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Theory of chaos regularization of tunneling in chaotic quantum dots
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Recent numerical experiments of Pecora et al. [Phys. Rev. E 83, 065201 (2011)] have investigated tunneling
between two-dimensional symmetric double wells separated by a tunneling barrier. The wells were bounded by
hard walls and by the potential barrier which was created by a step increase from the zero potential within a well
to a uniform barrier potential within the barrier region, which is a situation potentially realizable in the context of
quantum dots. Numerical results for the splitting of energy levels between symmetric and antisymmetric eigen-
states were calculated. It was found that the splittings vary erratically from state to state, and the statistics of these
variations were studied for different well shapes with the fluctuation levels being much less in chaotic wells than in
comparable nonchaotic wells. Here we develop a quantitative theory for the statistics of the energy level splittings
for chaotic wells. Our theory is based on the random plane wave hypothesis of Berry. While the fluctuation statistics
are very different for chaotic and nonchaotic well dynamics, we show that the mean splittings of differently
shaped wells, including integrable and chaotic wells, are the same if their well areas and barrier parameters
are the same. We also consider the case of tunneling from a single well into a region with outgoing quantum
waves.
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I. INTRODUCTION

A. Background

According to the correspondence principle, the predictions
of quantum and classical mechanics should coincide in the
limit of short quantum wavelength. It is particularly interesting
to investigate possible manifestations of the correspondence
principle in situations where the quantum and classical pictures
evidence seemingly different fundamental properties. For
example, classical mechanics, being nonlinear, may commonly
yield chaos, while quantum mechanics, e.g., as described by
the Schrödinger wave equation, is linear and thus cannot yield
chaotic dynamics in the usual classical sense (i.e., exponential
sensitivity of bounded solutions to small perturbation). Thus,
the short wavelength quantum manifestations of chaos in a
corresponding classical system has attracted much attention
[1], and the study of this issue has been given the appellation
quantum chaos. In addition to chaos, the quantum phenomenon
of tunneling through classically forbidden regions of phase
space presents another striking difference between quantum
and classical mechanics. In this paper, we investigate short
wavelength tunneling from a classically confined region in
which the classical orbits are chaotic. Much past work
examining the issue of tunneling in classically chaotic systems
has been done (e.g., Refs. [2–5] and references therein). For
example, one question that has been extensively studied is
what happens when a quantum state is initially localized
in an integrable region of classical phase space and tunnels
through to a chaotic region [2], which is often called dynamical
tunneling. In contrast, here, as in Refs. [3–5], we consider the
problem of quantum tunneling from a chaotic region through
a classical barrier in the absence of an integrable region.
While Refs. [3–5] treat this problem in the case of smoothly
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varying potentials with spatially narrow tunneling paths (e.g.,
instantons), our concern will be the two-dimensional case
where there are piecewise-uniform potentials, long barriers,
and confining hard walls [6]. The classical dynamics in this
case corresponds to a so-called billiard system. Motivations
for considering billiard-type systems include the following:
(i) they are potentially realizable in quantum dot contexts
and in descriptions of classical optical electromagnetic fields
in piecewise-constant dielectrics, (ii) by adjusting the shape
of the wells, it is particularly easy to straightforwardly go
from integrable to mixed to chaotic phase space, and (iii)
comparisons between different shape wells (e.g., between
an integrable and a chaotic well) can be made quantita-
tively precise by keeping certain gross parameters equal (see
Sec. I B). With respect to point (iii) above, a major result is
that integrable and chaotic cases with the same mean splittings
differ very greatly in their fluctuation characteristics, with
the chaotic case having much smaller splitting fluctuations
about the common mean than the integrable case. We believe
that, in the billiard case discussed here, point (iii) makes
this effect a particularly dramatic instance of a quantum
manifestation of classical chaos. We remark that this relative
suppression of tunneling fluctuations in the chaotic case
occurs because, due to the classical ergodicity of chaotic
systems, the quantum states are relatively similar in that they
typically effectively spread over the entire classically allowed
phase space. In contrast, in integrable systems, due to the
existence of extra constants of the motion, different energy
states are typically constrained to have much more variation
of their distribution in phase space and may avoid the phase
space region where tunneling is strongly excited. If so, the
tunneling can be exponentially small and very dependent on the
particular state. This point, already inherent in the discussions
in Refs. [3–5], applies to both the case of billiard-type Hamil-
tonians and the case of smooth Hamiltonians (e.g., see Fig. 2 of
Ref. [3]).

056212-11539-3755/2012/86(5)/056212(13) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.83.065201
http://dx.doi.org/10.1103/PhysRevE.86.056212


LEE, ANTONSEN, OTT, AND PECORA PHYSICAL REVIEW E 86, 056212 (2012)

x

y

L

INTEGRABLE

2Δ

V = VB

V = 0

V = 0

ψ = 0
(a)

2Δ

x

y

L

CHAOTIC

V = VB

V = 0

(b)

FIG. 1. Symmetrical double wells of area A separated by a
tunneling potential barrier of width 2�, length L, and height VB .
(a) shows the case of rectangular wells, while (b) shows a case in
which all typical orbits are chaotic.

The work presented in this paper is a continuation of a
previous work in Ref. [7] in which we reported numerical
results and abbreviated heuristic arguments justifying our
numerical observations. Our aim now is to provide a fuller
theoretical analysis of the results in Ref. [7].

B. Review of the results in Ref. [7]

Reference [7] considers symmetric double-well situations
of the type shown in Figs. 1(a) and 1(b). There is a barrier
region of uniform potential VB , width 2�, and length L. This
barrier region separates two mirror-symmetric wells in which
the potential is zero and whose (nonbarrier) boundaries are
hard walls. If the energy E is less than VB , then a point
particle is classically confined to one of the wells, and its
orbit follows straight lines between specular reflections from
the well boundaries (a billiard system). The character of the
orbit depends on the shape of the well. For the rectangular well
of Fig. 1(a), the orbits of a point particle are integrable, with
separately constant horizontal and vertical kinetic energies.
For the shape of the well in Fig. 1(b), the convex walls ensure
that all typical orbits are chaotic and ergodically fill the full
available phase space [7]. In particular, if a typical particle
orbit in the Fig. 1(b) billiard is sampled at some random time
t , then the location of the particle has a uniform probability
density per unit area in the well, and the probability density
of the direction of particle motion is uniformly isotropic in
[0,2π ). (Reference [7] also treats other completely regular or
chaotic well shapes [8].)

