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Scroll wave meandering induced by phase difference in a three-dimensional excitable medium
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We investigated scroll waves in an inhomogeneous excitable 3D system with gradient of excitability. The
gradient promotes twisting of the scroll waves. Sufficiently large excitability gradient enhances the twisting and
causes simple scroll waves to transition to meandering scroll waves. For the twist-induced instability of scroll
waves, we analyzed the stability of 2D spiral waves sliced from the twisted scroll in the vertical direction. The
3D problem is simplified by taking into account the diffusive coupling in the third direction as a time-delayed
perturbation to the 2D spiral wave. An additional “negative mass” term measuring the twist thus arises in the 2D
system and induces the transition from simple rotation to meandering. A further increase in the gradient ruins
partially the unity of the meandering scrolls and generates semiturbulence, the analogs of which were observed
in the Belousov-Zhabotinski reaction. We also generated the phase diagram in the parameter space by adjusting
the threshold for excitation of the media.
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I. INTRODUCTION

As a prototype of spatiotemporal pattern formation in oscil-
latory and excitable media, spiral waves appear ubiquitously
in a wide range of systems, such as chemical reactions [1],
nonlinear optics [2], liquid crystal [3], magnets [4], subcellular
biology [5], cardiac muscle [6], etc. In 2D systems, spiral
waves can breakup through Doppler instability [7,8] and the
convective Eckhaus instability [9]. The 3D analogs of spiral
waves are scroll waves characterized by the shape and motion
of the filament [10], i.e., the line around which the scroll
rotates. Scroll waves are thought to play an important role in
ventricular fibrillation [11], and this has motivated detailed
examinations of their instabilities. The ways for the scroll
waves to lose their stability include twist-induced instability
known as “sproing” [12], negative tension instability [13–15],
which gives rise to “Winfree turbulence” [11,16,17], and 3D
form of meandering [18]. For all three types of instabilities,
linear stability analysis of scroll waves in isotropic and
homogeneous media has been reported [19]. In more recent
experiments, the application of optical tomography, which
permits spatial and temporal resolved observation, has allowed
detailed studies of scroll waves dynamics [20,21].

The dynamics of scroll waves in the presence of parameter
gradient has been investigated considerably in the past 20
years. Experiments in 3D systems with thermal [22,23],
chemical [20], and illumination [24,25] gradients have been
carried out. The externally applied gradients can drive the
scroll waves to drift and twist [22,26], control the spatial
orientation and lifetime of scroll rings [23], and promote scroll
wave instability [22,27]. Numerical results showed that the
instabilities can be controlled by applying a suitable periodic
forcing [16,28] or simply noises [29]. In regimes of simple
oscillation, the media with gradients of control parameters
were demonstrated to exhibit line defects that were usually
found in 2D complex oscillatory media [30].
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As scroll waves and their instabilities in homogeneous and
isotropic media have been considered in detail, the situation
in more complex media with spatial inhomogeneity are less
analyzed [31]. In this respect, a semiquantitative ribbon model
of twisted scroll waves has recently been formulated for
media with spatially varying excitability [32]. In this paper,
we numerically simulate the instability of scroll waves in
a heterogeneous medium with gradient of excitability using
the piecewise linearized FitzHugh-Nagumo model [33]. In
equivalence to that reported in Ref. [19], we present an
alternative treatment of the twist-induced instability. For the
experimentally relevant system, we analyze the instability of
2D spiral wave sliced from the twisted scroll and take the
diffusive coupling in the vertical direction into account as a
time-delayed perturbation to the 2D spiral wave. This permits
us to simplify the problem to 2D. The effective 2D system
contains an additional “negative mass” term. It measures the
twist and induces the instability.

In our simulations, the phase of meandering scroll wave
gives way to a more “disordered” phase as the gradient is
tuned to high levels. Simulation results are comparable to the
experimental observations in the Belousov-Zhabotinski (BZ)
reaction. The irregular state that we called semiturbulence
has its counterpart in the BZ reaction. In the following, we
will first give a description of our numerical findings in the
inhomogeneous 3D system. The transition from the simple
rotation to meandering is then analyzed. A brief discussion is
given at the end of the text.

