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In multidimensional barrier tunneling, there exist two different types of tunneling mechanisms, instanton-
type tunneling and noninstanton tunneling. In this paper we investigate transitions between the two tunneling
mechanisms from the semiclassical and quantum viewpoints taking two simple models: a periodically perturbed
Eckart barrier for the semiclassical analysis and a periodically perturbed rectangular barrier for the quantum
analysis. As a result, similar transitions are observed with change of the perturbation frequency ω for both systems,
and we obtain a comprehensive scenario from both semiclassical and quantum viewpoints for them. In the middle
range of ω, in which the plateau spectrum is observed, noninstanton tunneling dominates the tunneling process,
and the tunneling amplitude takes the maximum value. Noninstanton tunneling explained by stable-unstable
manifold guided tunneling (SUMGT) from the semiclassical viewpoint is interpreted as multiphoton-assisted
tunneling from the quantum viewpoint. However, in the limit ω → 0, instanton-type tunneling takes the place of
noninstanton tunneling, and the tunneling amplitude converges on a constant value depending on the perturbation
strength. The spectrum localized around the input energy is observed, and there is a scaling law with respect to
the width of the spectrum envelope, i.e., the width ∝ h̄ω. In the limit ω → ∞, the tunneling amplitude converges
on that of the unperturbed system, i.e., the instanton of the unperturbed system.
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I. INTRODUCTION

During the last few decades, understanding quantum
tunneling in multidimensional systems has been a crucial
problem in the field of quantum chaos as well as many other
fields, e.g., quantum chemistry, nanoscale semiconductor
devices, and so on. From the viewpoint of quantum chaos,
various novel tunneling phenomena, mostly categorized into
dynamical tunneling, have been predicted, found, and observed
theoretically, numerically and experimentally, e.g., chaos-
assisted tunneling, resonance-assisted tunneling, and Julia
set-assisted tunneling [1–15]. The basic mechanisms of those
tunneling phenomena [1–7,9–19] are essentially different from
that of instanton-type tunneling, which is the basic tunneling
mechanism in one-dimensional systems as well as classically
integrable and nearly integrable multidimensional systems
[20]. Those noninstanton tunneling phenomena have been
interpreted in various ways from semiclassical and quantum
points of view and further from hybrid viewpoints [1–7,9–19].
It will be expected that analytical methods developed in
different ways become to complement each other and
allow us to comprehend all the aspects of multidimensional
tunneling.

For multidimensional barrier systems, there exists a tun-
neling phenomenon different from instanton-type tunneling
(barrier penetration) [7,13–16]. In recent works [13–16],
we have provided its semiclassical interpretation. It was
later reconfirmed in a slightly different way [21]. In this
semiclassical mechanism, stable and unstable manifolds in
the complex domain play an important role in the tunneling
process, namely, complex trajectories contributing to tunneling

are guided by complex stable and unstable manifolds of an
unstable periodic orbit above the top of a potential barrier. For
brevity, it is called stable-unstable manifold guided tunneling
(SUMGT). SUMGT is essentially the same as Julia set-assisted
tunneling introduced by Shudo et al. in which forward and
backward Julia sets, almost equivalent to complex stable and
unstable manifolds [12], guide tunneling trajectories even in
the case that chaos exists in the real space [11,12], although
they studied tunneling in discrete time systems.

In relatively low-frequency ranges for periodically
perturbed barrier systems, two types of tunneling mechanisms,
instanton-type tunneling and SUMGT, simultaneously
contribute to the tunneling process, and the winner of
the competition between them dominates the tunneling
process [16,17]. In the limit that the frequency ω goes to
zero, the tunneling amplitude converges on a constant value
depending on the strength of perturbation ε, which can be
estimated by an adiabatic perturbation method based on the
instanton theory. As a result, a localized tunneling spectrum
around the input energy is observed. However, the contribution
of SUMGT rapidly grows with increase of ω and overwhelms
instanton-type tunneling. SUMGT causes a different type of
the tunneling spectrum, the so-called plateau spectrum, which
spreads over a wide range of energy with its center at the height
of the potential barrier at rest. The tunneling amplitude ruled
by SUMGT takes the maximum value in a middle frequency
range. In the relatively high-frequency range, in which
the semiclassical method cannot be applied, the tunneling
amplitude decreases with increase of ω and finally converges
on that of the unperturbed barrier, which is estimated by
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the instanton. Essentially the same change of the tunneling
amplitude with the perturbation frequency was reported in the
case that the wave packet collides with a oscillating potential
barrier [22], though it gave an intuitive explanation.

