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Projecting low-dimensional chaos from spatiotemporal dynamics in a model for plastic instability
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We investigate the possibility of projecting low-dimensional chaos from spatiotemporal dynamics of a model
for a kind of plastic instability observed under constant strain rate deformation conditions. We first discuss the
relationship between the spatiotemporal patterns of the model reflected in the nature of dislocation bands and the
nature of stress serrations. We show that at low applied strain rates, there is a one-to-one correspondence with
the randomly nucleated isolated bursts of mobile dislocation density and the stress drops. We then show that
the model equations are spatiotemporally chaotic by demonstrating the number of positive Lyapunov exponents
and Lyapunov dimension scale with the system size at low and high strain rates. Using a modified algorithm
for calculating correlation dimension density, we show that the stress-strain signals at low applied strain rates
corresponding to spatially uncorrelated dislocation bands exhibit features of low-dimensional chaos. This is
made quantitative by demonstrating that the model equations can be approximately reduced to space-independent
model equations for the average dislocation densities, which is known to be low-dimensionally chaotic. However,
the scaling regime for the correlation dimension shrinks with increasing applied strain rate due to increasing
propensity for propagation of the dislocation bands.
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I. INTRODUCTION

It is well known that a number of irregular scalar ex-
perimental signals have features of low-dimensional (low-d)
chaos. These signals often correspond to a spatial average
over internal degrees of freedom of a spatially extended
system. In such cases, while the internal degrees of freedom
are not accessible to experiments, they are suspected to be
spatiotemporally chaotic, a view supported by models that
capture the basic features of the phenomenon. A good example
is the plastic deformation of metallic alloys subjected to a
constant strain rate test. Here, only stress can be measured by
the load cell placed at one end of the sample and is the spatial
average of dislocation activity in the sample. Under specific
conditions, the measured stress-time series σ (t) exhibits irreg-
ular serrations [1,2]. Such stress signals have been shown to be
low-d chaotic [3–5]. A second example is the crackling audible
noise, called acoustic emission (AE) commonly experienced
during peeling of an adhesive tape. The AE signals have also
been shown to be low-d chaotic [6], which is controlled by the
rugged nature of the peel front. These two examples suggest
that spatial averaging somehow projects low-dimensional
chaos out of spatiotemporal dynamics. Several candidates for
low-d chaos could be cited, including the irregular voltage
fluctuations measured across a sample of a charge density
wave compound (CDW), attributed to pinning and unpinning
of CDW [7], and the fluctuations in the position and intensity
of a light beam passing through a turbulent medium [8].

The purpose of this paper is to examine the possibility of
projecting low-d chaos from a spatiotemporal chaotic system
and if so, under what conditions? This question will be
addressed within the context of a model for a plastic instability,
called the Portevin-Le Chatelier (PLC) effect [9–12]. The PLC
effect or jerky flow refers to the irregular stress-strain curves
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associated with the observed heterogeneous deformation when
specimens of dilute metallic alloys are deformed in a window
of strain rates and temperatures. While dislocation activity
in the sample is not accessible to experiments, dislocation
bands seen on the surface of the sample [2,13], measurement
of acoustic emission studies [14], and studies on microcrystals
[15], strongly suggest that dislocation dynamics is intermittent.
However, relating the irregular nature of the scalar signal to the
dislocation dynamics has remained a difficult task due to lack
of dislocation-based models even though there is a general
consensus that dislocation dynamics is intermittent, a view
supported by dislocation dynamics simulations as well [16,17].

The basic mechanism attributed to the stress serrations in
the PLC effect is the collective pinning and unpinning of
dislocations [1,2]. Each stress drop is associated with the
formation and often the propagation of dislocation bands.
Three distinct types of dislocation bands, namely, the static
uncorrelated type C, hopping type B, and continuously
propagating type A are seen with increasing strain rate. The
average stress drop size is large for the type C band, decreasing
with increasing strain rate as we encounter the type B and A
bands [2].

Several of these generic features of the PLC effect are
captured by the Ananthakrishna (AK) model [2,9–12]. One
prediction specific to the model relevant for the current study
is the (low-d) chaotic nature of the stress drops for low strain
rates [18]. The prediction has been subsequently verified using
experimental signals from single and polycrystals [3–5]. Thus,
the model provides a platform to verify the conjuncture that
the stress signals are low-d chaotic while the model equations
are spatiotemporally chaotic. Using the AK model, we show
that at low strain rates, the irregular stress-time series can
be unambiguously identified as low-d chaotic while the model
equations are spatiotemporally chaotic. We show that the low-d
chaotic nature is entirely due to the one-to-one correspondence
between the isolated bursts of mobile density and the stress
drops in this domain of applied strain rates. The low-d chaotic
feature breaks down for higher applied strain rates which can
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be directly correlated with the propensity for the dislocation
bands to propagate.