II. MODEL

We consider the two-species model for excitable media,
which is a modified version of the FitzHugh-Nagumo model
[33]. It is described by the following equations:

∂u

∂t
= ∇2u + f (u,v), (1)

∂v

∂t
= g(u) − v, (2)
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where u and v represent the concentrations of two reactants.
The functions f (u,v) and g(u) are defined by

f (u,v) = 1

ε
u(1 − u)

(
u − v + b

a

)
(3)

g(u) =

⎧⎪⎨
⎪⎩

0 u � 1
3

1 − 6.75u(u − 1)2 1
3 � u < 1

1 u � 1.

(4)

The mass of species v is assumed to be large and is effectively
nondiffusive. a, b, and ε are control parameters for the local
dynamics. In excitable regimes of this model, simple spiral
waves and meandering spiral waves are supported in 2D
systems [33].

Here we are interested in the 3D situation of this model in
which the third dimension is constrained by the gradient of a
control parameter ε. We consider that the values of a and b are
all equal in the whole system, and the value of ε is uniform in
the x-y plane but is decreasing linearly in the third dimension z:

ε(z) = ε0 + �ε

(
1 − z

h

)
, (5)

where h is the thickness of the system, and �ε measures
the gradient of reaction parameter ε in z direction. The 3D
system is discretized into 512 × 512 × 15 lattice with spacial
step 0.39. The system consists thus of 15 diffusively coupled
layers of 2D reaction-diffusion systems. Simulations using
finer discretization with more pixels in the vertical direction
produce consistent results. Parameters a = 0.084, ε0 = 0.02,
and h = 5.46 are fixed, and �ε and b are tunable parameters
in our simulations. The value of ε in the 15th layer denoted
as ε(15) = 0.02 is fixed while the values for lower layers
obey Eq. (5). The Eqs. (1)–(5) are integrated numerically
using the Euler algorithm with no-flux boundary condition.
For each layer of the system, initial conditions for spirals
are appropriately applied so that a spiral is automatically
generated in the layer. For each set of parameters used in
our simulations, we let the system evolve for a long time and
consider only the asymptotic behaviors.

III. PHASE DIAGRAM

The parameters b and ε that we tune in our simulations are
decisive for the excitable system: b determines the excitation
threshold, ε determines the time scale of the fast variable and its
inverse is a measure of the excitability. Equations (1)–(4) are
excitable when b is positively small and a < 1 + b. Pattern
formations in the system described by Eqs. (1)–(5) in the
�ε − b parameter space are summarized in Fig. 1(a). The
patterns that dominate the phase diagram are successively
simple scrolls, meandering scrolls, and semiturbulence phase
as the gradient of ε is increased. In the regime of simple scroll
waves, the spirals in each layer perform simple rotations, each
with its tip moving in a small periodic circle. The filament
formed by the tips of the spirals’ waves is a nearly vertical
straight line [Fig. 2(c)]. The pattern in this regime is thus
identical to normal scroll waves in homogeneous 3D systems.
When the gradient of ε exceeds a critical value, the filament
is no longer straight [Fig. 2(d)], and the system enters into
the regime of meandering scrolls. The filament is twisted

(a)

(b)

FIG. 1. (a) The phase diagram of the inhomogeneous 3D excitable
system. 3D pattern formations that are possible in �ε − b space
include simple spirals, meandering spirals, semiturbulence, chaos,
and flat waves. (b) The phase diagram of the homogeneous 2D system
[33]. Parameters: a = 0.84, ε(15) = 0.02.

gradually, which rotates as the time proceeds. The patterns in
the top of Fig. 2 represent the “total concentration” obtained
by summing up v in all 15 layers. The simple scroll is
demonstrated in the top left. The meandering scroll (top right)
shows a blur wave crest due to the out-of-phase meandering
of spirals in each layer.