By using periodically perturbed step potentials, we can
investigate characteristics of pure noninstanton tunneling,
because instanton-type tunneling is substantially prohibited
[18,19]. A periodically perturbed rounded of-step potential is
suitable for the semiclassical analysis [18,19], while a periodi-
cally perturbed right-angled step potential is appropriate for the
analysis from the quantum viewpoint [19], because the solution
is written in an exact form, which can be numerically solved
without any perturbation. Noninstanton tunneling observed
for both systems takes the maximum tunneling amplitude in
the middle-frequency range but decays toward zero in both
low- and high-frequency limits, ω → 0 and ω → ∞. In a
relatively low-frequency range, noninstanton tunneling caused
by SUMGT is explained by the multiphoton-assisted tunneling
from the quantum viewpoint. In the high-frequency range
in which the semiclassical method, i.e., SUMGT, cannot be
applied due to large values of h̄ω, a single quantum (or a
few quanta) absorption mainly contributes to the tunneling
process.

In this paper we developed our study in this direction to
the case of the periodically perturbed barriers. We investigate
tunneling through a periodically perturbed rectangular barrier
for the purely quantum analysis compared with the semiclas-
sical analysis of tunneling through a periodically perturbed
rounded-off potential barrier. As with the periodically per-
turbed right-angled step potential, so the periodically perturbed
rectangular barrier has a solution written by an exact form,
which can be numerically solved without any perturbation
[23,24]. It is very helpful for us to give the quantum
interpretations of noninstanton tunneling and instanton-type
tunneling. Many authors have studied tunneling phenomena of
periodically perturbed barriers [22–27]. However, to the best
knowledge of the authors of this paper, there have been few
works which explore noninstanton tunneling compared with
instanton-type tunneling in order to obtain comprehensive un-
derstanding from both quantum and semiclassical viewpoints,
especially in the low and middle-frequency regimes. We clarify
the difference between the two types of tunneling mechanisms
and investigate transitions between them with change of the
perturbation frequency from both quantum and semiclassical
viewpoints. It is expected that those approaches provide a
more complete understanding of tunneling mechanisms in
multidimensional systems.

This paper is organized as follows. In Sec. II we in-
troduce the periodically perturbed Eckart potential as a
smooth potential model and show the outline of the change
of tunneling mechanism between instanton-type tunneling
and noninstanton tunneling with change of the perturbation
frequency. In Sec. III we introduce the periodically perturbed
rectangular barrier and give quantum explanations for both
tunneling mechanisms, which clarify how the change of
tunneling mechanism occurs with change of the perturbation
frequency. In Sec. IV we show alternative explanations for
both tunneling mechanisms from the semiclassical viewpoint
compered with the pure quantum explanations. Section V is
devoted to discussion.

II. TUNNELING IN PERIODICALLY PERTURBED
ROUNDED OFF BARRIER

In this section we show the outline of tunneling observed for
the periodically perturbed rounded-off barrier reported in our
recent works [13–17]. The model system is the periodically
perturbed Eckart barrier:

H (Q,P,ωt) = 1
2P 2 + (1 + ε sin ωt)sech2Q. (1)

Let us assume that a plane wave is incident on this potential
with input energy EI (<1 − ε) at which only a tunneling wave
is observed in the transmissive side. For quantum calculations,
we have used the numerical scheme developed by ourselves
[28] based on Miller’s (quantum) S-matrix formula [29], which
generates an incident plane wave at a high degree of accuracy
with exponentially small errors so that a scattering eigenstate
is obtained numerically.

The feature of the tunneling spectrum changes with the
angular frequency ω as well as the strength ε. Figure 1 shows
spectra at three representative values of ω.

For a low frequency typically at ω = 0.03 [Fig. 1(a)],
spectra are well localized in very small ranges around EI for
all three values of ε, i.e., ε = 0.1, 0.2, 0.4. These spectra are
estimated by an adiabatic approximation based on the instanton
as shown later [16,17].