II. THE ANANTHAKRISHNA MODEL
FOR SERRATED FLOW

The basic idea of the AK model is that most generic
features of the PLC effect such as the existence of the
instability in a window of strain rates, the negative strain rate
sensitivity of the flow stress, and the three types of bands
(C, B, and A) emerge from the nonlinear interaction of a few
dislocation populations assumed to represent the collective
degrees of freedom of the system [9–12]. The model uses
three types of dislocation densities: the fast mobile ρm(x,t), the
immobile ρim(x,t), and the Cottrell type ρc(x,t) corresponding
to dislocations decorated by solute atoms [9]. (The standard
AK model equations take into account the hardening process
that is relevant for describing the physical phenomenon [9–12].
However, since we are concerned here with the spatiotemporal
dynamics in a stationary situation, we ignore the hardening
term that also helps to attain the stationary state faster.) The
scaled equations for the three densities and the scaled stress φ

are given by

∂ρm

∂t
= −b0ρ

2
m − ρmρim + ρim − aρm + φmρm

+ Dφm(t)

ρim

∂2ρm

∂x2
, (1)

∂ρim

∂t
= b0

(
b0ρ

2
m − ρmρim − ρim + aρc

)
, (2)

∂ρc

∂t
= c(ρm − ρc), (3)

dφ(t)

dt
= d

[
ε̇a − φm(t)

l

∫ l

0
ρm(x,t)dx

]
= d[ε̇a − ε̇p]. (4)

The term b0ρ
2
m in Eq. (1) refers to the formation of dipoles

and other dislocations locks, ρmρim refers to the annihilation
of a mobile dislocation with an immobile one, and ρim

represents the reactivation of the immobile dislocation due to
stress or thermal activation. aρm represents the immobilization
of mobile dislocations due to aggregation of solute atoms
to dislocations. Once a mobile dislocation starts acquiring
solute atoms we regard it as Cottrell-type dislocation ρc. As
more and more solute atoms aggregate, they eventually stop,
and are considered as immobile dislocations ρim. This term
then acts as a source term in Eq. (3). φmρm represents the
rate of multiplication of dislocations due to cross slip. This
depends on the velocity of the mobile dislocations taken to
be Vm(φ) = φm, where m is the velocity exponent. Within
the scope of the model, cross slip that allows dislocations
to spread into neighboring spatial locations gives rise to
diffusive coupling [the last term in Eq. (1)]. These equations
are coupled to Eq. (4), which represents the constant strain
rate deformation experiment. In Eq. (4), ε̇a is the scaled
applied strain rate, d the scaled effective elastic modulus of the
machine and the sample, and l the dimensionless length of the
sample. The scaled constants, a,b0, and c refer, respectively,
to the concentration of solute atoms slowing down the mobile
dislocation, the thermal and athermal reactivation of immobile

dislocations, and the diffusion rate of solute atoms to the
mobile dislocations. The drive parameter is the applied strain
rate ε̇a with respect to which the different types of bands and
the associated serrations are observed. The instability range
is found in the interval 20 < ε̇a < 1625 for a system size
N = 100.

Equations (1)–(4) are discretized on a grid of N points and
solved using an adaptive step-size differential equation solver
(MATLAB “ODE23”). The initial values for the densities are
taken to be uniformly distributed along the sample. However,
as the long-term evolution does not depend on the initial values,
steady-state values have been used. As dislocation bands can-
not propagate into the grips, the boundary values ρim(j,t); j =
1 and N are taken to be two orders higher than ρim(j ), j =
2, . . . N − 1. Furthermore, we impose ρm(j,t) = ρc(j,t) = 0
for j = 1 and N . The results reported are for a = 0.8, b =
5 × 10−4, c = 0.08, d = 6 × 10−5, m = 3, D = 0.25.
The system size N = 20–150 is used depending on the
property addressed. After discarding the initial transients, φ(t)
is sampled at time intervals δt = 0.5.

III. SPATIOTEMPORAL PATTERNS AND RELATION
TO STRESS SERRATIONS

The results of the model relevant for the present purpose
are the spatiotemporal patterns reflected in the nature of the
dislocation bands and their connection to the changes in the
nature of stress serrations, observed with increasing applied
strain rate. To understand the origin of the instability and the
nature of the spatial patterns, let us first examine Eqs. (1)
and (4) more carefully. We first note that φ = σ/σy , where
σ is the unscaled stress at time t and σy is the yield stress.
From Eq. (1), it is clear that ρm increases abruptly only
when φ exceeds unity (corresponding to the unscaled stress
exceeding the yield stress) or equivalently, there is a threshold
for nucleation of an isolated burst of the mobile density ρm.
However, a stress drop can only occur when the space-averaged
plastic strain rate ε̇p = φm(t)

l

∫ l

0 ρm(x,t)dx exceeds the applied
strain rate ε̇a .