Considering symmetric wells, as in Fig. 1, the quantum
eigenstates have either even or odd parity with respect to the
center line, and for E sufficiently below the barrier height
VB , we may consider the states to come in symmetric and
antisymmetric pairs with nearly equal energies. We denote the
σ th such pair (ES

σ ,EA
σ ). The symmetric state energy is always

less than the antisymmetric state energy, ES
σ < EA

σ . The energy
level splitting is denoted

�Eσ = EA
σ − ES

σ . (1)

Figure 2 shows as black dots values of �Eσ versus Eσ =
1
2 (EA

σ + ES
σ ) from numerical solutions of the normalized

Schrödinger equation,

[∇2 + E − V (x,y)]ψ(x,y) = 0, (2)

with ψ = 0 on the hard walls, V = VB in the barrier region
(0 < x < 2�), and V = 0 in the wells. The parameters VB ,
�, and L, and the well area A, are all taken to be the same for

0      100     200     300     400

0.01

0.02

0.05

0.10

0.20

0.50

1.00

2.00

E

lo
g 1

0Δ
E

(a)

0      100     200     300     400

0.01

0.02

0.05

0.10

0.20

0.50

1.00

2.00

E

lo
g 1

0Δ
E

(b)

FIG. 2. (Color online) Energy level splittings vs energy plotted as
black dots, along with the sliding average (red curve), 〈�E〉E,ε . The
parameters used in the plots are VB = 1000, �B = 0.05, L = 2.423,
and A = 4.8.

the two cases, shown in Figs. 1(a) and 1(b). Also, EA � 1,
i.e., the well dimensions are large compared to the quantum
wavelength, corresponding to the semiclassical regime. Shown
in Figs. 2(a) and 2(b), by the red curves, is a sliding average
〈�E〉E,ε of �Eσ using a window, (E − ε) to (E + ε), that
encompasses 2 to 15 splitting values. Figure 3 shows the two
sliding averages plotted together on the same graph for the
integrable case [Fig. 1 (a), blue curve] and the chaotic case
[Fig. 1 (b), black curve], along with our theoretical result (red
curve) to be derived in Sec. V. The two main conclusions from
the numerical results of Ref. [7] are the following:

(1) Fluctuations of the quantum splittings are very much
larger (note the logarithmic vertical scale) in the integrable
well case as compared to the chaotic well case.

(2) For the same gross parameters (A,VB,�,L), the sliding
average 〈�E〉E,ε versus E is independent of the well shape.

In Ref. [7], it was found that conclusions (1) and (2) hold
for all pairs of similarly related chaotic and regular well shapes
studied [8].
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FIG. 3. (Color online) Sliding average vs E. It is seen that the
integrable curve is consistently slightly below the other two. We do
not have an explanation for this small difference. Perhaps it is a higher
order effect (∼1/kL).
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C. Outline

The rest of this paper is organized as follows. Noting that
the numerical results in Fig. 2 all satisfy

�Eσ � 1
2 (Eσ+1 − Eσ−1) , (3)

in Sec. II we use perturbation theory to develop a formal
expression for �Eσ . This expression is essentially Herring’s
formula [9] adapted to our problem. Section III then applies
Berry’s random plane wave hypothesis [10] to obtain the
statistics of the splittings {�Eσ } in the case of chaotic classical
dynamics. In Sec. IV, as an example, we numerically test the
result of Sec. III by comparing its predictions with the data
shown in Fig. 2(b). Section V applies a Green’s function
technique based on the method of Balian and Bloch for
deriving the semiclassical perimeter correlation to the density
of state for billiard systems [11] to obtain the sliding average
splitting 〈�E〉E,ε and show that it is independent of well shape.
Section VI concludes with further discussion. As discussed in
Sec. VI, we report in Appendix B the extension of our method
to the treatment of tunneling out of a single chaotic well into
an open region with outgoing quantum waves.

II. PERTURBATION THEORY FOR THE STATISTICS OF
ENERGY LEVEL SPLITTING FOR CHAOTIC WELLS

A. Setup

We consider the symmetric and antisymmetric wave func-
tions, denoted ψS and ψA, along with their corresponding
energy levels, ES ≡ k2

S and EA ≡ k2
A [where we choose units in

which h̄2/(2m) ≡ 1]. Referring to Fig. 1, we take the potential
to be zero in the left and right wells and to be V = VB ≡ k2

B

in the barrier region, 0 < x < 2�. Focusing on the left well,
we have that(∇2 + k2

S,A

)
ψ2

S,A = 0 in the left well (x < 0), (4)[
∂

∂x
ψS,A(x,y)

]
x=0−

+ ĤS,A[ψS,A(0−,y)] = 0, (5)

and

ψS,A(x,y) = 0 (6)

on the boundary of the left well other than that at x = 0. ĤS

and ĤA denote operators on functions of y that we now obtain.

B. Boundary condition at x = 0−

Within the barrier region, 0 < x < 2�, ψA and ψS satisfy
the following conditions:

∂ψS

∂x
= 0 and ψA = 0 at x = �. (7)

Thus, in the barrier, solutions of the time-independent
Schrödinger equation,[∇2 − (

k2
B − k2

S,A

)]
ψS,A = 0, ψS,A = 0 at y = 0,L, (8)

can be written as a linear combination of a symmetric and
antisymmetric basis function with coefficient Sm and Am,

i.e.,

ψS(x,y) =
∞∑

m=1

Sm

cosh [αm(� − x)]

cosh (αm�)
sin

(mπy

L

)
, (9)

ψA(x,y) =
∞∑

m=1

Am

sinh [αm(� − x)]

sinh (αm�)
sin

(mπy

L

)
, (10)

αm =
√

k2
B +

(mπ

L

)2
− k2. (11)

Noting that both ψA,S and ∂ψA,S/∂x are continuous at
x = 0, we have that ĤS and ĤA in (5) are given by

ĤS[f (y)] ≡
∞∑

m=1

Ĥ
(m)
S fm sin

(mπy

L

)
,

(12)
Ĥ

(m)
S = αm tanh (αm�),

ĤA[f (y)] ≡
∞∑

m=1

Ĥ
(m)
A fm sin

(mπy

L

)
,

(13)
Ĥ

(m)
A = αm coth (αm�),

where fm denote coefficients of the Fourier sine series of f (y),

f (y) =
∞∑

m=1

fm sin
(mπy

L

)
. (14)

Note also that the ĤS,A operators are self-adjoint,∫ L

0
g(y)ĤS,A[f (y)]dy =

∫ L

0
f (y)ĤS,A[g(y)]dy, (15)

where we have assumed that f (y) and g(y) are real.

C. Perturbation expansion

As the thickness of the barrier � becomes large, we see
from (12) and (13) that ĤS and ĤA become the same:

Ĥ
(m)
S , Ĥ

(m)
A → αm.