As the gradient of ε is increased further, more complex
patterns appear in this inhomogeneous 3D system. For in-
stance, as �ε is increased to 0.044 with b fixed at 0.13
[Figs. 3(a), 3(b), and 3(c)], the scroll waves exhibit some
irregularities. The spiral in the 15th layer is almost regular
due to the fact that ε(15) is fixed at 0.02. As ε grows linearly
down the layers and the excitability decreases, the wave crest
becomes indistinct. The seemingly “turbulent” pattern is in fact
partially disordered. We denote this pattern with irregularities
in Fig. 1 as “semiturbulence.” The filament, which is integral
in the simple spiral region, bends into a wiggly spiral shape
[Fig. 3(d)]. The most prominent character of this phase lies in
that the majority of filament is still connected, and the pattern
is partially coherent. It takes on a wiggly and irregular spiral
shape, with only several fractured filaments attached on the
boundary. See Supplemental Material at Ref. [34] for the movie
of filament movement of this partially disordered turbulence
[34]. The semiturbulence will turn into full turbulence when

056209-2



SCROLL WAVE MEANDERING INDUCED BY PHASE . . . PHYSICAL REVIEW E 86, 056209 (2012)

FIG. 2. The patterns of simple (a) and meandering (b) scrolls
generated by summing up the v fields in all 15 layers. The filaments
formed by planar spiral tips are demonstrated in (c) and (d),
respectively. The former for simple scroll is almost a straight line
and it is a twisted curve for the meandering spiral scroll. Parameters:
�ε = 0.018 for (a, c) and for �ε = 0.03 for (b, d). Other parameters:
a = 0.84, b = 0.11, e(15) = 0.02.

the gradient of ε is tuned high enough [not included in
Fig. 1(a)].

Another full turbulence phase emerges when the excitation
threshold is changed by tuning b to above 0.15, which is labeled
as “chaos” in Fig. 1(a). Figures 4(a)–4(c) demonstrate the time
evolution of the 2D pattern to turbulence in the 8th layer. The
turbulence is generated when �ε is increased to 0.036 with b

fixed at 0.17. During the process to turbulence, the defects of
the meandering spiral wave become sources of target waves,
which are unstable and continuously divide. Due to boundary
effects and interference between the waves, no complete target
exists in the medium when the system arrives at the asymptotic
full turbulent state. In contrast to the fact that semiturbulence
is partially disordered, the filament [Fig. 4(d)] of turbulence
breaks into pieces and the pattern is completely disordered. See
Supplemental Material at Ref. [34] for the movie of filament
movement of full turbulence [34].

The simulation results obtained with b < 0.14 are com-
parable to the experimental observations in the BZ reaction
as depicted in Fig. 5. The BZ experiment is carried out in
a spatial open reactor (refer to Ref. [27] for the setup). We
have chosen [H2SO4]I as the control parameter. It is varied
from 0.40 M to 0.80 M with precision 0.1 M. Other parame-
ters are kept fixed: [H2SO4]II = 0.3 M, [NaBrO3]I,II = 0.2 M,
[CH2(COOH)2]I = 0.6M, [KBr]I = 60 mM, and [Ferroin]II =
1 mM. The reaction temperature is 25 ± 0.2◦C. As the
concentration of [H2SO4]I is tuned, the simple scroll wave
[Fig. 5(a)] undergoes successive transitions to meandering
scroll wave [Fig. 5(b)], to “semiturbulence” [Fig. 5(c)], and
to full turbulence [Fig. 5(d)]. The experimental results in the

FIG. 3. The pattern denoted as semiturbulence phase. (a, b, c)
The planar patterns in the 1st, 8th, and 15th layers, respectively, at a
same instance of time. The filaments for this pattern is demonstrated
in (d). Parameters: a = 0.84, b = 0.13, ε(15) = 0.02, �ε = 0.044.
Refer to the movie supplemented for the filament motion [34].

BZ reaction are in qualitative agreement with the simulation
results with increasing gradient in ε and not very large b

value. For example, the“semiturbulent” spiral pattern that we
simulate in our model (Fig. 3) has its analog in our experiment
of BZ reaction [Fig. 5(c)]. The “semiturbulent” spiral comes
out when [H2SO4]I is increased to 0.6 M. The pattern in
Fig. 5(c) is seemingly turbulent but is relatively stable and
presents a good experimental counterpart of our simulations.