As mentioned earlier the model reproduces all the three
types of bands (C, B, and A) observed in experiments with
increasing ε̇a [2,12]. For a range of low ε̇a values from 20
to 50, randomly nucleated dislocation bands are seen in the
form of isolated bursts of ρm. From the above discussion,
we know that an isolated burst of ρm can only be nucleated if
the scaled stress φ increases beyond unity. A typical space-time
plot of the randomly nucleated bands is shown in Fig. 1(a)
for ε̇a = 40. The corresponding stress-time curve is nearly
regular as illustrated in Fig. 1(b). Furthermore, in this range of
ε̇a , usually a single burst of ρm contributes to the total plastic
strain rate ε̇p = φm(t)

l

∫ l

0 ρm(x,t)dx as the magnitude of ρm(x,t)
at other spatial locations is insignificant. This implies that
whenever the space-averaged plastic strain rate overshoots the
applied strain rate ε̇a , a stress drop occurs [see Eq. (4)]. Thus,
there is a one-to-one correspondence between the burst of
mobile density ρm and the stress drop. However, as we increase
ε̇a , a new burst of ρm is formed even before the previous burst
dies off giving the impression of hopping character (type-B
band). This is clear from the plot of the hopping-type partial
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FIG. 1. (Color online) (a) Randomly nucleated type-C bands for
ε̇a = 40. (b) The corresponding stress-time plot.

propagating band shown in Fig. 2(a) for ε̇a = 90. This also
means that the stress required to nucleate a fresh burst of ρm

ahead of the previous one even before it dies off, is less than that
required to nucleate an isolated burst of ρm. This in turn implies
that the amplitude of the serrations would be smaller in regions
where propagating bands are seen. This relationship between
the propagative nature of the bands and small amplitude stress
drops is illustrated in Figs. 2(a) and 2(b). The figure identifies
the propagative regime with the corresponding stretch of
small-amplitude stress serrations [marked by a corresponding
set of arrows in Figs. 2(a) and 2(b)]. As we increase ε̇a ,
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FIG. 2. (Color online) (a) Hopping type-B bands for ε̇a = 90.
(b) The corresponding stress-time plot. For the sake of clarity, a short
segment of the space-time plot is displayed. The correspondence
between the propagating nature of the band marked by the arrows in
(a) and the stress-time series in (b) is displayed.
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FIG. 3. (Color online) (a) Continuously propagating bands for
ε̇a = 240. (b) The corresponding stress-time plot.

the extent of propagation increases, concomitantly, longer
stretches of small-amplitude serrations interrupt the otherwise
large-amplitude serrations. The spatial correlation increases
with ε̇a until the bands propagate fully with numerous small
stress drops. The corresponding stress-time plot would have
mostly small-amplitude stress drops with very few large stress
drops. A typical plot of a fully propagating band along with
the associated stress-time plot is shown in Figs. 3(a) and 3(b)
(see Refs. [2,12]).

IV. SPATIOTEMPORAL DYNAMICS OF THE MODEL

The above spatiotemporal dynamics has been quantified by
calculating the Lyapunov spectrum from the model equations
(using the Bennettin’s algorithm [19]) for a range of values of
ε̇a where the randomly nucleated bands and partial propagative
bands are seen. (First 10 000 points have been ignored and the
spectrum is calculated using the next 10 000 time steps.) We
have studied the system size dependence of the number of
positive exponents n+

λ and the Lyapunov dimension DL. Both
scale linearly with N for low strain rates where randomly
nucleating bands are seen and also at high strain rates where
fully propagating bands are seen. For illustration, plots of DL

verses N is shown in Figs. 4(a) and 4(b), for ε̇a = 40 and
ε̇a = 240, respectively. However, for a range of values of ε̇a

beyond 60 where partial propagative bands are seen [that also
coincides with the region where we do not find converged
values of the correlation dimension, D2s(r,d), as we shall soon
show], we find two distinct slopes in the DL − N plot, one
for small values of N and another for large values of N . This
feature can be seen even for ε̇a = 60 where partial propagation
begins. A typical plot of DL − N is shown in Fig. 5(a) for
ε̇a = 120. (The larger slope for small N values is ∼0.67 and
the smaller slope for large N is ∼0.287.) As we increase the
strain rate, the range of values of N corresponding to the larger
slope decreases; eventually a single slope is seen for ε̇a = 240
[Fig. 4(b)]. A similar behavior is also seen for n+

λ .
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FIG. 4. (Color online) Lyapunov dimension DL as a function of
N (a) for ε̇a = 40 (randomly nucleating bands) with slope ≈0.35 and
(b) for ε̇a = 240 (continuously propagating bands) with slope ≈0.37.

