin can have fractal structures. We
describe the difference between the Galton board model and
coin tossing from the point of view of mechanical randomizers.

We briefly mention the difference between the mathemati-
cal model of an ideal Galton board and a real physical Galton
board. We consider a point particle with no rotational degrees
of freedom. We suppose no energy dissipation in our model,
that is, no air resistance and completely elastic collision. In
addition, trajectories are exposed to no fluctuation along the
way, and thus trajectories are determined by initial conditions
picked from some statistical ensemble and a deterministic
equation of motion.

In Sec. II, we describe the mathematical model of the
Galton board and the way to trace the trajectories numerically.
We focus our attention on a small Galton board model. In
Sec. III, we show the fractal basin structures. Then, we
investigate the relation between the structure of basins and
the initial uncertainty from the point of view of two aspects
of unpredictability. One is the final state sensitivity, studied in
Sec. IV, and the other is the statistical bias, studied in Sec. V.
Finally, we summarize the work in Sec. VI.

II. GALTON BOARD MODEL

The schematic of a Galton board apparatus, whose appear-
ance is inherited from the image of a Galton board introduced
by Kac [9], is shown in Fig. 1(a). The balls’ motions are
restricted to the two-dimensional space, and there are walls on
both sides so that particles do not go too far in the lateral direc-
tion. In a real Galton board balls bounce off pegs as they fall.
For ease of computation, we consider an equivalent dynamical
model of a Galton board where point particles bounce off
circular disks fixed on a plane, as in previous works [17–22].
Particles fall under the influence of a constant gravitational
field and elastically bounce off circular disks arranged in
a hexagonal array, as shown in Fig. 1(b). The positions of
pegs and centers of balls correspond to the centers of disk
scatterers and the positions of point particles, respectively. In
addition, the radius of disk scatterers corresponds to that of

056216-2



RANDOMNESS IN A GALTON BOARD FROM THE . . . PHYSICAL REVIEW E 86, 056216 (2012)

balls in the real Galton board. The line segments connecting
the outermost disks in Fig. 1(b) correspond to the side walls
in Fig. 1(a). The line segments are arranged in parallel with
the side walls, and the distance between them is equal to the
radius of disk scatterers. The trajectories of both figures are
completely equivalent if we ignore the rotation of balls in
Fig. 1(a). Our model also excludes the effects of thermal and
quantum fluctuations during the motion.

We introduce an orthogonal coordinate system Oxy . The
direction of the x axis is horizontal and perpendicular to the
gravity direction, and the y axis is vertical and opposite to
the direction of gravity. The distance between the centers
of nearest neighbor circular disks is 2, and their radii are
r . The side reflecting segments are placed along the lines
y = ±√

3 + √
3. The mass of a particle is supposed to be 1

for the sake of simplicity. Particles are released from between
the two uppermost scatterers, which we call the “entrance.”

Particles fall obeying Newton’s equation of motion with
gravitational acceleration g = 9.8; ẍ = 0 and ÿ = −g. Since
the collision of a particle and a circular disk is completely
elastic, there is no energy dissipation in our model, and the
total energy is always preserved:

E = 1
2 |v(t)|2 + gy(t) = const. (1)

Here, we describe how to calculate the trajectories of parti-
cles numerically. A particle with an initial position (x0,y0) and
an initial velocity (ux,uy) falls freely in a parabola. The free fall
will be interrupted by one of the following events: it collides
with a side reflecting line or a disk scatterer or exits from the
domain. Tracing trajectories of a collision with a reflecting
line is relatively simple. Let us describe the case in which
a particle reflects off a disk scatterer. Suppose that τ seconds
later, the particle will collide with a disk scatterer whose center
is (xc,yc). τ satisfies the following quartic equation:

g2

4
τ 4 − guyτ

3 + [
u2

x + u2
y − g(y0 − yc)

]
τ 2

+ 2[ux(x0 − xc) + uy(y0 − yc)]τ

+ (x0 − xc)2 + (y0 − yc)2 − r2 = 0. (2)

We obtain four values of τ by solving the quartic formula
numerically with Class Library for Numbers [27]. The
smallest positive value of τ is the desired solution for the
time interval τ to the next collision. The position (xi,yi) and
velocity (vx,vy) of the particle just before the next collision
can be calculated using τ as

xi = uxτ + x0, yi = − 1
2gτ 2 + uyτ + y0,

vx = ux, vy = −gτ + uy.