IV. TRANSITION FROM SIMPLE ROTATION TO
MEANDERING

When comparing the phase diagram in Fig. 1(a) with that
of the homogeneous 2D system Fig. 1(b), one finds that
the feature of 2D picture is qualitatively inherited in 3D.
Nevertheless, except for the existence of more complicated
phases in the 3D system, the transition point from simple to
meandering spirals in both systems differs dramatically. For
instance, simple spirals in the 2D system undergo the transition
to meandering spirals when a and b are fixed at 0.84 and 0.07
and ε is around 0.06 [33]. While in the 3D case we consider,
the system undergoes the transition when ε(1) = 0.036 and
ε(15) = 0.02; both of them are far below the transition point
in the corresponding 2D system. Furthermore, when ε is less
than 0.06, the pattern must be the simple spiral wave in the
2D system. The transition from simple scrolls to meandering
scroll waves should be caused by the 3D effect of the gradient,
i.e., twist-induced instability of scroll waves.
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FIG. 4. The development of disordered patterns (denoted “chaos”
in Fig. 1) when the gradient in ε is relatively large. The patterns are
recorded from the 8th layer in three successive instances of time: (a)
shows the state when the system just passes the transition point; (b) is
progressing toward disordered state; (c) depicts the asymptotic state;
(d) is the filament for the fully developed 3D pattern. Parameters:
a = 0.84, b = 0.17, ε(15) = 0.02, �ε = 0.036. Refer to the movie
supplemented for the filament motion [34].

The gradient induces twisting in the scroll waves.
Figure 6(a) demonstrates the time evolutions of variable u

of different layers at a location with same x-y coordination.
The oscillations, which are in identical form, have just phase
differences. The oscillation in upper layers can be obtained
from a lower layer by a time delay. In the following, we show
that the time delay between lower and upper layers can lead to
the transition from simple scrolls to meandering scrolls.

As the twist-induced instability of scroll waves in inho-
mogeneous media has been analyzed with a nonequilibrium
ribbon model [32], we present here an alternative treatment that
is equivalent to that in Ref. [19]. The twisted scroll wave can be
considered as 2D spirals of phase lags that are stacked along
the filament. The twist-induced instability is closely related
to the stability of 2D spiral sliced from the twisted scroll
wave in the vertical direction. As the embedded 2D spiral
wave is diffusively coupled with neighboring spiral waves
in the vertical direction, the problem could be simplified by
taking into account the diffusive coupling in the third direction
as a time-delayed perturbation to the 2D spiral wave. It is
reasonable to assume that

u(x,y,z,t) = u(x,y,t ′), (6)

where t ′ = t − �(z) and �(z) is the time delay between
u(x,y,z,t) and u(x,y,0,t). Substituting Eq. (6) into Eq. (1),
one obtains the equations for the 2D spiral wave sliced

FIG. 5. Experimental observations in the BZ reaction as the
concentration of [H2SO4]I is tuned from 0.4 M to 0.8 M. The
simple scroll wave (a) undergoes successive transitions to meandering
scroll wave (b), to “semiturbulence” (c), and to full turbulence (d).
Control parameters: [H2SO4]I = 0.4 M (a), [H2SO4]I = 0.5 M (b),
[H2SO4]I = 0.6 M (c), [H2SO4]I = 0.8 M (d).

at z,

∂u(x,y,t ′)
∂t ′

= ∇2u(x,y,t ′) − d2�(z)

dz2

∂u(x,y,t ′)
∂t ′

+
(

d�(z)

dz

)2
∂2u(x,y,t ′)

∂t ′2
+ f (u,v), (7)

∂v(x,y,t ′)
∂t ′

= g(u,v). (8)

The second and third terms in the right-hand side of Eq. (7)
come from the diffusive coupling in the vertical coordinate.
For the system we considered, the phase lag of different level
is approximately linearly dependent on z except for layers
near the boundary z = 1 and z = 15 [Fig. 6(b)]. d�(z)

dz
is thus

approximately a constant and d2�(z)
dz2 is zero. The approximation

is similar to the situation where the twist is homogeneous in
z [19]. The term { d�(z)

dz
}2∂2u(x,y,t)/∂t2 in Eq. (7) could play

a significant role. As { d�(z)
dz

}2 is always positive, it can be
considered as a “negative mass” term, which would inevitably
lead to instability in mechanics. It is actually the twist that
causes the simple scroll wave to lose its stability and transit to
meandering spiral preceding the same transition in 2D systems.