We denote this limit by the subscript 0 and define a correspond-
ing wave function and energy level, ψ0 and k2

0, that satisfy the
problem,(∇2 + k2

0

)
ψ0 = 0 in the left well (x < 0), (16)[

∂

∂x
ψ0(x,y)

]
x=0−

+ Ĥ0[ψ0(0−,y)] = 0, (17)

and ψ0 = 0 on the boundaries of the left well other than that
at x = 0. The operator Ĥ0 is defined as in Eqs. (12) and (13)
with

Ĥ
(m)
0 = αm. (18)

Since ĤS and ĤA become equal as � → ∞, the symmetric
and antisymmetric energy eigenfunctions (ψS and ψA) and
energy levels (k2

S and k2
A) also become equal. (In particular,

they become ψ0 and k2
0.) Thus, for sufficiently large �,

we can assume that these symmetric and antisymmetric
quantities are close to each other and are close to the solution
of Eqs. (16)–(18). More formally, if we introduce a small
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expansion parameter ε, we have

ψS,A − ψ0 = O(ε), k2
S,A − k2

0 = O(ε),
(19)

ĤS,A − Ĥ0 = O(ε).

Multiplying Eq. (4) by ψ0(x,y)dxdy and Eq. (16) by
ψS,A(x,y)dxdy, integrating over the area of the left well, and
subtracting the results, we obtain∫

LW

[ψ0∇2ψS,A − ψS,A∇2ψ0]dxdy

= (
k2
S,A − k2

0

) ∫
LW

ψ0ψS,Adxdy, (20)

where LW denotes the area of the left well. Applying Green’s
identity to the left side of this equation, we have essentially
Herring’s formula [9],∫ L

0
{ψ0ĤS,A[ψS,A] − ψS,AĤ0[ψ0]}x=0dy

= (
k2
S,A − k2

0

) ∫
LW

ψ0ψS,Adxdy, (21)

where we have used the condition that ψS,A,0 = 0 on the
boundaries of the left well other than that at x = 0. Further-
more, from (15), the left side of (21) can be rewritten as∫ L

0
{ψ0�ĤS,A[ψS,A]}x=0dy

= (
k2
S,A − k2

0

) ∫
LW

ψ0ψS,Adxdy, (22)

where �ĤS,A[f (y)] ≡ ĤS,A[f (y)] − Ĥ0[f (y)]. Noting from
(19) that �ĤS,A and (k2

S,A − k2
0) are both O(ε), we see that, to

lowest order in ε, we can set ψS,A = ψ0 in (22), thus yielding
the perturbation theory result,

k2
S,A − k2

0 =
∫ L

0 {ψ0�ĤS,A[ψ0]}x=0dy∫
LW

ψ2
0 dxdy

. (23)

It follows from (12), (13), and (18) that Ĥ
(m)
A > Ĥ

(m)
0 > Ĥ

(m)
S .

Thus, we have that k2
A > k2

0 > k2
S . We denote the energy

level splitting by �E = �k2 ≡ k2
A − k2

S . Taking the difference
between the symmetric and antisymmetric versions of (23) and
employing our definitions of ĤS,A,0, we obtain

�E =
∞∑

m=1

LαmC2
m

sinh (2αm�)

/ ∫
LW

ψ2
0 dxdy, (24)

where Cm are the Fourier sine coefficients of ψ0(0,y),

ψ0(0,y) =
∞∑

m=1

Cm sin
(mπy

L

)
. (25)

III. EVALUATION OF �E FOR CHAOTIC
EIGENFUNCTIONS

In the region x < 0, but near x = 0, the upper well boundary
in Fig. 1 is close to y = L. Therefore, in this region, we can
take

ψ0(x,y) ∼=
∞∑

m=1

cm sin
(mπy

L

)
sin (kx,mx − φm), (26)

where k2
x,m = k2

0 − (mπ/L)2, and φm is determined by the
boundary condition ∂ψ0/∂x = −Ĥ0[ψ0] at x = 0, which
yields

tan φm = kx,m

αm

. (27)

Comparing (26) and (25), we see that

Cm = −cm sin φm, (28)

and from (11) and (27), we see that

sin φm = kx,m

kB

. (29)

We will view Eq. (26) as in a statistical model and think of
the values of the cm as pseudorandom variables that, for any
given two realizations, can be regarded as representing two
different eigenfunctions with nearly the same energy k2

0. In
what follows, we will approximate (26) by cutting off the sum
at m = M , where M is the maximum value of m for which
k2
x,m > 0,

M = max

[
m

∣∣∣∣ k0 �
(

mπ

L

)]
. (30)

That is, we only include propagating modes.
We now need a model for characterizing the pseudorandom

coefficients cm in (26). To do this, we assume M � 1, follow
Berry [10], and utilize the chaotic classical dynamics of par-
ticles in the potential wells, together with the correspondence
principle. Our chaotic classical particle trajectories have the
following ergodic character: For typical initial conditions and
any small localized region δR in the well, a very long orbit
will pass through δR many times, and, if one examines these
passages, one will find that, as the orbit length approaches
infinity, (i) the fraction of time spent by the orbit in the region
δR is the ratio of the area of δR to the total area of the well,
and (ii) the orientation of the particle’s velocity, in its passes
through δR, is uniformly distributed in angle. Thus, if we
imagine sampling the chaotic orbit at some randomly chosen
time, its location will have a uniform probability density
distribution in space, and its velocity (whose magnitude is
fixed by the particle energy) will have an isotropic probability
distribution in its orientation. Thinking of ψ2

0 as analogous to
the classical probability density in space and invoking property
(i), the correspondence principle suggests that, for wavelengths
that are small compared to the cavity size, the coarse grained
average of ψ2

0 over several wavelengths will have a value that
is the same near x = 0 as in any other region of the well.

We now ask how the coefficients cm in (26) are related
to the integral

∫
LW

ψ2
0 dxdy appearing in the denominator of

Eq. (24). We see from (26) that the integral of ψ2
0 over a region

of area AB abutting the barrier and extending not too far away
from it is (AB/4)

∑
c2
m, where the factor 1/4 results from

taking the spatial average of sin2 (mπy/L) sin2 (kx,mx − φm)
over several wavelengths. If the wavelength is short, k0L � 1,
based on point (i) above and the correspondence principle, one
might suppose that this result for

∫
AB

ψ2
0 dxdy can be extended

to x values far from the barrier. In particular, we expect that
the spatial average of ψ2

0 near x = 0 is approximately the
same as in any other region of the well. Thus, we obtain the
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estimate ∫
LW

ψ2
0 dxdy ∼= A

4

∑
m

c2
m, (31)

where (as previously stated) A is the entire area of the left
or right well. We expect (31) to hold as long as the barrier
dimension L is much greater than a wavelength, Mπ ≈ k0L �
1. When the barrier dimension becomes comparable to or
smaller than a wavelength, point to point variations in the
magnitude of the wave function lead to departures between
the average value of ψ2

0 in the well and the corresponding
value near the barrier. However, even if k0L is large, Eq. (31)
is only approximate, and we expect it to hold with an
error that becomes small as k0L → ∞. We will find that,
when computing fluctuations in energy splittings, the small
fluctuating error in (31) can be important (e.g., see Appendix A
and Sec. IV). The use of (31) as a strict equality assumes that
the coarse grained average of ψ2

0 is essentially determined
throughout the total area, A, by the M amplitudes, Cm of
the propagating modes (k2

x,m > 0) near the barrier. This is not
always the case. For example, if scars are present, there may
be deviation between the average of ψ2

0 near the barrier and
throughout the well. We note that the intensity and frequency
of the scarring contribution decreases with increasing k0L, as
shown in Refs. [12,13]. Thus, in the limit k0L → ∞, Eq. (31)
applies; but the error in (31) depends on the shape of the well.
For now, we will proceed on the assumption that the estimate
given by Eq. (31) can be used for the denominator of (24).
Although we will find that (31) works well for the chaotic
shape shown in Fig. 1(b), we will also argue that, in other
cases, (31) may not provide as good a model for fluctuations
of �E.