Letting u′
x and u′

y be the horizontal and vertical velocities of
the particle just after collision, respectively, then, we have the
following relations:

u′
x = vx(cos2 α − sin2 α) + 2vy sin α cos α, (3)

u′
y = 2vx sin α cos α + vy(sin2 α − cos2 α), (4)

where α denotes the angle between the y axis and the outward
normal of the circle at the impact point (xi,yi). After the
collision the particle will fall freely again, starting with the
initial position (xi,yi) and the initial velocity (u′

x,u
′
y). By
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FIG. 1. (a) Schematic of the Galton board apparatus. (b) Model
of the Galton board in the orthogonal coordinate system. The radii of
circular disks are r = 0.60, and the distance between the centers of
the nearest circular disks is 2. An example of a trajectory of a particle
falling and bouncing off circular disks is shown.

repeating calculations of reflecting off a disk scatterer or a
side wall, we can trace the particle’s trajectory.

Finally, particles exit from one of the spaces between two
scatterers in the bottom row, which we call an exit. The exit
which a particle passes through is used to define a final coarse-
grained state of the particle. The domain surrounded by the
entrance, the exits, and side walls, where particles free fall and
repeatedly bounce off scatterers, is referred to as the scattering
domain.

A. Small Galton board model

We would like to deal with a Galton board model with
a small number of scatterers for the sake of simplicity. We
consider a Galton board model with a relatively small number
of scatterers, as shown in Fig. 2. This model is a single-storied
Galton board model, while the model shown in Fig. 1 is a
multistoried Galton board model. We refer to this as a small
Galton board model. This model has a sufficient number of
scatterers in the following sense. Even in this small model,
uncertainty about the initial state in the entrance can result
in trajectories to more than one final state, the right or left
exit. Thus, this small Galton board model can produce an
elementary process of randomness. A set of five disks in two
rows, with two disks in the top row and three disks in the
bottom row, forming a scattering region with one entrance and
two exists, is the simplest section of a Galton board showing
the generation of random output, in the sense that trajectories
from the entrance can split irreversibly into two groups passing
through separate exits. In this small model, we will show the
existence of fractal structures of basins and the dependence of
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FIG. 2. Small Galton board model for r = 0.80. Two particles are
released from the entrance and bounce off the circular elastic surfaces
many times. One passes out through the right exit, and the other gets
out through the left exit. The bold lines show reflecting surfaces in
the model.

the bias of final states. Clarifying these properties is essential
to understanding the randomness of Galton boards of any size.

In this study, the origin of our coordinate system is set
to the center of the entrance. In other words, particles are
launched from the entrance: the region −1 + r < x < 1 − r

and y = 0. The initial state of a particle is determined by the
initial position and the initial velocity (x0,v0,θ0), where v0

denotes the magnitude of the velocity and θ0 denotes the angle
between the −y direction and the velocity. Since the energy
of particles considered here is constant, the initial state can be
described by the two degrees of freedom (x0,θ0). The final state
is defined as the position of the particle when it first crosses
the line y = −√

3, and the final state is assigned a symbol Sf ,
with a value of 1 if x > 0 and −1 if x < 0.

In the case of the first row of a Galton board it is reasonable
to assume that the velocity is zero at the entrance. If the initial
velocity is zero, the particles cannot leave the model via the
entrance; that is, the entrance cannot be an exit. We describe
the case of the positive initial momentum in Appendix B.

III. FRACTAL BASIN STRUCTURE AND INITIAL
UNCERTAINTY

A. Fractal basin structure

The equation of motion which determines trajectories of
particles connects an initial state to a coarse-grained exit state
with the symbol Sf = ±1. The sets of initial states mapped
onto the coarse-grained exit state Sf = 1 are the basin of the
right exit, while the sets of initial conditions mapped onto the
coarse-grained exit state Sf = −1 are the basin of the left exit.

Figure 3 shows the basins of the initial conditions for
various radii of circular disks. A particle with an initial state
in the white region leads to the left exit (Sf = −1), and a
particle with an initial state in the black region leads to the
right exit (Sf = 1). Since the initial velocity v0 is zero, the
basin structure is independent of the initial velocity angle θ0,
and the shapes of the basins are stripes. The widths of the
stripes vary largely. In the case of r = 0.50 there are wide
stripes compared with larger scatterer cases, and we can see
the tendency that widths of stripes are thinner as the radii of
scatterers are bigger. Notice that the horizontal scales are finer
as the radii are bigger, and thus, the actual widths for the large
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FIG. 3. Basin structures for radii r = 0.50, 0.60, 0.70, 0.80, 0.90,
0.95, and 0.99 (from above). The horizontal and vertical axes indicate
the initial position x0 and the initial velocity angle θ0, respectively.
The white and black regions show initial states of particles that pass
out through the right (Sf = 1) and left (Sf = −1) exits, respectively.

radii are much thinner than they look in the figures. We can see
that it is necessary to control initial states much more exactly
in order to be able to determine the coarse-grained exit states
for larger radii.

Figure 4 is a semilogarithmic plot of stripes’ widths as
a function of the radii. We clearly see that stripe widths
are distributed over wide ranges, and the widths of the
widest stripes decrease with the radii. The largest allowable
uncertainty to control the results rapidly decreases as the radii
approach 1. On the other hand, the widths of the thinnest
stripes stay the same value for the same given resolution of the
experiments.