In polar coordinates, ∂u(r,θ,t ′)
∂t ′ = ω∂u(r,θ,t ′)

∂θ
, where ω is the

rotating rate of the twisted scroll wave, and Eqs. (7) and (8)
take the form,

∂u(r,θ,t ′)
∂t ′

= ∇2
2Du(r,θ,t ′) + β2 ∂2u(r,θ,t ′)

∂θ2
+ f (u,v) (9)

∂v(r,θ,t ′)
∂t ′

= g(u,v), (10)
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FIG. 6. (Color online) (a) The oscillations of the variable u in
different layers at a location with same x-y coordination. They share
the same oscillation form but have successive phase lags from the
lower to upper layers. The results are obtained with parameters in the
regime of simple spiral: a = 0.84,b = 0.07,ε(1) = 0.036,ε(15) =
0.020. (b) The phase delay as a function of the z coordination
calculated from (a). The gradient of phase delay reaches the maximum
at point A at the sixth layer, which is about 0.186.

where β = ωd�
dz

is equivalently the twist of the scroll
wave.

The behaviors of the 3D system, Eqs. (1)–(5), in the
neighborhood of simple spiral to meandering spiral transition
can now be probed with the 2D system, Eqs. (9) and (10). The
equations are simulated numerically from an initial spiral with
parameters a = 0.84, b = 0.07. ε = 0.03 is fixed, which is the
intermediate value of ε in the third direction at the transition
point. We find that when the control parameter β is tuned to the
critical value βc = 0.22, the simple spiral wave of the effective
2D system described by Eqs. (7)–(9) undergoes a bifurcation
from simple rotation to meandering. Figure 7 demonstrates
the paths of the spiral tip as β is adjusted, in which the
simple periodic circle is turned into a cycloid curve whose
amplitude is amplified gradually as β is increased. Therefore,
with parameters that support only simple spirals in 2D systems,

FIG. 7. The traces of spiral tip in the effective 2D system
when β = 0.21, 0.22, 0.23, 0.24, 0.25, respectively (from left to
right).

meandering spirals can be induced by the phase difference in
3D systems with gradient.

The transition point βc in Eqs. (7) and (8) can be
also estimated in our phase-delay model. At ε = 0.03,a =
0.84,b = 0.07, near the transition, βc is close to the square
of the maximum gradient of phase delay [Fig. 6(b)], which
is calculated as βc = (0.186/0.39)2 = 0.23, where 0.39 is the
spacial step of the lattice. This is quantitatively in agreement
with direct simulations of the effective 2D system, with
βc = 0.22.

The linear stability analysis of the twist-induced instability
has been given by Henry et al. [19]. Equations (9) and (10)
presented here are similar to Eqs. (3) and (4) in Ref. [19]
but have some differences. In Ref. [19], a transformation
that takes into account both the rotation of the scroll wave
and the twist in the vertical direction was made, and the
homogeneous 3D system was reduced to purely 2D due
to the translation symmetry along the z axis. The system
we consider is inhomogeneous in z, which imposes an
inherent twist on the scroll wave. In comparison to Ref. [19],
Eqs. (7) and (8) describe a sliced spiral wave from the scroll,
which are coupled with neighboring spiral waves that are
time-delayed in z due to the twist. The scheme is basically
equivalent to that reported by Henry et al. [19]. In fact,
the control parameter β that determines the “negative mass”
term in Eq. (7) or (9) is actually the twist that induces the
instability.

V. CONCLUSION

In summary, we have explored the dynamics of scroll
waves in the inhomogeneous 3D system with the modified
FitzHugh-Nagumo model in which planar spiral waves are
coupled diffusively and are constrained by a gradient of
excitability in the third dimension to form twisted scroll waves.
As the gradients in ε are increased, the twisting is enhanced to
cause a transition from simple rotation to meandering scrolls.
For the twist-induced meandering of scroll waves, we take
the diffusive coupling in the vertical direction into account as
a time-delayed perturbation. This permits the simplification
of the 3D system to 2D. The effective 2D system contains
an additional “negative mass” term, which is the twist that
causes instability. Although the instability of scroll waves
in complex media with spatial inhomogeneity (gradient) has
been studied in several experiments and simulations, it has not
been adequately analyzed. Our analysis of the twist-induced
instability presents a treatment equivalent to that in Ref. [19]
and is supplementary to the nonequilibrium ribbon model for
inhomogeneous systems.
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