To understand the underlying reasons for the two-slope
nature of DL versus N , we have examined the nature of the
spatiotemporal patterns when the system size is increased from
small values of N to large values. Plots of spatiotemporal
patterns for ε̇a = 120 for N = 100 and N = 20, are shown
in Figs. 5(b) and 5(c), respectively. As can be seen from the
two plots, while the bands propagate fair distances for large
system size N = 100, for small system size N = 20, one finds
well-separated bursts of ρm (in the time domain) at any given
time, although there is a visual impression of propagation.
However, the direction of apparent propagation [in Fig. 5(c)]
is opposite to that for N = 100 [Fig. 5(b)]. Indeed, we find
that the dynamics is altered from partial propagative nature
for large system size (say for N = 100) to one of burst type
when the system size is smaller than N = 50. (Note that
the burst-type pattern is seen for ε̇a < 60 when N is large.)
Similar altered dynamics for small system sizes is seen for
60 � ε̇a � 200.

V. TIME SERIES ANALYSIS OF STRESS SIGNALS

Now consider analyzing the stress-time series that is
related to the spatial average of the dislocation activity
in the sample [Eq. (4)]. Consider a stress-time series of
length M in units of δt defined by {φ(k),k = 1,2, . . . ,M}.
Then, the reconstructed attractor is defined by the dE dimen-
sional vectors �ξk = {φ(k),φ(k + τ ), . . . ,φ[k + (dE − 1)τ ]};
k = 1,2, . . . ,[M − (dE − 1)τ ], where τ is the delay time. The
chaotic nature of the attractor is quantified by establishing
the existence of finite correlation dimension and a positive
Lyapunov exponent.

The most popular method for calculating the correlation
dimension is the Grassberger-Procaccia (GP) algorithm [20].
The method calculates the correlation integral defined as the
fraction of the pairs of points �ξi and �ξj whose distance is less
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FIG. 5. (Color online) (a) Lyapunov dimension DL as a function
of N for ε̇a = 120. Note the two distinct slopes. One for larger
system sizes (N > 50) with slope ≈0.287 (dashed line) and the
other for smaller system sizes with slope ≈0.67 (continuous line) (b)
Space-time plot of the mobile dislocation density for the same ε̇a and
N = 100. (c) Space-time plot of the mobile dislocation density for
ε̇a = 120 and N = 20.

than a specified value r , that is,

C(r) = 1

Mp

∑
i,j

�(r − |�ξi − �ξj |), (5)

where �(. . .) is the Heaviside step function and Mp the number
of vector pairs used [20]. A window is imposed to exclude
temporarily correlated points. The correlation dimension is
defined as

D2(r,dE) = lim
r→0

lim
M→∞

dlnC2(r,dE)

dln r
. (6)

This limit is seldom reached. Instead, one usually finds a
reasonably large scaling regime in ln r at intermediate scales,
where the slope D2(r,dE) converges to a finite value D2, which
is taken to be the correlation dimension of the attractor. The
method has been successfully applied for analyzing several
(mostly) low-d attractors [21]. However, the validity of the GP
algorithm for high-dimensional attractors has been questioned
since exponentially longer time series are required [22–24].
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Generally, two types of errors limit the confidence in the
estimates of D2, namely the poor statistics at small length
scales and the underestimation of D2(r,dE) at length scales
comparable to the attractor size. The latter arises when the
reference point is close to the edge of the attractor as zero
contribution arises for length scales r beyond the attractor’s
edge. This systematic error is shown to be important in
characterizing high dimensional attractors including those of
spatially extended systems [25,26]. Bauer et al. [25] suggested
a method of compensating the contribution arising from finite
size of the attractor by normalizing the local slope D2(r,dE)
by the slope of an equivalent random attractor D2r (r,dE) =
d ln C2r (r,dE )

d ln r
. Thus, the “true” correlation dimension is redefined

as

D2s(r,dE) = D2(r,dE)

D2r (r,dE)
= d lnC2(r,dE)

dE d lnC2r (r,1)
, (7)

where C2r (r,dE) = C2r (r,1)dE has been used [25]. Here we use
C2(r,2)1/2 instead of C2r (r,1) and define

D2s(r,dE) = D2(r,dE)

D2(r,2)/2
= 2

d lnC2(r,dE)

d lnC2(r,2)
. (8)

Using C2(r,2)1/2 not only serves to correct for the finite size of
the attractor as does C2r (r,1), it also includes the contribution
from finite delay time. The converged value of D2s(r,dE) over
a fair range of ln r is taken to be D2. We further use constant
window length (dE − 1)τ that maximizes the scaling regime
[27]. The Lyapunov spectrum for the time series is computed
using the standard Eckmann’s algorithm [28].