To invoke property (ii) (i.e., isotropy of velocity direction),
we note that the terms in the sum in (26) represent wave
propagation directions that make an angle,

θm = arcsin

(
mπ

k0L

)
, (32)

with respect to the x axis; see Fig. 4.
We imagine that these wave-quantized angles represent a

range of the continuous classical angles, where the range for
θm is

�θm = 1
2 (θm+1 − θm−1), (33)

ky

kx
θ5 θ4 θ3

k0

0

1π/L

2π/L

3π/L

4π/L

5π/L

6π/L

Mπ/L7π/L =

}Δθ4

FIG. 4. Propagation directions.

and, for m = M , we replace θm+1 by π/2, while for m = 1,
we use θm−1 = 0. Invoking the classical orientation isotropy
of particle velocities, i.e., point (ii) above, the correspondence
principle suggests that 〈c2

m〉 is proportional to �θm, 〈c2
m〉 =

(constant)�θm, where the angle brackets denote an average
over our pseudorandom fluctuations. Using this in (31), we
obtain

〈
c2
m

〉 = 4
〈
ψ2

0

〉 (
�θm

/ M∑
m′=1

�θm′

)
. (34)

(Note that the sum over �θm′ is (π/2) − (θ1/2), rather than
π/2. We have chosen to omit the angles 0 � θ � θ1/2 because
the normally incident wave corresponding to m = 0 is ruled
out by our boundary condition, ψ0 = 0 at y = 0,L and x = 0.
In any case, this choice makes only a small difference for
M � 1.) Since we view the cm as resulting from the sum
of many roughly independent classical ray contributions, the
central limit theorem implies that cm will be a Gaussian random
variable. Thus, we set

cm = 〈
c2
m

〉1/2
ξm, (35)

where ξm are independent, Gaussian, zero mean, unit variance
random variables,

〈ξmξm′ 〉 = δm,m′ , (36)

with δm,m′ = 1 if m = m′, and δm,m′ = 0 if m = m′.
Combining (31), (35), (34), (29), (28), and (24), we arrive

at our main result,

�E =
∑M

m=1 μmδEmξ 2
m∑M

m=1 μmξ 2
m

, (37)

where

δEm = 4Lk2
x,mαm

Ak2
B sinh (2αm�)

(38)

is the contribution to the splitting due to the mth mode of the
barrier,

μm = 2�θm

π − θ1
(39)

is the weight assigned to the angle θm in the well, and the
Gaussian random variables ξm satisfy (36).

When M is large (i.e., kL � 1), the number of terms in
the sums in (37) is large and the denominator is close to unity
with relatively small fluctuations. Although the fluctuations of
the denominator from unity are small for large M , it can be
necessary to include them, as they significantly contribute to
the evaluation of the fluctuations of �E from 〈�E〉, which
are also small for large M . As before, the angle brackets
〈. . . 〉 represent an ensemble average over realizations of the
random set {ξm}. The sliding average 〈. . . 〉E,ε in Sec. I B is
hypothesized to approximate 〈. . . 〉, if 〈. . . 〉 is approximately
constant over the window width ε and if many energy levels
are contained in the window.

Equation (37) is a statistical model for the pseudorandom
splittings �E. This model can be used to generate ensembles
of values of �E via the Monte Carlo procedure of generating
and inserting random values for the Gaussian quantities ξm,
from which the statistical properties of �E can be numerically
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determined, as will be illustrated by the example given in
Sec. IV.

For large M ≈ kL/π , both the numerator and the denomi-
nator in Eq. (37) will have relative fluctuations from their mean
values that are small. Recall that the mean of the denominator
is, by construction, one. Thus, we expect that replacing the
denominator by one (i.e., neglecting denominator fluctuations)
will make little difference in the mean value of �E obtained
from Eq. (37). Fluctuations of the denominator, however, can
have a significant effect when looking at fluctuations of �E

from its mean, as we now discuss. Say the numerator has
a large upward (or downward) fluctuation. This might occur
because ξ 2

m for some m values happen to be significantly above
(or below) their mean value of one. If this is so, then the
denominator will also have a large upward (or downward)
fluctuation, and this will mitigate the effect of the numerator
fluctuation on �E. Thus, the correlation of the fluctuations
of the numerator and the denominator reduce the overall
fluctuations of �E.

We now use Eq. (37) to obtain an expression for the
mean value of �E in the limit of very large M ≈ kL/π . (In
Appendix A, we do an analogous calculation of the variance
of �E.) Using (37), the expected value of �E is

〈�E〉 =
M∑

m=1

μmδE(θm), (40)

where δE(θm) ≡ δEm, δE(θ ) = (4L)(A�)−1F (θ ), and

F (θ ) = cos2 θ
k2

0

k2
B

(kB�
√

1 − (k0/kB)2 cos2 θ )

sinh[2kB�
√

1 − (k0/kB)2 cos2 θ ]
, (41)

where we have used αm = kB

√
1 − (k0/kB)2 cos2 θ and km =

k0 cos θ . In obtaining (40), we have noted that the denominator
of (37) can be written as

M∑
m=1

μmξ 2
m = 1 +

M∑
m=1

μm

(
ξ 2
m − 1

)
, (42)

where the second term is a fluctuation [〈(ξ 2
m − 1)〉 = 0], which

means that each individual eigenstate in the ensemble is not
normalized [14,15]. For M � 1, this fluctuating component
is small compared to unity, and we neglect it. (We emphasize,
however, that inclusion of this fluctuation can be crucial for
a calculation of the variance of �E.) In the semiclassical
limit kL � 1, M � 1, and �θm becomes small, allowing us
to approximate the summation over m in (40) by an integral.
Thus, (40) becomes

〈�E〉 = 4L

A�
I (E/VB,kB�), (43)

I (E/VB,kB�) = 2

π

∫ π/2

0
F (θ )dθ, (44)

and we recall E/VB = k2
0/k2

B .
Equation (40) is plotted as the red curve in Fig. 3. We next

illustrate the use of (37) by application to the fluctuation data
shown in Fig. 2(b).