It is worthwhile investigating the possibility that the basin
structures are fractal since we can see some fractal-like
structures in Fig. 3 and fractal basin boundaries can occur
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FIG. 4. Semilogarithmic plot of stripe widths as a function of the
radii of the circular disks.
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FIG. 5. (b), (d), (f), (h) Enlargements of the basin structures near
the origin. (a), (c), (e), (f) Plot of the residence time corresponding to
the enlarged basins.

for chaotic Hamiltonians with exits [23]. In addition, fractal
basin structures with infinitely small structures can be an
explanation for the constant width of the thinnest stripes’
widths in Fig. 4. When we enlarge a region near x0 = 0 in
the case of r = 0.50, we can see the similar structures in every
scale of Figs. 5(b), 5(d), 5(f), and 5(h). In addition, Figs. 5(a),
5(c), 5(e), and 5(f) show the residence time of particles in the
scattering domain as a function of the initial positions, and
the residence times are long and behave complicatedly in the
segments where the basins have fine structures. These facts
indicate that basins have fine structures near the origin.

For r = 0.50 in Fig. 3, we can see a fractal-like basin
structure in many regions, not just around the origin. In Fig. 6,
the enlargements of basins near x0 = 0.3 show that there are
fine structures, and this region also has fractal structures.
On the other hand, the region around x0 = 0.2, shown in
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FIG. 6. Enlargements of the basin structures near
0.3 for r = 0.50. The ranges of x0 are [0.25,0.35],
[0.291,0.292], [0.29196,0.29197], [0.29196185,0.29196195],
and [0.291961935,0.291961936].
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FIG. 7. Enlargements of the basin structures near 0.2 for r = 0.50.

Fig. 7, appears to be just one black basin. Sections with fine
structure appear interleaved among such sections with no fine
structure. Figure 8 shows the enlarged basin structures near the
origin for r = 0.99 at various scales. For any enlarged figures,
there are fine and similar structures, indicating the basins of
r = 0.99 also have fractal structures. Similarly, for various
radii of scatters, the basins have interleaved regions of fractal
structures and nonfractal structures.

Let us compare the basin structure of a Galton board with
those of coin tossing and dice throwing. Since there is no
energy dissipation in our Galton board model, infinitely long
trajectories can be produced, and there can exist infinitely fine
structures. For example, the trajectory starting from the exact
origin is an unstable periodic orbit and has an infinite residence
time. There exist trajectories with very long residence times
in the neighborhood of the origin. The trajectories with long
residence times are related to the fine structures of basins since
small differences between trajectories can become large over
long times. The unstable periodic orbits, corresponding to the
motion of particles which never escape from the domain, are
thought to be related to the boundaries of basins. On the other
hand, in the case of coin tossing and dice throwing, there is no
infinite structures of basins since coins and dice settle into final
states within finite time because of energy losses. Therefore, if
initial uncertainty is small enough, we can, in principle, control
the final states completely. However, it is worthwhile noting
that, as the dissipation is smaller, the basins become finer and,
in the limit of small dissipation, trajectories become long and
the basin structures approach fractal [13,15]. It is difficult to
introduce a method to determine the output states in ideal
models of coin tossing and dice throwing without dissipation.
In this sense, our model is in a different category from coin
tossing and dice throwing models. In Appendix A, we use a
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FIG. 8. Enlargements of the basin structures near origin for r =
0.99.
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one-dimensional model to illustrate the key different features
between the Galton board model and a coin tossing or dice
model. The fractal structures are also observed in the case of
positive initial momentum; see Appendix B 1.

B. Initial uncertainty

Let us consider that one cannot set an initial state without
uncertainty. The uncertainty in the output of the Galton board
model is attributable only to the uncertainty of the initial state
since the equations of motion are deterministic and the output
coarse-grained exit states are easily distinguishable. In other
words, if the coarse-grained exit states are to give uncertain
results, it can only be because the initial states vary uncertainly.
In order to analyze the uncertainty in the output, it is important
to consider the relation between the size of basins and the size
of uncertainty regions.

The above description of basin structure shows that there
are some regions where the same coarse-grained exit state
will be obtained even if there is some uncertainty in the initial
state, and there are other regions where any small uncertainty
will result in uncertain output. Let us indicate the initial
state by x0 and assume that we know only that the initial
state lies somewhere in the neighborhood U(x0) of x0. We
call the initial state x0 the center of the initial state and the
neighborhood U(x0) the uncertain region of the initial state.
If all initial states in an uncertain region U(x0) go to the same
coarse-grained exit state, one will always get the same output
Sf , even with the initial uncertainty. In this sense the output
is predictable. On the contrary, if the uncertain region U(x0)
spreads across the basins of both the coarse-grained exit
states 1 and −1, we cannot determine the output in advance.
The coarse-grained exit state is unpredictable in this case.
When we say that our initial center x0 is uncertain by an
amount ε, this means that what we really know is only that
the initial condition lies somewhere in the uncertain region
|x − x0| � ε/2, or Uε(x0) = {x : |x − x0| � ε/2}.