We first check the applicability of the algorithm to high-
dimensional attractors with dimensions, say four or five.
For this, we consider a time series obtained by summing
two independent x-component time series of the Lorenz
model. The first data set is for parameter values σ = 10, r =
28, b = 8/3 and the second is for σ = 16, r = 40,b = 8/3.
The total number of points used is 105. We have kept
(dE − 1)τ = 160, an optimum value of the window length
that maximizes the scaling regime to calculate the C2(r,dE)
for (dE,τ ) = (5,40),(6,32),(7,27),(8,23),(9,20),(10,18). The
slope D2(r,dE) has been normalized with respect to D2(r,2)/2
for τ = 65. Figure 6 shows the plot of D2s(r,dE) for this case. It
is clear that there is nearly five orders of scaling regime, which
is comparable to the scaling regime obtained using an adoptive
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FIG. 6. (Color online) Plot of D2s(dE,r) as a function of ln r for
the sum of two independent x components of the Lorenz model for
(dE,τ ) = (5,40),(6,32),(7,27),(8,23),(9,20),(10,18). Normalization
used is D2(r,2)/2 for τ = 250.
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FIG. 7. (Color online) Plot of D2s(r,dE) as a function of ln r for
the stress-strain series for ε̇a = 25 for 1.1 × 105 points. The values of
(dE,τ ) are (4,16), (5,12), (7,8), (9,6). Normalization used is D2(r,2)/2
for τ = 30.

box counting method where 107 points have been used [29].
The value of D2 obtained is ∼3.8. Note that 2D2 = 4.12 is
only the upper limit. The above algorithm works very well for
low-d attractors such as the Lorenz model (where we find six
orders of scaling regime with just 10 000 points).

Having demonstrated the spatiotemporally chaotic nature of
the model equations, we now examine if the stress-time series
has the required features of low-dimensional chaos using the
above algorithm. Here we note that the stress rate φ̇ depends
linearly on the plastic strain rate which in turn involves the
spatial average of mobile dislocation density. Thus, the scalar
signal φ, though a dynamical variable, which determines the
rate of multiplication of mobile density [first term in Eq. (1)],
is an appropriate quantity for carrying out time-series analysis.
We have calculated D2 from the stress-time series φ(t) in the
range 20 < ε̇a � 50 corresponding to the randomly nucleating
bands using 1.1 × 105 points for N = 100. A plot of D2s(r,dE)
as a function of ln r for ε̇a = 25 is shown in Fig. 7, keeping
(dE − 1)τ = 48 (dE = 4,5,7 and 9) [27]. At least five orders
scaling regime in ln r is clear and D2 = 2.15 ± 0.03. D2

increases with ε̇a marginally until 50. Beyond this value, we
find the scaling regime shrinks. Indeed, even for ε̇a = 60,
D2s(r,dE) increases steadily but slowly, for small length scales
as is clear from Fig. 8(a) . Even when the propagation distance
is not too large we find practically no scaling regime as
illustrated in Fig. 8(b) for εa = 90. The nonconstancy of
D2s(r,dE) for ε̇a > 50 is precisely the region of the partially
propagating dislocation bands [see Fig. 2(a)].

Using the Eckmann’s algorithm, we have calculated the
Lyapunov spectrum for the time series in the interval 20 <

ε̇a � 50. Figure 9 shows the spectrum for ε̇a = 25 for dE = 6.
(Note that dE = 6 corresponds to 2D2 + 1. However, Ding
et al. [30] have shown that it is adequate to use embedding
dimension dE � D2 rather than using a dE larger than 2D2 + 1
as originally suggested.) The existence of a good zero exponent
and a positive exponent is clear and the Lyapunov dimension
DL = 2.78. Similar results are obtained for 20 < ε̇a � 50.
DL ranges from 2.6–2.8. The minimum degrees of freedom
required for a dynamical description is then four, which
is also the dimension of the bare (space-independent) AK
model. Here, we note that as we increase the embedding
dimension dE from D2 + 1 to 2D2 + 1, the value of the
positive exponent remains nearly constant at ≈0.075, the
zero exponent remains close to zero (∼10−3), and the first
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FIG. 8. (Color online) (a) Plot of D2s versus ln r for the stress-
time series for ε̇a = 60. The values of (dE,τ ) are such that (dE − 1)
τ = 27. Normalization used is D2(r,2)/2 for τ = 18. (b) Plot of
D2s versus ln r for the stress-time series for ε̇a = 90. The values of
(dE,τ ) are such that (dE − 1)τ = 24. Normalization used is D2(r,2)/2
for τ = 16.

negative exponent also remains nearly constant. These three
exponents are nonspurious. For ε̇a � 60, it is not meaningful
to calculate the Lyapunov spectrum due to lack of convergence
of D2s(r,dE).