IV. MONTE CARLO EVALUATION OF
ENERGY SPLITTINGS

In order to quantitatively compare our theory with the
numerical data for energy level splittings in Fig. 2, we define
the sliding average splitting and the sliding average splitting
variance as

〈�E〉E0,ε = 1

NE0,ε

|Eσ −E0|<ε∑
σ

�Eσ , (45)

σ 2
�E,E0,ε

= 1

NE0,ε

|Eσ −E0|<ε∑
σ

(�Eσ − 〈�E〉E0,ε)2, (46)

where NE0,ε is the number of states such that |E0 − Eσ | < ε

and we choose ε = √
E0. This quantity is plotted as a solid

line in Figs. 2, 3, and 5. To compare with our result, given
by Eq. (37), we use Monte Carlo simulations. At each energy
level Eσ plotted in Fig. 2, we use (37) to generate 10 000
splitting values, �Eσi

, i = 1,2, . . . ,10 000. Similar to Eq. (45)
and (46), for each of the 10 000 sets of Monte Carlo data,

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

E0

<
ΔE

>

0 50 100 150 200

0.
00

0.
10

0.
20

E0

σ Δ
E

(a)

(b)

FIG. 5. (Color online) Comparison of (a) sliding average split-
tings 〈�E〉 and (b) sliding average splitting variances σ�E , versus E0

for numerical data (black), Eq. (37) (red dashed curve), and Eq. (37)
with its denominator replaced by one (green dotted curve). The bars
at each E0 are the standard deviations of the sliding average splitting
(variances) of 〈�E〉 and σ�E values obtained from 10 000 sets of �E

vs E0 scans calculated from Eq. (37) [i.e., the subscript i in Eqs. (47)
and (48) scans from i = 1 to i = 10 000].
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{�Eσi
}, we also calculate sliding average splittings,

〈�E〉E0,ε,i = 1

NE0,ε

|Eσi
−E0|<ε∑
σi

�Eσi
, (47)

and sliding average splitting variances,

σ 2
�E,E0,ε,i

= 1

NE0,ε

|Eσi
−E0|<ε∑
σi

(�Eσi
− 〈�E〉E0,ε,i)

2. (48)

At each E0, we can calculate the ensemble average and
variance of the sliding average splitting and the sliding average
splitting variance. In Fig. 5, we compare these Monte Carlo
results (plotted in red) with results from numerical solutions
of the Schrödinger wave equation (plotted in black); we
also compare these results to what (37) would predict if the
denominator of Eq. (37) were set to unity (plotted in green).
Figure 5(a) shows that regardless of whether fluctuations in the
denominator are included or neglected, the sliding averages of
the splittings for both calculations fall within one ensemble
standard deviation of each other, and both agree well with
results from the numerical solution of the wave equation. In
contrast, we see from Fig. 5(b) that including the fluctuations
in the denominator reduces the splitting variance. That is,
correlations between the denominator and numerator reduce
the estimated eigenfunction to eigenfunction variations in the
splitting energy.

To examine the effect of the correlation between the
denominator in Eq. (37) and the numerator, we numerically
calculate energy splittings for a symmetrical double well that
has the same gross parameters (A,VB,�,L) with Fig. 1 but
longer wall at x = 0 (see Fig. 6) and make analogous figures
to Fig. 5 (see Fig. 7). In order to explain the discrepancy
in Fig. 7(b) between the theory as expressed by Eq. (37)
and our data from the numerical solution of the Schrödinger
equation, we now reexamine our assumption that we can use
the approximation (31) for

∫
LW

ψ2
0 dxdy in (37). In particular,

as explained in the discussion following Eq. (31), at finite
wavelength, A−1

∫
LW

ψ2
0 dxdy and A−1

B

∫
AB

ψ2
0 dxdy may not

be perfectly correlated. As an alternate hypothesis, let us now
suppose that fluctuations of A−1

B

∫
AB

ψ2
0 dxdy are uncorrelated

with those of A−1
∫
LW

ψ2
0 dxdy. If this is the case, then the

fluctuations of the denominator in Eq. (24) are uncorrelated

V = 0

ψ = 0

2Δ

x

y

w

L

V = VB

V = 0

FIG. 6. Symmetrical double wells of area A separated by a non-
perfectly-coupled tunneling potential barrier of width 2�, barrier
length L, height VB , and wall length w.
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0.

00
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10
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20
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E
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0.
0

0.
2

0.
4

0.
6

E0

<
ΔE

>

(a)

(b)

FIG. 7. (Color online) (a) Analogous to Fig. 5(a), but for Fig 6.
(b) Analogous to Fig. 5(b), but for Fig 6.

with fluctuations of the numerator. In this situation, we can
choose to constrain the denominator to be normalized to one,∫
LW

ψ2
0 dxdy = 1. In particular, this is consistent with our

previous definition 〈ξ 2
m〉 = 1 and conforms with the idea that∫

AB
ψ2

0 dxdy averaged over many modes should respect the
global normalization

∫
LW

ψ2
0 dxdy = 1 for each mode. Thus,

this alternate hypothesis yields (37), but with the denominator
replaced by one,

�E =
M∑

m=1

μmδEmξ 2
m. (49)

In Appendix C, we provide analytical support for this and
show how a transition from the applicability of (37) to
the applicability of (49) can take place as a geometrical
parameter is varied. Equations (37) and (49) result from two
opposite bases, which is a perfect correlation for (37) and
zero correlation for (49). As previously discussed in the text
following Eq. (37), correlation reduces the fluctuations. Hence,
we expect the fluctuation level to lie between the predictions
from these two extremes, and we regard the green and red
variance curves in Figs. 5(b) and 7(b) as predicted upper and
lower bounds for the fluctuation level. Our data for the two
chaotic shapes indeed conform to this expectation, where the
fluctuation level for the shape in Fig. 1(b) is close to the lower
bound, while that for the shape in Fig. 6 is closer to the upper
bound.
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V. GREEN’S FUNCTION ANALYSIS OF SLIDING
AVERAGE OF SPLITTINGS

We have obtained an expression, given by Eq. (40), for
the average of the splittings, 〈�E〉, for chaotic cavities. We
have also seen (Fig. 3) that this result agrees numerically with
our results for an integrable cavity of rectangular shape. Here
we demonstrate in a formal analysis that our result for 〈�E〉
applies for all cavity shapes independent of whether they are
integrable, chaotic, or a mixture of chaotic and integrable in
different regions of phase space. Our analysis makes use of a
previous work on perimeter corrections to Weyl’s equation for
the density of states [11].