Let us consider the probabilities of the coarse-grained exit
states as a function of ε. Figure 9 shows probabilities for exiting
through the right side (Sf = 1). The probabilities stay around
0.5 in the case that r = 0.99 and x0 = 0. The coarse-grained
exit states remain unpredictable as the initial uncertainty

10
−10

10
−5

10
00

0.2

0.4

0.6

0.8

1

Initial uncertainty ε

P
ro

ba
bi

lit
y 

fo
r 

S
f=

1

r=0.50
r=0.99

FIG. 9. Probabilities for exiting through the right side (Sf = 1)
for various initial uncertainties ε. Two cases are shown, one with
r = 0.50, x0 = 0 and one with r = 0.99, x0 ∼ 0.3.

decreases. Another example is the case where r = 0.50 and
x0 ∼ 0.3, where the probabilities fluctuate strongly. The results
for this case show that in some cases, even though we cannot
predict coarse-grained exit states completely, we can predict
the coarse-grained exit state with high probabilities. In this
paper, we consider two meanings of the unpredictability: one
is that there are possibilities for multiple outputs, as discussed
in Sec. IV, and the other is that the probabilities for all outputs
are even, as discussed in Sec. V.

IV. FINAL STATE SENSITIVITY

In this section, we consider the unpredictability of the
Galton board model in the sense that there is a possibility
to reach either of the two coarse-grained exit states given a
particular initial center x0 and an amount ε of an uncertainty.
The unpredictability is affected by the density of basin
boundaries. In order to characterize the fractal structure of
basin boundaries, we examine the Hausdorff dimension DH

of basin boundaries:

DH ∼ − log N (l)

log l
, (5)

where l is a length of a segment and N (l) denotes the number
of segments needed to cover the set of all basin boundaries.
Figure 10 is a logarithmic plot of N (l) as a function of l for
r = 0.50, 0.60, 0.80, 0.90, and 0.99. We fitted the lines to
N (l) by applying the least mean square method to the short
segment ranges, and the fitted lines are shown together in
Fig. 10. Their slopes indicate the Hausdorff dimension DH ,
and they are approximately 0.507, 0.567, 0.742, 0.853, and
0.991 for r = 0.50, 0.60, 0.80, 0.90, and 0.99, respectively.
We can say that the dimensions of basin boundaries increase
as the radii of scatterers increase.

Next, in order to characterize this kind of unpredictability
we examine the sensitivity of the final states, in the sense

10
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−4

10
−2

10
1

10
2

10
3

10
4

l

N
(l)

0.50
0.60
0.80
0.90
0.99

FIG. 10. Plot of the number N (l) of segments covering all basin
boundaries as a function of segment lengths l. The lines are calculated
with the least mean square error, and their slopes indicate the
Hausdorff dimension of basin boundaries. The slopes are 0.507,
0.567, 0.742, 0.853, and 0.991 for r = 0.50, 0.60, 0.80, 0.90, and
0.99, respectively.
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of the sensitivity described in [24]. We know for sure that
an initial condition goes to coarse-grained exit state 1 if
Uε(x0) is included in the basin of Sf = 1. In this case, we
say that an initial center x0 is ε certain. On the other hand,
if Uε(x0) consists of both Sf = ±1 basins, we cannot predict
with absolute certainty whether the coarse-grained exit state
is 1 or −1. In this case we say that the initial center x0 is ε

uncertain. An output corresponding to an initial region Uε(x0)
is unpredictable, if the initial uncertainty ε is greater than
or equal to ε0 and the initial center x0 is ε0 uncertain. The
unpredictability of an initial state depends on the initial center
and the value of ε; for example, while outputs are predictable
for a sufficiently small ε in the nonfractal areas, they
can be unpredictable for the same ε in the fractal areas. We
introduce the ratio of unpredictable initial center for given ε as
a measure of the unpredictability of the Galton board. Clearly,
initial centers that are ε uncertain are those which lie within
a distance ε of a basin boundary. If we were to pick an initial
center at random, the probability of obtaining an ε uncertain
initial center is the fraction of the area of the initial state space
which lies within ε of a boundary. We call this fraction the final
state sensitivity and denote it by f (ε). For a simple nonfractal
boundary in a two-dimensional space of the initial conditions,
f (ε) scales linearly with ε, or f (ε) ∼ ε. However, when the
boundaries are fractal, f (ε) has a different scaling with ε:

f (ε) ∼ εγ , (6)