We have also carried out surrogate (phase-randomized) data
analysis of the stress-time series for ε̇a = 25–50. We find
that D2s(r,dE) increases with the embedding dimension. This
provides an additional support that the time series has features
of low-dimensional chaos.

VI. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated that low-dimensional
chaos is detected in the stress signals for the low-strain-rate
regime even as the model equations are spatiotemporally
chaotic. The scaling regime for the correlation dimension
shrinks beyond ε̇a = 50 where the tendency for propagation
increases with the applied strain rate. The number of positive
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FIG. 9. (Color online) The Lyapunov spectrum for dE = 6
and τ = 2 for the stress-strain series for ε̇a = 25. The Lyapunov
dimension is 2.78.

Lyapunov exponents and the Lyapunov dimension for the
model equations scale with the system size for the lowstrain
regime of randomly nucleated bands. These two results appear
to be mutually inconsistent if one goes by the general belief
that a scalar time series obtained from a spatially extended
system should in principle contain information about the full
attractor of the system. However, the impressive (five orders
in ln r at low applied strain rates) scaling regime for D2 for
the stress-time series strongly supports the low-dimensional
chaotic nature of the stress signals. Interestingly, the value
of D2 for the stress-time series obtained from the bare (space-
independent) AK model equations is also ∼2.25. Furthermore,
the Lyapunov spectrum calculated from the embedded time
series shows a positive and a good zero exponent, which
confirms the low-d chaotic nature of the stress signal.

On the other hand, the scaling regime for the correlation
dimension shrinks for higher strain rates (ε̇a > 50) once the
bands acquire the propensity to propagate. In the partially
propagative regime the Lyapunov dimension DL exhibits two
slopes as a function of the system size N , one for the small
sizes (N < 50) and another for larger sizes while we find DL

again scales with N for the fully propagating bands at high
strain rates as for the low strain rates. We have shown that the
two-slope nature is due to the altered spatiotemporal patterns
when the system size is reduced from those manifesting for
large system sizes.

Having demonstrated that the stress signals have all features
of low-dimensional chaos for the region of strain rates 20 <

ε̇a � 50, a natural question is as follows: How is the low-d
chaos projected from spatiotemporal chaotic system? The
answer lies in the nature of spatiotemporal patterns seen at
low strain rates. Plots of ρc(x,t) and ρim(x,t) corresponding
to ρm(x,t) shown in Fig. 1(a) for εa = 40 are displayed
in Figs. 10(a) and 10(b), respectively. Since the relative
magnitudes of the three densities are substantially different,
this feature is better captured by a snap shot representing
the magnitudes of the three densities (at an arbitrary time)
as shown in Fig. 10(c). As demonstrated earlier, there is a
one-to-one correspondence between the stress drops and bursts
of ρm. Furthermore, on comparing ρm(x,t) shown Fig. 1(a)
with ρc(x,t) [Fig. 10(a)], it is clear that these two densities
are in phase and are localized to the same spatial extent
of few sites with large peak heights of ρm(x,t) ∼ 1000 and
ρc(x,t) ∼ 500, respectively. In contrast, the range of values
of ρim(x,t) is two to three orders lower than ρm and ρc

as can be seen from Fig. 10(c). Moreover, the range of
ρim is small with values between 0.5–3. [Note that larger
values of ρim are for sites where ρm (or ρc) is small and
vice versa, as can be seen from Fig. 10(c).] Moreover, we
note that the spatial dependence in the model comes entirely
from Eq. (1). Using these features, we shall now show that
the spatial averaging process does project low-dimensional
chaos.

To do this, we first note that since the contribution to the
plastic strain rate [ε̇p = φm(t)

l

∫ l

0 ρm(x,t)dx] comes from the
single burst, it is natural to use the space-averaged dislocation
densities to illustrate the projection process. Second, since
both ρm and ρc are localized to a few sites with large peak
heights, they can be represented by Gaussian-like functions.
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FIG. 10. (Color online) (a) Space-time plot of ρc(x,t) for ε̇a = 40
for the same time interval as for ρm(x,t) shown in Fig. 1(a). (b) The
corresponding space-time plot for ρim(x,t). Note that for ρim(x,t)
is out of phase with ρm and ρc for all sites. (c) A snapshot of
ρm(x,t),ρc(x,t) and ρim(x,t) at an arbitrary time.