We begin with the Green’s function of the unperturbed left
well (� → ∞ in Fig. 1) expanded in orthonormal modes ψσ

0
of the left well,

GE(�x,�x ′) =
∑

σ

ψσ
0 (�x)ψσ

0 (�x ′)
E − Eσ

, Eσ = (kσ )2, (50)

where (∇2 + E)GE = δ(�x − �x ′), (∇2 + Eσ )ψσ
0 = 0 with the

appropriate boundary conditions, and �x = (x,y). According
to our perturbation theory [Eq. (23)], the splitting for the
unperturbed mode σ is

�Eσ =
∫ L

0

{
ψσ

0 (x,y)�Ĥ
[
ψσ

0 (x,y)
]}

x=0−dy, (51)

where the operator �Ĥ = �ĤA − �ĤS . Operating on (50)
with �Ĥ , and setting E = E0 − iε, where ε > 0, we obtain

Im
∫ L

0
{[�ĤGE0−iε]�x ′=�x}x=0−dy

=
∑

σ

ε

(E0 − Eσ )2 + ε2
�Eσ . (52)

For ε � ρ−1(E0), where ρ−1(E0) is the average spacing
between energy levels [ρ(E0) is the density of states], yet
small compared to E0, the right-hand side of (52) is the product
of πρ(E0) and the Lorentzian sliding average of �Eσ . This
follows from

∑
σ

ε/π

(E0 − Eσ )2 + ε2
∼= ρ(E0) = A

4π
, (53)

where the right-hand equality is Weyl’s formula for a well of
area A and is independent of E0 for the two-dimensional case
we are treating. Equations (52) and (53) yield the following
expression for the sliding average:

〈�Eσ 〉E0,ε = 4

A
Im

{∫ L

0
[(�ĤGE0−iε)�x ′=�x]x=0dy

}
. (54)

For the purpose of evaluating the right-hand side of (54), we
consider ε to be large enough that waves with energy E0 − iε

attenuate to negligible values in a distance of the order of
the well size. With this stipulation, we can replace GE0−iε in
Eq. (54) by G

(0)
E0−iε , where G

(0)
E0−iε is the Green’s function for

the case shown in Fig. 8, with outgoing waves as x → −∞.

V = k2
BV = 0

y

x

y

x x = 0

GE = 0

GE = 0

FIG. 8. Geometry for the Green’s function.

Making use of the δ function expansions,

δ(x − x ′) = 1

2π

∫
exp [ikx(x − x ′)]dkx, (55)

δ(y − y ′) = 1

πL

∞∑
m=1

sin

(
mπy ′

L

)
sin

(mπy

L

)
, (56)

we obtain

G
(0)
E = 1

πL

∫
dkx

∞∑
m=1

{
sin

(
mπy ′

L

)
sin

(mπy

L

)

× eikx (x−x ′) + �me−ikx (x+x ′)

E − [
k2
x + (

mπ
L

)2]
}

. (57)

Noting that for x > 0, the zero order Green’s function has the
form G

(0)
E = ∑

Gm sin (mπy/L) exp (−αmx), the reflection
coefficient �m is determined from the boundary condition,

1

G
(0)
E

∂G
(0)
E

∂x

∣∣∣∣∣
x=0−

= 1

G
(0)
E

∂G
(0)
E

∂x

∣∣∣∣∣
x=0+

, (58)

which yields

�m = e−2iφm(kx ), (59)

φm(kx) = arctan

(
αm

kx

)
, (60)

where

αm =
√

k2
B +

(mπ

L

)2
− E0. (61)

Inserting (57) into (54), and making use of our results for ĤA,S

in Eqs. (12) and (13), we obtain

〈�Eσ 〉E0,ε = 4

A

∑
m

∫ +∞

−∞
dkx

ε

π

{
αm

sinh (2αm�)

× Re[1 + �m(kx)][
k2
x + (

mπ
L

)2 − E0
]2 + ε2

}
. (62)

In writing (62), we have neglected Im[�m(kx)], which will be
valid for E0 � ε. In this same limit, we may also neglect the
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variation of �m(kx) and αm in the range

ε �
[
k2
x +

(mπ

L

)2
− E0

]
� −ε.

Thus, we set kx = kx0 ≡
√

E0 − (mπ/L)2 and αm0 =√
k2
B + (mπ/L)2 − E0 in (62), yielding

〈�E〉 = 4

A

M∑
m=1

αm0

kx0

Re[1 + �m(kx0 )]

sinh (2αm0�)
, (63)

where we have cut the sum over m off at M [defined by
Eq. (30)] and dropped the subscript E0,ε. Using our result
(59) for �m, we finally obtain

〈�E〉 = 4L

A�

M∑
m=1

(
2�θ

π

)
k2
x0

αm0

k2
B sinh (2αm0�)

, (64)

where we have used �θm = π/(kxL), which is valid in the
limit m � 1. This result is the same as our Eq. (40) derived
for the chaotic shape, thus demonstrating that it is independent
of how the well is shaped, as well as whether the orbits are
chaotic, integrable, or mixed.

VI. DISCUSSION AND CONCLUSION

Defining fluctuating weights wm by

wm = ξ 2
mμm∑M

m=1 ξ 2
mμm

, (65)

Eq. (37) takes the form of a weighted average,

�E =
M∑

m=1

wmδEm, (66)

where δEm is defined in (38). For the case of rectangular wells,
the unperturbed states (� → ∞) are

ψ0(x,y) = sin
(mπy

L

)
sin (kx,mx − φm), (67)

where m labels the vertical wave number, ky = mπ/L. The
insertion of (67) into the perturbation result (24) yields

�E = δEm. (68)

Thus, �E in the chaotic case is a weighted average over the
tunneling rates for the rectangular well. This self-averaging,
done by each individual chaotic mode, is responsible for
the reduction of the mode-to-mode tunneling fluctuations.
The larger the number of m values effectively taking part
in the averaging, the lower the fluctuation level. Since this
number scales with M ≈ kL/π , we conclude that, as shown
in Appendix A, the fluctuation level for splittings in the chaotic
case decreases with increasing kL,

σ

〈�E〉 = 〈(�E − 〈�E〉)2〉1/2

〈�E〉 ∼ (kL)−1/2, (69)

and the ratio of the fluctuation level for the chaotic case to
that for the integrable case has this same predominant scaling.
Thus, the difference between fluctuation levels of the chaotic
and integrable cases becomes large with increasing energy

barrier

Well
outgoing
waves

FIG. 9. Tunneling from a single well into an unconfined region.

(however, if E is increased, VB may also have to be increased
in order to keep E/VB less than one).

Equation (66) also provides a simple way of understanding
our observation that the sliding averages for the chaotic and
rectangular well cases are the same. We first recall that the
weights wm given by (65) have averages corresponding to an
isotropic distribution of incident plane waves on the boundary.
Furthermore, according to Weyl’s law for two-dimensional
billiards, the distribution of modes in k space is isotropic and
uniform. Thus, if the sliding average for the rectangle includes
a sufficient number of modes in the averaging window, then
it produces an isotropic averaging, just as in the chaotic case.
Thus, as observed in Fig. 3 and demonstrated by the analysis
of Sec. V, we expect the chaotic and regular wells to yield the
same sliding average.