γ = N − DH, (7)

where N is the phase space dimension and DH is the Hausdorff
dimension of the basin boundaries. Figure 11 shows f (ε)
plotted on log-log axes, obtained from numerical experiments.
The straight line fits indicate that f scales as a power
of ε. The slope of the line gives the power γ . The results are
0.438, 0.387, 0.288, 0.158, and 0.007 for r = 0.50, 0.60, 0.80,
0.90, and 0.99, respectively. Note that Eq. (7) is approximately
satisfied by the experiments shown in Figs. 10 and 11. As
the radii increase, the Hausdorff dimension increases and the
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FIG. 11. Logarithmic plot of f (ε). The lines are calculated with
the least mean square error, and their slopes indicate the exponents of
the final state sensitivity γ . The slopes are 0.438, 0.387, 0.288, 0.158,
and 0.007 for r = 0.50, 0.60, 0.80, 0.90, and 0.99, respectively.

exponent γ of the final state sensitivity decreases. For large
radii, basin boundaries become dense, and the probability, in
the sense of the ratio of neighborhood regions U(x0) which
has basins of two coarse-grained exit states, becomes high. For
example, the probability is more than 80% when an amount ε of
initial uncertainty approximately is more than 2–3 ×10−4 for
r = 0.9, 0.01 for r = 0.8, or 0.05 for r = 0.5. The sensitivity
increases, and so the predictability decreases, with ε according
to a fractal scaling law, with an exponent that increases with
the radius of the scatterer.

V. STATISTICAL BIAS OF THE FINAL STATE

In this section, we discuss the unpredictability from the
viewpoint of statistical bias. When the proportions of areas of
two basins in the initial uncertain region are biased, the pro-
portions of the two final states obtained for uniformly random
choices of initial states are also biased, and we can say that
the final states become somewhat more predictable than if the
proportions were equal. For the two final states Sf = ±1, the
statistical bias of the final states can be defined as the averaged
value of the final states. Suppose that initial conditions are
uniformly distributed within the uncertain regions Uε(x0) of
the width ε. We denote 〈Sf 〉ε,x0 as the averaged final state Sf

over the uncertain region Uε(x0) for given x0.
First, we show the distributions p(〈Sf 〉ε) of the averaged

final states when the centers of the initial uncertainty are
chosen at random in the entrance of the scattering domain.
Figure 12 shows the histograms p(〈Sf 〉ε) for r = 0.50. The
averaged final states 〈Sf 〉ε are sharply distributed around
the origin in the case that the initial uncertainty width is almost
the same as the width of the entrance, that is, ε ∼ 2(1 − r). This
means that the probability of the final states Sf = ±1 is even,
and we cannot at all predict coarse-grained exit states wherever
the initial center is. When the width ε is smaller than the
entrance, the distribution of 〈Sf 〉ε broadens and has multiple
peaks. This means that the fluctuation of 〈Sf 〉ε becomes large
and the probabilities of the final states are strongly biased for
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FIG. 12. (Color online) Histograms of the averaged final states
〈Sf 〉 for various sizes of the uniform uncertainty in the case of r =
0.50. The vertical axes indicate relative frequency.
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FIG. 13. (Color online) Enlarged basin structures (top left) and
histograms of the averaged final states 〈Sf 〉 for various sizes of the
uniform uncertainty when the initial conditions are restricted to the
region around the origin [−0.05,0.05] in case of r = 0.50.

large portions of the initial centers. When the width ε decreases
further, peaks appear in the distribution at 〈Sf 〉ε = ±1, so that
even if we choose the center of initial condition at random, the
outputs are predictable in almost all cases.

Next, we consider the distributions of 〈Sf 〉ε when the
centers of the initial uncertainty are restricted to near the origin,
where the structures of basins are fractal. The distributions of
〈Sf 〉ε behave in a way similar to the unrestricted case because
of the self-similar nature of the fractal basin boundaries in
Fig. 13. The distribution has a peak around 〈Sf 〉ε = 0 when
ε is large. As ε becomes smaller, the distribution broadens
and finally has peaks around 〈Sf 〉ε = ±1. Figure 14 shows the
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FIG. 14. (Color online) Enlarged basin structure (top left) and
histograms of the averaged final states 〈Sf 〉ε for various sizes of the
uniform uncertainty when the initial conditions are restricted to the
region [0.29,0.3] in the case of r = 0.50.

basin structures and the distribution of 〈Sf 〉ε when the initial
conditions are restricted to the region [0.29,0.3]. We can see
fine basin boundary structures, but the areas of black are larger
than the areas of white. As a result, the final state 1 occurs
more frequently than −1, and 〈Sf 〉ε are very biased.