For a middle frequency typically at ω = 0.3 [Fig. 1(b)], the
spectrum at ε = 0.4 is markedly different in shape from the
spectra in the low-frequency range, and its envelope forms
a plateau spreading over a wide range of energy, which
nearly corresponds to the oscillating range of the potential
height, 1 − ε < E < 1 + ε. As reported in the previous works
[14–17], this spectrum is the result of SUMGT. On the other
hand, the spectrum at ε = 0.1 still forms a localized spectrum,
but its width becomes wider compared with that at ω = 0.03.
The spectrum at ε = 0.2 is considered as a superposition of
the two characteristic spectra, a head lobe explained by the
perturbed instanton theory and a side shoulder formed over
an upper range of energy as the result of SUMGT [14–16].
The side shoulder grows with increase of ω, then it changes
into a plateau spectrum at higher frequencies. The larger ε

is, the faster it grows. Hence the spectrum of the strong
perturbation first changes from a localized one to a plateau
through intermediate spectra accompanied by a side shoulder,
and the spectra of the middle and weak perturbations follow
successively.

For a high frequency typically at ω = 10.0 [Fig. 1(c)], the
peak interval h̄ω is larger than the energy difference between
the potential height at rest and the input energy, i.e., 1 − EI ,
then the semiclassical approximation should not be applicable
to this case. The peak heights at the same energy value are
not much different for the three values of ε. The peak at
the first excited energy, i.e., E = EI + h̄ω, is larger than
others and substantially determines the tunneling amplitude.
However, the peaks at excited energy levels rapidly decay
with ω, while the fundamental peak at E = EI converges
on that of the unperturbed system. Therefore, the tunneling
probability approaches that of the unperturbed system in the
limit ω → ∞ [17,22].

The change of tunneling amplitude, more precisely the
maximum value of the peaks of the tunneling spectrum, is
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FIG. 1. (Color online) Tunneling spectra of the periodically
perturbed Eckart barrier. The input energy is taken at EI = 0.5 and
the Planck constant is h̄ = 1000/(3π × 210) ∼ 0.1036. The spectrum
is normalized such that

∑
n |S(E = EI + nh̄ω,EI )|2 gives the total

transmissive probability. (a) ω = 0.03. (b) ω = 0.3. (c) ω = 10.

summarized in Fig. 2. In the limit ω → 0, they converge
on different values depending on ε. The tunneling amplitude
grows with increase of ω and takes the maximum value at a
certain value of ω depending on ε in the middle range. In the
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FIG. 2. (Color online) Change of tunneling amplitude (the max-
imum value of the peaks of the tunneling spectrum) with ω for the
periodically perturbed Eckart barrier. The line labeled “SUMGT” is
the result of Eq. (67) with Eq. (69), and those labeled “Instanton” and
“Averaged instanton” are given by Eq. (57) with Eq. (58) and Eq. (60)
with Eq. (59), respectively.

limit ω → ∞ the tunneling amplitude decays and converges
on that of the unperturbed system independently of ε, because
the perturbation of an extremely high frequency does not
substantially affect the system.

Note that essentially the same spectra are observed for a
two-dimensional (2D) barrier system [15,30]:

Htot(Q,P,q,p) = 1
2P 2 + (1 + βq)sech2Q+ Hch(q,p), (2)

when the channel Hamiltonian,

Hch = 1
2p2 + 1

2ω2q2, (3)

is highly excited. Actually, introducing the action-angle
coordinates (I,θ ) as canonical coordinates of the channel
gives βq = β

√
2I/ω cos θ , and β

√
2I/ω plays the same

role of ε of Eq. (1). If the action I takes large values, the
2D Hamiltonian (2) can be reduced into the periodically
perturbed one-dimensional Hamiltonian (1). Therefore, there
coexist two tunneling mechanisms, instanton-type tunneling
and noninstanton tunneling [especially SUMGT for ω <

ωcq(≡ 1−EI

h̄
)], for the multidimensional potential barriers, and

which mechanism dominates the tunneling process changes
with initial conditions and control parameters.

III. TUNNELING IN PERIODICALLY PERTURBED
RECTANGULAR BARRIER

A. Model system and quantum solution

In this section we give quantum interpretations of instanton-
type tunneling and noninstanton tunneling, especially in low
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FIG. 3. (Color online) Periodically perturbed rectangular barrier.

and middle frequency ranges. To do this we need a model,
which is appropriate for the quantum analysis and exhibits
tunneling behavior similar to that of the periodically perturbed
rounded-off potential barrier. The model system satisfying our
requirement is a periodically perturbed rectangular barrier (see
Fig. 3), which has been studied by several authors [23–26]. The
Hamiltonian of the model system is

H (Q,P,ωt) = 1
2P 2 + (1 + ε sin ωt)[θ (Q − bw) − θ (Q)],

(4)

where θ (x) denotes the unit step function, bw takes a negative
value, and |bw| gives the width of the potential.