We remark that, from the experimental point of view, due
to the short wavelength necessary for observing semiclassical
effects, the symmetry required for realizing splitting statistics
may be stringent. Another, much less demanding situation is
that of tunneling from a single well into a region of outgoing
quantum waves, as pictured in Fig. 9. In this case, the energy
levels acquire an imaginary part, Eσ = E(R)

σ − iE(I )
σ , where,

for E(R)
σ < VB and � sufficiently large, E(R)

σ � E(I )
σ , so that a

perturbation analysis similar to that in Secs. II and III can be
applied. The result is that the statistics of the tunneling escape
rates {E(I )

σ } are similar to those for the tunneling-induced
splittings {�Eσ }. The statistical model for {E(I )

σ } [analogous
to Eq. (37)] is derived in Appendix B. The result has the same
form as that given in Eqs. (65) and (66). Thus, the subsequent
discussion, including Eq. (69), also applies for {E(I )

σ }. Hence,
the same chaos regularization of tunneling is expected to apply
for the escape rates in situations like that shown in Fig. 9.

In conclusion, we have presented a semiclassical analysis
of energy level splitting of symmetric, quantum-dot-type,
double-well systems, where the wells are separated by a
tunneling barrier. Our analysis quantitatively explains the
observed mean splittings and their fluctuations. The mean is
found to be independent of the well shape and independent
of whether the well orbits are chaotic or not. In contrast, the
fluctuation statistics are vastly different when the well orbits
are integrable, as compared to when they are chaotic, with
the chaotic case yielding much-reduced fluctuations when the
lateral barrier length is large compared to a wavelength.
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APPENDIX A: VARIANCE OF THE SPLITTINGS FOR
LARGE kL AND LARGE kB�

Here we apply (37) to obtain an analytical expression for
the variance of {�Eσ } for large kL and large kB�. Because
of the approximations that we will use, the result will not be
applicable for explaining the numerical results in Fig. 2(b),
and this is why we used the Monte Carlo procedure in Sec. IV.
Nevertheless, this calculation is instructive; e.g., it clearly
shows that the splitting variance relative to the mean 〈�E〉
decreases as (kL)−1 for increasing kL (also see the discussion
in Sec. VI).

We begin by using (40) and (42) to reexpress (37) as

�E = 〈�E〉1 + α

1 + β
, (A1)

where

α =
∑M

m=1 μmδEm

(
ξ 2
m − 1

)
〈�E〉 , (A2)

β =
M∑

m=1

μm

(
ξ 2
m − 1

)
, (A3)

with 〈�E〉 being the expression given by (40), and 〈α〉 =
〈β〉 = 0 by virtue of 〈ξ 2

m〉 = 1.
Anticipating that α and β are small compared to unity (i.e.,

〈α2〉,〈β2〉 � 1), we expand (A1) to obtain

�E − 〈�E〉
〈�E〉

∼= α − β. (A4)

Squaring (A4) and averaging over realizations of the Gaussian
random variables {ξm} yields the following expression for the
variance σ 2:

σ 2

〈�E〉2
= 2

M∑
m=1

μ2
m

[
δEm

〈�E〉 − 1

]2

, (A5)

where we have used 〈(ξ 2
m − 1)(ξ 2

m′ − 1)〉 = 2δmm′ . For large M

(i.e., large kL), we now attempt to approximate the summation
of the right-hand side of (A5) by an integral over θ . For large
M and θm not too close to π/2,

μm
∼= 2

kL cos θm

; (A6)

see Fig. 4. Using this in (A5), we obtain

σ 2

〈�E〉2
= 2

∫ θ∗

0

2

kL cos θ

[
δE(θ )

〈�E〉 − 1

]2
dθ

π/2
. (A7)

While the upper limit of the integration in (A7) might
nominally be supposed to be π/2, we have instead replaced
it by θ∗ because, due to the term 1/ cos θ in the integrand,
the integral diverges logarithmically at θ∗ = π/2. This is an
artifact of our approximation (A6), which is not accurate for
small cos θm (e.g., it predicts μm → ∞ as θm → π/2). Since
the divergence is logarithmic, the size of the contribution to
the variance from the vicinity of θ near π/2 can be roughly
estimated by appropriately cutting off the integral at θ∗ slightly
below π/2. Based on the construction shown in Fig. 10, we

ky

kx

δ k

π/L

FIG. 10. For kL/π � 1, the angle δ ∼= √
2π/kL.

choose as an appropriate cutoff

θ∗ = π

2
−

√
2πγ

kL
, (A8)

where γ is of the order of one. The result will be insensitive
to a precise choice of γ . The contribution from θ near π/2 is
then estimated to be of the order of

1

kL
ln

(
kL

2πγ

)
, (A9)

where we obtain this result by approximating cos θ by (π/2 −
θ ) setting θ = π/2 in δE(θ ), and noting from Eq. (41) that
δE(π/2) = 0.

We now argue that, in an appropriate parameter regime,
the contribution (A9) is dominated by the contribution to the
integral from the vicinity of θ = 0. In particular, for kB�

sufficiently large,

δE(0)

〈�E〉 � 1. (A10)

For θ2 � 1, Eqs. (41)–(51) yield[
δE(θ )

〈�E〉
]2

∼=
(

16

π

)
ν exp (−2νθ2), (A11)

where

ν = kB�√
1 − (k/kB)2

. (A12)

For example, for future reference we regard (A10) to be
satisfied for ν >∼ 5. Using (A10) and (A11) in (A7), we obtain:

σ 2

〈�E〉2
∼= 64

π

√
ν

2π

1

kL
. (A13)

Comparing (A13) and (A9), we see that (A13) is larger than
(A9) for ν ∼ 5 if

16 >∼ ln

(
kL

2π

)
= ln

(
L

λ

)
, (A14)

where λ = 2π/k. Thus, we conclude from (A14) that, even
when L is many wavelengths λ, the log contribution, given by
(A9), is not significant and the predominant scaling of σ is as
in (A13),

σ

〈�E〉 ∼ (kL)−1/2. (A15)
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APPENDIX B: ESCAPE RATE FROM A CHAOTIC WELL
TO AN OPEN REGION

In this Appendix, we outline the analysis of the situation
illustrated in Fig. 9. Again taking x = 0 to coincide with the
left face of the barrier, 2� to be the barrier width, and L to
be the vertical dimension of the barrier boundary, we write
ψ(x,y) in x � 2� and 0 � x � 2�, respectively, as

ψ(x,y) =
∞∑

m=1

Dm sin
(mπy

L

)
eikx,mx, (B1)

ψ(x,y) =
∞∑

m=1

(Eme−αmx + Fmeαmx) sin
(mπy

L

)
, (B2)

where

kx,m =
√

E −
(mπ

L

)2
for E �

(mπ

L

)2
, (B3)

kx,m = i

√(mπ

L

)2
− E for E �

(mπ

L

)2
, (B4)

αm =
√(mπ

L

)2
+ VB − E, VB > E. (B5)

Applying the continuity of ψ and ∂ψ/∂x at x = 2� and at
x = 0, we obtain the boundary condition at x = 0−,[

∂ψ(x,y)