In the case of r = 0.99, the distribution of 〈Sf 〉ε has a
peak at 〈Sf 〉ε = 0 even when the width of the uncertainty is
quite small compared to the entrance length 0.02, as shown in
Fig. 15. This is different from the case of r = 0.50. However,
as the width of the uncertainty is made even smaller, the
distributions broaden and have a two peak structure, as seen in
the case of r = 0.50. Comparing with r = 0.50, although there
are two peaks, the peaks are low and are not at 〈Sf 〉ε = ±1
but near the center 〈Sf 〉ε = 0. This means that there are some
biases in the appearance of final states, but they are small. The
width of the initial uncertainty required to acquire unbiased
outcomes is much smaller than that for r = 0.50.

Next, we consider the variance vSf of the statistical bias
〈Sf 〉ε . Figure 16 shows the variances vSf as a function
of the widths ε of the initial uncertainty for r = 0.50
(top left), 0.90 (top right), and 0.99 (bottom left). As the
uncertainty ε increases, the variance decreases. When the
uncertainty becomes the same as the length of the entrance,
the variance finally becomes zero, which means that almost
all 〈Sf 〉ε localize near zero due to the symmetry of the layout
of the Galton board model. The larger the radius is, the smaller
the variance is for the same ratio of the uncertainty width to the
entrance width. We regard the uncertainty widths at which the
variance becomes a certain value vc = 0.01 as the unbiased
uncertainty size wc. The bottom right plot in Fig. 16 shows wc

as a function of the radii r . Thus, we can determine the radii
and uncertainty of initial conditions required to achieve a given
variance. For example, a small bias (vSf < 0.01) is achieved
with ε ∼ 0.1 for r = 0.9, ε ∼ 0.3 for r = 0.8, or ε ∼ 0.85 for
r = 0.5. In general, we can see the tendency that wc becomes
smaller as the radii become bigger.
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FIG. 15. (Color online) Histograms of the averaged final states
〈Sf 〉ε for various sizes of uniform uncertainty in the case of r = 0.99.
The vertical axes indicate relative frequency.
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FIG. 16. Variance vSf of the final states as a function of the initial
uncertainty for r = 0.50 (top left), 0.90 (top right), 0.99 (bottom left).
Critical uncertainty length for radii where the variance vSf of the final
states is 0.01 (bottom right).

It is noted that the fraction f (ε), which we call the final
state sensitivity, indicates Prob(Sf �= ±1) and the scaling γ

determines how fast Prob(Sf �= ±1) approaches zero for small
ε. In this sense, the statistical distribution of statistical bias
〈Sf 〉ε is related to the final state sensitivity. The results of the
statistical bias with positive initial momentum are described
in Appendix B 2.

VI. SUMMARY AND DISCUSSION

We reported about the mechanism for the manifestation
of randomness in the motion of particles in a Galton board
model. There are two aspects in the Galton board model. One
is determinism: the motions of particles in the Galton board
model are governed by the deterministic equations. The other
is nondeterminism: initial states of particles have inevitable
uncertainty due to the fluctuation and inaccuracy of the initial
setups of particles. We focused on the effects of the initial
uncertainty on the unpredictability of coarse-grained output
states, that is, exit channels, because, assuming that initial
setups are independent trials, the unpredictability is the key
feature for the randomness of the output states. From point
of view of clarifying the conditions for unpredictability, it is
beneficial to investigate the structures of basins in the initial
state space corresponding to the output states since the relative
sizes of the initial uncertainty and the basins is significantly
related to the unpredictability.

The basins of our Galton board model without energy
dissipation have infinitely fine and self-similar structures
with fractal boundaries. This characteristic affects the unpre-
dictability of output states. The output states of the Galton
board model, the exit channels, are determined independently
of any dissipation. This is an important difference compared
to coin tossing or dice throwing models. The coin tossing and
dice throwing models require dissipation in order to determine
the output states and so cannot have fractal structure.

We discussed two kinds of unpredictability in this paper.
One is the case where there is the possibility of two output

states. The other is the case where the probability of the
two output states is equal. We refer to the former as weak
unpredictability and the latter as strong unpredictability. In
this paper, these two kinds of unpredictability are analyzed by
introducing two statistical measures, final state sensitivity and
distribution of statistical bias.

The weak unpredictability is characterized by the final state
sensitivity, which indicates how ubiquitously the infinite fine
structures exist in the whole initial space, more specifically
how fast the probability that the region of initial uncertainty
contains different basins decays as the amount of initial
uncertainty decreases. As the radii of circular disks increase,
the probability decays more slowly, which means that the weak
unpredictability is enhanced for large disks.