Let us consider the situation that a plane wave with input
energy EI is incident on the potential from positive infinity
in Q. Then the input, reflective, and transmissive waves are,
respectively, written by

�I = e− i
h̄
EI te− i

h̄
PI Q, (5)

�R =
∑

n

�rn =
∑

n

Rne− i
h̄
Ente

i
h̄
PrnQ, (6)

�T =
∑

n

�tn =
∑

n

Tne− i
h̄
Ente− i

h̄
PtnQ, (7)

where the momentum of the input wave is P = −PI =
−√

2EI < 0 and an excited energy level is given by En =
EI + nh̄ω with the momentum P = Prn = √

2En > 0 for
a reflective component and P = −Ptn = −√

2En < 0 for a
transmissive component.

In the interaction region(bw < Q < 0), the left- and right-
going waves are, respectively, given by

�bl =
∑

n

�bln =
∑

n

Blne
i
h̄

ε
ω

cos ωte− i
h̄
Ente− i

h̄
PbnQ, (8)

�br =
∑

n

�brn =
∑

n

Brne
i
h̄

ε
ω

cos ωte− i
h̄
Ente

i
h̄
PbnQ, (9)

where Pbn = √
2(En − 1). The total wave in the interaction

region is written by �b = �bl + �br , which is a superposition
of the unperturbed solutions modulated by e

i
h̄

ε
ω

cos ωt due to
the periodical perturbation [23,24]. For n � n∗(≡ min{n|En >

1}), �bln and �brn are plane waves modulated by e
i
h̄

ε
ω

cos ωt . In
the case of En < 1, namely, n < n∗, Pbn takes an imaginary
value i

√
2(1 − En), then �bln and �brn are rewritten by

�bln = Blne
i
h̄

ε
ω

cos ωte− i
h̄
Ente

1
h̄
|Pbn|Q, (10)

�brn = Brne
i
h̄

ε
ω

cos ωte− i
h̄
Ente− 1

h̄
|Pbn|Q, (11)

which give barrier-penetrating waves modulated by e
i
h̄

ε
ω

cos ωt .
The coefficients Rn, Tn, Bln, and Brn are determined with

the continuity at the boundaries, Q = 0 and Q = bw. The

continuity of the wave function at Q = 0, i.e., �I + �R =
�bl + �br , is written as

1 +
∑

n

Rne−inωt =
∑

n

Blne
i
h̄

ε
ω

cos ωte−inωt

+
∑

n

Brne
i
h̄

ε
ω

cos ωte−inωt , (12)

and the continuous differentiability at Q = 0, i.e., ∂
∂Q

�I +
∂

∂Q
�R = ∂

∂Q
�bl + ∂

∂Q
�br , gives

−PI +
∑

n

RnPrne−inωt = −
∑

n

BlnPbne
i
h̄

ε
ω

cos ωte−inωt

+
∑

n

BrnPbne
i
h̄

ε
ω

cos ωte−inωt .

(13)

In the same way, the continuity of the wave at Q = bw =
−|bw|, i.e., �bl + �br = �T , is expressed as∑

n

Tne
i
h̄
Ptn|bw |e−inωt =

∑
n

Blne
i
h̄

ε
ω

cos ωte
i
h̄
Pbn|bw |e−inωt

+
∑

n

Brne
i
h̄

ε
ω

cos ωte− i
h̄
Pbn|bw |e−inωt ,

(14)

and the continuous differentiability at Q = bw = −|bw|, i.e.,
∂

∂Q
�bl + ∂

∂Q
�br = ∂

∂Q
�T , provides

−
∑

n

TnPtne
i
h̄
Ptn|bw |e−inωt

= −
∑

n

BlnPbne
i
h̄

ε
ω

cos ωte
i
h̄
Pbn|bw |e−inωt

+
∑

n

BrnPbne
i
h̄

ε
ω

cos ωte− i
h̄
Pbn|bw |e−inωt . (15)

By using equality [31]

e
i
h̄

ε
ω

cos θ =
∑

n

inJn

(
ε

h̄ω

)
einθ , (16)

we, after some calculations, obtain the equations for Bln and
Brn

∑
m

im−nJm−n

(
ε

h̄ω

)
[(Prn + Pbm)Blm + (Prn − Pbm)Brm]

= 2PI δn,0, (17)

∑
m

im−nJm−n

(
ε

h̄ω

)[
(Ptn − Pbm)e

i
h̄
Pbm|bw |Blm

+ (Ptn + Pbm)e− i
h̄
Pbm|bw |Brm

] = 0. (18)

These equations give a closed system of linear equations in
Bln and Brn, and then we can obtain Bln and Brn numerically
without any perturbation methods. From given Bln and Brn,
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the coefficients Rn and Tn are straightforwardly obtained as

Rn = −δn,0 +
∑
m

(Blm + Brm)im−nJm−n

( ε

h̄ω

)
, (19)

Tn = e− i
h̄
Ptn|bw |

[∑
m

im−nJm−n

( ε

h̄ω

)

× (
e

i
h̄
Pbm|bw |Blm + e− i

h̄
Pbm|bw |Brm

)]
. (20)

One can see essentially the same result in Ref. [24].