Now consider integrating Eq. (1).∫
∂ρm

∂t
dx =

∫
dx

[
− b0ρ

2
m − ρmρim + ρim − aρm

+φmρm + Dφm(t)

ρim

∂2ρm

∂x2

]
. (9)

Then, define
∫

ρm(x,t)dx/l = ρ̄m(t) with similar definitions
for ρc(x,t) (ρ̄c(t)) and ρim(x,t) (ρ̄im(t)). The linear terms in
ρm(x,t) pose no problems. Using a Gaussian representation
for ρm(x,t), the first term

∫
dxρ2

m(x,t)/l in Eq. (9), can be
integrated to give

∫
dxρ2

m(x,t)/l = l

σ̄
√

π
ρ̄2

m(t) where σ̄ is the
variance of the Gaussian distribution.

Consider evaluating
∫

ρm(x,t)ρim(x,t)dx/l. This involves
integrating the sharply peaked ρm(x,t) with the weight
factor ρim(x,t). Noting that ρim(x,t) varies in a narrow
range of 0.5–3, and ρm(x,t) is localized to a few sites, we
may approximate

∫
ρm(x,t)ρim(x,t)/l ≈ qρ̄m(t)ρ̄im(t) where∫

ρim(x,t)dx/l = ρ̄im(t) with a prefactor q to account for the
average weight factor arising from ρim(x,t) to the integral.
This approximation has been verified numerically for various
intervals of time. The factor q is around 2.

Now consider evaluating the last term in Eq. (9). Noting
again that the range of ρim(x,t) is nearly constant of the order
of unity, we can replace it with rρ̄im(t), where r is a scale

factor. Then, using a Gaussian centered around some site, we
get

I =
∫

Dφm(t)

ρim(x,t)

∂2ρm(x,t)

∂x2
dx

≈ D

rρ̄im(t)
φm(t)

∫ l

0

∂2(ρm(x,t))
∂x2

dx = 0. (10)

When the ρm burst is near the boundary, this term would be
nonzero. However, such events are rare and for all purposes,
they may be ignored. Thus we have

∂ρ̄m

∂t
= −b′

0ρ̄
2
m − qρ̄mρ̄im + ρ̄im − aρ̄m + φmρ̄m. (11)

Here, b′
0 = b0

l

σ̄
√

π
.

It is straightforward to show that the other three equations
can be integrated to give

∂ρ̄im

∂t
= b′

0(b′
0ρ̄

2
m − qρ̄mρ̄im − ρ̄im + aρ̄c), (12)

∂ρ̄c

∂t
= c(ρ̄m − ρ̄c), (13)

dφ(t)

dt
= d[ε̇a − ρ̄m(t)φm(t)]. (14)

Thus, for low strain rates, Eqs. (1)–(4) reduce to a set
of coupled ordinary differential equations for the space-
averaged densities given by Eqs. (11)–(14), with renormalized
coefficients. These equations have the same form as the bare
AK model equations that have been shown to be chaotic (see
Refs. [2,18]). Indeed, the value of D2 for the stress-time series
obtained from the bare model turns out to be D2 = 2.25 ± 0.05
using just 30 000 points. Clearly, the above procedure works
as long as there is a one-to-one correspondence between the
bursts of ρm and stress drops. However, this correspondence
breaks down even for a small extent of propagation. Basically,
during propagation, the successive bursts of ρm ahead of the
primary burst do not have any specific relation to the stress
drop.

The fact that the zeroth-order Fourier component captures
the low-dimensional chaotic nature of the stress signal is
possibly suggestive of separation of time scales. Here, we
note that the burst time scale of ρm(x,t) is short and the spatial
averaging process maps the burst time scale to the time scale of
the stress drop. Then, the one-to-one correspondence between
the burst in ρm and stress drop leads to the low-d chaotic
character of the stress reflected in the constancy of D2s(r,dE)
for all but small length scales. However, in principle, the
influence of higher Fourier components on the zeroth Fourier
component must be reflected in some form. The effect of other
degrees of freedom has been represented as noise to explain
the generally increasing trend of the correlation dimension for
small length scales in studies on coupled maps [31]. Indeed,
the increasing trend of D2s(r,dE) for small scales seen in Fig. 7
is perhaps a reflection of the high-dimensional nature of the
full system.

Now consider the Lyapunov spectrum obtained from the
two methods. The main contribution to the divergence of orbits
of the full set of model equations comes from the ρm(x,t) and
ρc(x,t) due to the large range of values while both ρim and
stress contribute minimally. In contrast, the contribution to
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the divergence of the orbits in the embedded space of φ(t)
comes mainly from the rapid changes occurring during stress
drops. Since the underlying mechanisms and magnitudes of
the changes contributing to the Lyapunov spectrum in the two
cases are very different, the results are not necessarily mutually
inconsistent.