The strong unpredictability is characterized by statistical
bias and its variation. The variation of statistical bias is related
to the robustness of distributions of final states. The variance
of the averaged output values indicates the fluctuation of the
statistical bias when an initial state is uniformly picked up
from initial space, and a small variance means that the minute
basin structure becomes homogeneous over the whole initial
space. Our numerical experiments showed that the variance of
statistical bias is a function of radii r and the variance decreases
as radii increase. Therefore, if the variance is regarded as the
specified quality of randomness, for a given initial uncertainty,
we can determine the critical r which achieves the quality of
randomness. All of these results amount to saying that the
Galton board model becomes a better randomizer the larger
the radii of disk scatterers are.

Although the primary purpose of this study is to analyze the
properties of the idealized two-dimensional small mathemati-
cal model of the Galton board, let us briefly comment on what
the results indicate about the effect of some properties of real
Galton boards on randomness. First, our model has no energy
dissipation, which can produce long trajectories and fine
basins, and these greatly influence the unpredictability. If you
carefully make a Galton board with well chosen materials, the
behavior of the real Galton board will be well approximated by
our idealized model. Second, we neglected the environmental
fluctuations which perturb a ball during its motion. By the
perturbation, the basin structures become blurred, especially
for minute basin structure, and the unpredictability of the
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FIG. 17. Small Galton board model for r = 0.80. The bold lines
show reflecting surfaces in the model, and there is an additional
straight reflecting surface at the entrance in the case of positive initial
momentum.
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r = 0.50

r = 0.90

r = 0.99

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

v0 = 0.25 v0 = 0.50 v0 = 1.0

FIG. 18. Basin structures. The horizontal axis shows the initial particle position x0 (∈ [r − 1,1 − r]), and the vertical axis shows the angle θ0

(∈ [0,π ]) of the initial velocity. White shows the basin of the coarse-grained exit state (Sf = 1), and black shows the basin of the coarse-grained
exit state (Sf = −1). Left: v0 = 0.25, middle: v0 = 0.50, and right: v0 = 1.0. (a)–(c) r = 0.50, (d)–(f) r = 0.90, and (g)–(i) r = 0.99.

output states may increase. Third, we investigated only a
small Galton board model instead of a large sized model with
multiple layers and multiple exit channels. We can conjecture
that the large sized models still have the same important
characteristics for the randomness, such as the fractal basin
structures and the behavior of statistical biases. The dynamical
structures are unaltered whether a die is regular hexahedron
or regular dodecahedron. Similarly, it seems reasonable to
suppose that the essential characteristics of the dynamical
structures of the large sized models remain the same as those
of the small model.

APPENDIX A: ONE-DIMENSIONAL MODEL

Here, we discuss the difference between our Galton board
model and a coin tossing model by using the following one-
dimensional map:

M(x) =
{

2ηx, if x < 1/2,

2ηx − η, if x > 1/2.

Although the map is an abstract model, it can express the
core features of random number generation mechanisms for
the Galton board and coin tossing, and it is expedient to
accentuate the differences between them. For η = 1, the map is
the Bernoulli map, mapping [0,1] onto [0,1]. We consider the
rough assumption for coin tossing that the initial energy is fixed
and the loss of energy for one bounce is constant, so that a coin
comes to rest at heads or tails after a fixed number of bounces
under our assumption. Then we can think of the result of a coin
toss as corresponding to the final state of the one-dimensional
mapping after a fixed number of iterations. For η > 1, there
are two windows, [ 1

2η
, 1

2 ] and [ 1
2 + 1

2η
,1], through which

trajectories of x can escape from the region [0,1]. Once
trajectories enter in the windows, they get mapped into the
region x > 1 and move toward ∞ on successive iterations.
If we consider that a final state is determined by which
window a trajectory passes through, then we can think of this
one-dimensional model as corresponding to our Galton board
model. Almost all initial conditions in [0,1] eventually go to
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(b)(a)

(d)(c)

FIG. 19. Enlarged basin structures for r = 0.50: (a) 0.1 � x �
0.2 and 0.5 � θ � 1.5, (b) 0.1 � x � 0.105 and 1.1 � θ � 1.14,
(c) 0.1 � x � 0.1001 and 1.112 � θ � 1.1135, and (d) 0.1 � x �
0.100001 and 1.11324 � θ � 1.11326.

infinity. However, there are infinitely long trajectories which
never get out. The measure of such remaining trajectories is
zero, and these trajectories have fractal structures and become
basin boundaries. We note that these basin structures are
similar to that of our Galton board model, and the behaviors
can be regarded as chaotic scattering. The dimension of basin
boundaries becomes larger as η becomes small in the same
way the dimension becomes larger as the radii of scatterers
become larger. This is similar to the way that fractal basin
boundaries and infinitely small size of basins are formed in
our Galton board model. The predictability of the final states
for arbitrarily small initial uncertainty depends on whether the
position of the initial centers is in fractal regions or not.