B. Numerical results

By definition, the transmissive coefficients Tn form the
tunneling energy spectrum if the input energy EI is taken
as EI < 1 − ε. As shown in Fig. 4, the tunneling spectra |Tn|
are very similar to those of the periodically perturbed Eckart
barrier at the same representative values of ω.

At the low frequency ω = 0.03 [Fig. 4(a)], the spectra are
well localized in very small ranges around EI for all the three
representative values of ε, ε = 0.1, 0.2, 0.4. These spectra
are very similar to those of the periodically perturbed Eckart
barrier at the same value of ω and are well evaluated by an
adiabatic approximation as shown later.

At the middle frequency ω = 0.3 [Fig. 4(b)], there exist
three different spectra depending on ε like those of the
periodically perturbed Eckart barrier at the same frequency. At
ε = 0.4, the spectrum forms a plateau spreading over the range
(1 − ε < E < 1 + ε). At ε = 0.2, the spectrum is regarded as
a mixture of the two characteristic spectra. It has a clearly
localized head lobe accompanied by a side shoulder, whose
flat part is wider than that of the periodically perturbed Eckart
barrier. It means that the separation of the two mechanisms,
instanton-type tunneling and noninstanton tunneling, becomes
clear for the rectangular barrier compared with the rounded-off
barrier. At ε = 0.1, a localized spectrum is observed as in the
case of the Eckart barrier.

At the high frequency ω = 10.0 [Fig. 4(c)], spectra similar
to those of the periodically perturbed Eckart barrier are
observed. The peak at the first excited energy, E = EI + h̄ω,
is larger than the others for all the values of ε. The tunneling
amplitude is more enhanced by the perturbation; namely, all
the peaks are markedly larger than those of the periodically
perturbed Eckart barrier.

Figure 5 shows the changes of the tunneling amplitude,
namely, the maximum value of |Tn|, for (a) EI = 0.5 and
(b) EI = 0.75 in the range of ω for which solutions with
accuracy are obtained numerically. As in the case of the
periodically perturbed Eckart barrier, the tunneling amplitude
takes the maximum value in the middle range due to the
effect of noninstanton tunneling, while in the limit ω → 0,
it converges on a constant value depending on the strength of
perturbation ε as well as the input energy EI , which can be
explained by the adiabatic approximation.

However, in the range ω > ωcq , the tunneling amplitude
decays in a little different manner compared with that of
the periodically perturbed Eckart barrier. Actually, it exhibits
power law decay as ∝ ω−1 rather than exponential decay
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FIG. 4. (Color online) Tunneling spectra of the periodically
perturbed rectangular barrier, i.e., |Tn|. The width of the potential
is taken at |bw| = 1. The input energy EI and the Planck constant
h̄, respectively, take the same values as those of the periodically
perturbed Eckart barrier. (a) ω = 0.03. (b) ω = 0.3. (c) ω = 10.

observed for the rounded-off barrier [17]. It is predicted
theoretically that the power law decay occurs for excited
energy levels in high-frequency ranges [23], and it seems to be
the common feature for right-angled potentials. Actually, the
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FIG. 5. (Color online) Change of tunneling amplitude (the max-
imum value of the peaks of the tunneling spectrum) with ω for the
periodically perturbed rectangular barrier. The line labeled “Averaged
Ad. Sol.” is obtained by Eq. (38) with Eqs. (35) and (36), and the
line labeled “Approximation ε = 0.2” in (a) is given by Eq. (32) at
ε = 0.2. (a) EI = 0.5. (b) EI = 0.75.

same decay is also observed for the periodically perturbed
right-angled step potential [19]. Therefore, the tunneling
amplitudes take larger values in some ranges above ωcq for
the right-angled potentials compared with the rounded-off
potentials. However, since the peaks at the excited energy
levels decrease monotonically then the tunneling amplitude
converges on the unperturbed solution, namely, the peak at
E = EI , in the limit ω → ∞ independently of ε as shown in
Fig. 5(b). In Fig. 5(a) they seem to converge on the unperturbed
solution, but it occurs out of the numerical range of ω.