∂x

]
x=0−

+ Ĥ [ψ(0−,y)] = 0, (B6)

where Ĥ is defined in a manner analogous to Eqs. (12)–(14)
with

Ĥ (m) = αm

(αm − ikm) − (αm + ikm) exp (−4αm�)

(αm − ikm) + (αm + ikm) exp (−4αm�)
. (B7)

Proceeding as in Sec. II C, perturbation theory gives

E − E0 =
∫ L

0 {ψ0�Ĥ [ψ0]}x=0−dy∫
LW

ψ2
0 dxdy

, (B8)

where E = E(R) − iE(I ), �Ĥ = Ĥ − Ĥ0, and Ĥ0 is defined
by (18). Taking the imaginary part of Eq. (B8), we obtain an
expression for the tunneling rate,

E(I ) = −
∫ L

0 {ψ0Im(�Ĥ [ψ0])}x=0−dy∫
LW

ψ2
0 dxdy

. (B9)

Assuming that exp (−4αm�) is small, we find that

Im
(
Ĥ (m) − Ĥ

(m)
0

) ≈ − 4

VB

α2
mkx,m exp (−4αm�), (B10)

which yields

E(I ) = 2L

VB

∑
m C2

mα2
mkx,m exp (−4αm�)∫
LW

ψ2
0 dxdy

, (B11)

where (B11) is analogous to (24). We can now easily parallel
the steps of Sec. III that lead to Eq. (37). Indeed, comparing
(B11) and (24), we can obtain (B11) from (24) by making the

Region 1

Region 2 Barrier
Potential

A A
L

L̂

Hard
Walls

FIG. 11. Model billiard for the analysis in Appendix C.

following replacement in (24):

1

sinh 2αm�
−→ 2

VB

αmkx,m exp (−4αm�). (B12)

Using the replacement (B12) in Eq. (37), we obtain the
following statistical model for the tunneling rates from a
chaotic well to an open region:

E(I ) =
M∑

m=1

wmE(I )
m , (B13)

where

E(I )
m = 8Lk3

x,mα2
m exp (−4αm�)

AV 2
B

, (B14)

and wm is as defined in Eq. (65). Note that Eq. (B13) has the
same form as Eq. (66).

APPENDIX C: MODEL FOR THE UPPER AND LOWER
BOUNDS ON THE SPLITTING VARIANCE

In this Appendix, we consider a model which is similar
to that in Fig. 6, but with a modification that will facilitate
analysis. This model is shown in Fig. 11. The main feature of
this model is the addition of a horizontal, hard, thin septum a
distance L from the bottom of the center of the billiard. This
septum separates the region near the vertical part of the well
boundary abutting the potential barrier (labeled Region 2 in the
figure) from that abutting the vertical hard wall well boundary
segment (labeled Region 1 in the figure). Using this model,
we now present an analysis supporting our claim that as the
parameter L/(L + L̂) (L̂ is defined in Fig. 11) varies from 1 to
0, the splitting variance σ 2

�E transitions from the lower bound,
given by Eq. (49), to the upper bound, given by Eq. (37).

Applying the random plane wave hypothesis to Region 2,
we model the statistics of the spatial averages over Region 2
of ψ2

0 for given modes as

(
ψ̄2

0

)
2 =

M∑
m=1

μmξ 2
m, M = Int

(
kL

π

)
, (C1)

where the overbar denotes the spatial average,
∑M

m=1 μm =
1, ξm are independent and identically distributed Gaussian
variables,

〈ξmξm′ 〉 = 〈ξ 2〉δmm′ , (C2)
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and a given random realization of the ξm is hypothesized to
statistically model a given mode. Doing the same thing for
Region 1, we model the statistics of spatial averages of ψ2

0
over Region 1 for given modes as

(
ψ̄2

0

)
1 =

M̂∑
m̂=1

μ̂m̂ξ̂ 2
m̂, M̂ = Int

(
kL̂

π

)
, (C3)

with a similar definition of μ̂m̂ and ξ̂m̂. Averaging over many
modes (such averages are denoted 〈· · · 〉), we get〈(

ψ̄2
0

)
2

〉 = 〈ξ 2〉, 〈(
ψ̄2

0

)
1

〉 = 〈ξ̂ 2〉. (C4)

Since we expect the model averages of ψ2
0 over any region to

be the same, 〈ξ 2〉 = 〈ξ̂ 2〉, and we define 〈ξ 2〉 = 〈ξ̂ 2〉 = 1.
We now adapt the additional model hypothesis of perfect,

mode by mode, correlation between the average of ψ2
0 over

the whole region A and its average over the combined area
of Region 1 plus Region 2. While this may not really apply,
it should yield a valid qualitative model for the issue that we
wish to study. This gives

(
ψ̄2

0

)
A

= L

L + L̂

(
ψ̄2

0

)
2 + L̂

L + L̂

(
ψ̄2

0

)
1, (C5)

where
L

(L + L̂)
= Area of Region 2

Area of Regions 1 + 2
. (C6)

Letting r ≡ L/(L + L̂) and following our previous work, the
application of Herring’s formula gives

�E

〈�E〉 = 1 + α

1 + rβ + (1 − r)γ
, (C7)

where

α =
M∑

m=1

μm

δEm

〈�E〉
(
ξ 2
m − 1

)
, β =

M∑
m=1

μm

(
ξ 2
m − 1

)
,

γ =
M̂∑

m̂=1

μ̂m̂

(
ξ̂ 2
m̂ − 1

)
, 〈α〉 = 〈β〉 = 〈γ 〉 = 0.

Expanding for small α ∼ β ∼ γ � 1, we obtain the fol-
lowing expression for the normalized splitting fluctuation δ:

δ ≡ �E − 〈�E〉
〈�E〉

∼= α − rβ + (1 − r)γ. (C8)

The normalized splitting variance is thus

〈δ2〉 ∼= 〈α2〉 − 2r〈αβ〉r2〈β2〉 + (1 − r)2〈γ 2〉,
where we have used 〈αγ 〉 = 〈βγ 〉 = 0, reflecting the assump-
tion that 〈ξmξ̂m̂〉 = 0 for all m and m̂.

Say we keep k, L, and A fixed and vary L̂, which is
equivalent to keeping α and β fixed and varying r . How does
〈δ2〉 change as r varies?

From Eq. (A9) of Appendix A,

〈γ 2〉
〈β2〉 = L

L̂

ln(kL̂/2πγ )

ln(kL/2πγ )
. (C9)

Thus, for kL ∼ kL̂ � 1, we have 〈γ 2〉 ∼= (L/L̂)〈β2〉, which,
when used in our expression for 〈γ 2〉, gives

〈δ2〉 = r〈(α − β)2〉 + (1 − r)〈α2〉, 1 � r � 0. (C10)

Thus, 〈δ2〉 varies linearly from its largest value, 〈α2〉 at r = 0
[corresponding to Eq. (49)], to its smallest value, 〈(α − β)2〉
at r = 1 [corresponding to Eq. (37)].
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