(b)(a)

(d)(c)

FIG. 20. Enlarged basin structures for r = 0.99: (a) 0.05 � x �
0.006 and 1 � θ � 1.1, (b) 0.05 � x � 0.0051 and 1 � θ � 1.01,
(c) 0.05 � x � 0.005001 and 1 � θ � 1.0001, and (d) 0.05 � x �
0.00500001 and 1 � θ � 1.000001.

APPENDIX B: POSITIVE INITIAL MOMENTUM

In this section, we consider the case where the initial
velocity has a positive value. In order to prevent particles
with nonzero initial velocity from escaping from the scattering
domain through the entrance, we assume an additional straight
reflecting surface between the circular disks, as shown in
Fig. 17.

1. Fractal basin structure

As shown in Fig. 18, as the radii of scatterers become
larger, the basin structure becomes finer in the same way as
for particles with the zero initial velocity case. However, due
to the initial velocity, the structures of basins are twisted and
skewed.

The basin boundaries appear to be fractal in this case too.
To check the possibility of fractal basins, the appropriate
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FIG. 21. (Color online) Distribution of the averaged final state
〈Sf 〉ε for r = 0.90 and v0 = 1.0. The top four plots show histograms
for various uncertainties εθ of the initial velocity angles when
uncertainty εx of the initial positions is fixed, and the bottom four
plots are for various εx when εθ is fixed. The vertical axes indicate
relative frequency.
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enlargements are presented in Fig. 19 (r = 0.50) and Fig. 20
(r = 0.99). Under further magnification new finer structures
can be resolved, and the boundaries appear to be fractal.
These fractal basin boundaries indicate infinitely complicated
relationships between initial states and final states, which are
typical of chaotic scattering.

2. Statistical bias

In this section, we investigate the statistical bias for initial
conditions with nonzero velocity. Here, we consider the
uncertainty of the initial velocity as well as the initial position.
Figure 21 shows the distribution of statistic bias 〈Sf 〉ε of
r = 0.90 for various uncertainties of initial position εx and
initial velocity angle εθ . The four top plots show various εθ

and fixed εx (=0.0198). As the uncertainty εθ becomes smaller,
the distributions become broader, with multiple peaks. For
large velocity angle uncertainties, the distributions are narrow,
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FIG. 22. (Color online) Distribution of the averaged final states
〈Sf 〉ε for r = 0.50 (top four plots) and 0.99 (bottom four plots). The
uncertainty εθ is fixed at 0.154. The vertical axes indicate relative
frequency.

with a single peak at 〈Sf 〉ε = 0. The four bottom plots show
results for various εx and fixed εθ (=0.154). Even though
the uncertainty εx is large, the distribution is still broad, with
multiple peaks. The fixed uncertainty εθ is too small to get
unbiased statistics of the final states. For these parameter
values, sometimes the outputs are biased and sometimes the
outputs are unbiased, depending on the initial center state.
Figure 22 shows the distributions of the averaged final state
〈Sf 〉ε for r = 0.50 and 0.99 for various εx and fixed εθ . For
r = 0.50, the distributions are very wide, and they have peaks
on both sides. In this case, the outputs are strongly biased
almost everywhere. The angle uncertainty εθ is too small to
get peaky distributions. As seen in Fig. 18, basins are blocky for
r = 0.50, and this is the cause of these multipeak distributions.
For r = 0.99, the distributions of 〈Sf 〉ε are not so wide, even
when the uncertainty is comparably small. However, we can
see fluctuation around 〈Sf 〉ε = 0 even for large εx .

Figure 23 shows the variance of 〈Sf 〉ε as a function of
the uncertainty for r = 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, and
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FIG. 23. Variance of 〈Sf 〉ε as a function of the uncertainty for
r = 0.50, 0.60, 0.70, 0.80, 0.90, 0.95, and 0.99: (top) εθ is fixed at
0.154 and εx varies; (bottom) εx is fixed at 0.050 and εθ varies.

056216-12



RANDOMNESS IN A GALTON BOARD FROM THE . . . PHYSICAL REVIEW E 86, 056216 (2012)

0.99. In the top panel of Fig. 23, the variances of 〈Sf 〉ε are
shown when the uncertainty εθ of the initial angles is fixed.
As the uncertainty εx for the initial position decreases, the
variance of the average final state increases. In the case of r =
0.50, the variance is 0.3 even if the uncertainty is maximum.
The uncertainty of the initial angle is too small to get the
narrow distributions. As the radii become large, the variance
decreases. The bottom panel of Fig. 23 shows the variance of

〈Sf 〉ε when the uncertainty εx of the initial position is fixed.
As the uncertainty for initial angles increases, the variance of
the final states decreases. In the case of r = 0.50, when the
uncertainty for the initial position is π , the variance of the
mean final states is 0.2 due to the uncertainty of the initial
positions. We can see that in order for the final states to be
more unpredictable, the uncertainty should be larger and the
radii should become larger.
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