We believe that projecting low-dimensional chaos from
spatiotemporal chaotic dynamics should hold at least in
situations where there is a one-to-one correspondence between
the abrupt variation of a scalar time series (which is some
kind of average over spatial degrees of freedom) and localized
excitations of the internal degrees of freedom. This could also
arise due to synchronization of a certain region of spatial
elements. Attempts to verify this conjecture are underway.

Detailed investigations are in progress to understand the
relationship between the stress signals and the spatiotemporal
dynamics of the model equations, and quantifying stress
signals for higher strain rates where partial propagating bands
are seen.
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[23] I. Dvořák and J. Klaschka, Phys. Lett. 145, 225 (1990).
[24] J. P. Eckmann and D. Ruelle, Physica D 56, 185 (1992).
[25] M. Bauer, H. Heng, and W. Martienssen, Phys. Rev. Lett. 71,

521 (1993); H. Heng, M. Bauer, and W. Martienssen, Chaos
Solitons Fractals 2, 197 (1996).

[26] C. Raab and J. Kurths, Phys. Rev. E 64, 016216 (2001).
[27] A. M. Albano, J. Muench, C. Schwartz, A. I. Mees, and P. E.

Rapp, Phys. Rev. A 38, 3017 (1988).
[28] J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto,

Phys. Rev. A 34, 4971 (1986).
[29] A. Corana, Phys. Rev. E 62, 7872 (2000).
[30] M. Ding, C. Grebogi, E. Ott, T. Sauer, and J. A. Yorke, Phys.

Rev. Lett. 70, 3872 (1993).
[31] E. Olbrich, R. Hegger, and H. Kantz, Phys. Lett. A 244, 538

(1998).

056208-8

http://dx.doi.org/10.1016/j.physrep.2006.10.003
http://dx.doi.org/10.1142/S0218127497001734
http://dx.doi.org/10.1103/PhysRevE.60.5455
http://dx.doi.org/10.1103/PhysRevLett.87.165508
http://dx.doi.org/10.1016/S1359-6454(02)00099-X
http://dx.doi.org/10.1103/PhysRevLett.97.165503
http://dx.doi.org/10.1103/PhysRevLett.97.165503
http://dx.doi.org/10.1103/PhysRevE.77.045202
http://dx.doi.org/10.1103/PhysRevE.77.045202
http://dx.doi.org/10.1103/PhysRevE.78.066119
http://dx.doi.org/10.1103/PhysRevLett.50.757
http://dx.doi.org/10.1103/PhysRevLett.50.757
http://dx.doi.org/10.1007/3-540-13913-3_246
http://dx.doi.org/10.1007/3-540-13913-3_246
http://dx.doi.org/10.1088/0022-3727/15/12/003
http://dx.doi.org/10.1088/0022-3727/15/12/003
http://dx.doi.org/10.1209/epl/i2002-00391-2
http://dx.doi.org/10.1209/epl/i2002-00391-2
http://dx.doi.org/10.1103/PhysRevE.67.065104
http://dx.doi.org/10.1103/PhysRevE.67.065104
http://dx.doi.org/10.1016/S1359-6462(02)00653-X
http://dx.doi.org/10.1016/S1359-6462(02)00653-X
http://dx.doi.org/10.1126/science.1079312
http://dx.doi.org/10.1126/science.1123889
http://dx.doi.org/10.1126/science.1156101
http://dx.doi.org/10.1126/science.1143719
http://dx.doi.org/10.1016/0375-9601(83)90141-X
http://dx.doi.org/10.1016/0375-9601(83)90141-X
http://dx.doi.org/10.1007/BF02128236
http://dx.doi.org/10.1016/0167-2789(83)90298-1
http://dx.doi.org/10.1016/0375-9601(88)90445-8
http://dx.doi.org/10.1016/0375-9601(90)90355-R
http://dx.doi.org/10.1016/0167-2789(92)90023-G
http://dx.doi.org/10.1103/PhysRevLett.71.521
http://dx.doi.org/10.1103/PhysRevLett.71.521
http://dx.doi.org/10.1016/0960-0779(95)00056-9
http://dx.doi.org/10.1016/0960-0779(95)00056-9
http://dx.doi.org/10.1103/PhysRevE.64.016216
http://dx.doi.org/10.1103/PhysRevA.38.3017
http://dx.doi.org/10.1103/PhysRevA.34.4971
http://dx.doi.org/10.1103/PhysRevE.62.7872
http://dx.doi.org/10.1103/PhysRevLett.70.3872
http://dx.doi.org/10.1103/PhysRevLett.70.3872
http://dx.doi.org/10.1016/S0375-9601(98)00350-8
http://dx.doi.org/10.1016/S0375-9601(98)00350-8