C. Approximate solutions for ω < ωcq

In this subsection we give approximate solutions of
noninstanton tunneling and instanton-type tunneling in low
and middle frequency ranges. They are used to evaluate
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FIG. 6. (Color online) Distributions of |Bln| at EI = 0.5. (a) ω =
0.03. (b) ω = 0.3.

the tunneling amplitudes caused by the individual tunneling
mechanisms and to judge the winner of the competition
between the two mechanisms.

1. Noninstanton tunneling for En > 1

Let us consider the approximations of the coefficients Bln

and Brn. Figure 6(a) and 6(b) show the distributions of |Bln|
for ω = 0.03 and 0.3, respectively. The distribution of |Bln|
forms a plateau over the range (EI − ε < E < EI + ε). The
smaller the frequency ω is, the steeper the side cliffs of the
plateau become. This fact is the key to understand the tunneling
process caused by noninstanton tunneling.

We first consider the approximation of Bln. Equations (17)
and (18) are written as

∑
m

Jm−nXm(n) = δn,0, (21)

∑
m

Jm−nYm(n) = 0, (22)
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where

Xm(n) = im−n[(Prn + Pbm)Blm

+ (Prn − Pbm)Brm]/2PI , (23)

Ym(n) = im−n
[
(Ptn − Pbm)e

i
h̄
Pbm|bw |Blm

+ (Ptn + Pbm)e− i
h̄
Pbm|bw |Brm

]
. (24)

In the case that Prn ∼ Ptn ∼ PI , the dependence of Xm(n) and
Ym(n) on n can be ignored. From analogy to the equality∑

m Jm+nJm = δn,0 [31] together with the equality J−n =
(−1)nJn, we can give a plausible assumption that |Xm(n)|
is approximated by |Jm| and Ym(n) = 0 as the lowest order
approximation. Since the approximation Ym(n) = 0 gives

|Brn| ∼
{|Bln| exp

(− 2
h̄
|Pbn||bw|), for n < n∗

|Bln|, for n � n∗,
(25)

then we can obtain rough estimation that |Bln| ∼ |Jn|. Al-
though this is very rough estimation, as will be shown below,
it actually gives a good approximation even for the case that
Prn and Ptn are much different from PI . Note that the same
assumption has been successfully applied to the periodically
perturbed right-angled step potential in Ref. [19], which
corresponds to the case of Brn = 0 because of |bw| → ∞.

In the regime h̄ω 	 ε, if |n| 	 ε
h̄ω

, |Bln| are estimated using
the approximation of the Bessel function [31] as a constant
value,

|Bln| ∼
∣∣∣∣Jn

(
ε

h̄ω

)∣∣∣∣ ∼
√

2h̄ω

πε
, (26)

which approximates the height of the plateau over the
range (EI − ε < E < EI + ε). For |n| 
 ε

h̄ω
, by using the

asymptotic form of Jn for large orders (n 
 1) [31],

Jn(x) ∼
√

1

2πn

(
ex

2n

)n

, (27)

we obtain

|Bln| ∼
∣∣∣∣Jn

(
ε

h̄ω

)∣∣∣∣
∼

√
1

2πn
exp

{
−n

[
log

(
2nh̄ω

ε

)
− 1

]}
, (28)

which reproduces the side cliffs of the plateau. Therefore, |Bln|
decays more than exponentially with |n|, because log( 2nh̄ω

ε
) −

1 > 0, if |n| > e
2

ε
h̄ω

> ε
h̄ω

.
In Fig. 7(a) and 7(b), the approximations of |Bln| and

|Brn| given by Eqs. (26), (28), and (25) are compared with
the numerical results at ω = 0.03 and 0.3 and at ε = 0.2. At
the relatively larger frequency ω = 0.3, the approximations
are in good agreement with the numerical results for both
|Bln| and |Brn|. At the smaller frequency ω = 0.03, the
approximations well reproduce the plateaus but overestimate
the cliff parts. This is mainly because the lowest asymptotic
form of Jn(x) for large orders (n 
 1) (27) does not provide
a good approximation for large values of x, namely, ε

h̄ω

should not be extremely large. However, the approximation
|Bln| ∼ |Jn| without using the asymptotic form (27) gives a
better result, though we do not show it.
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FIG. 7. (Color online) Comparison of |Bln| and |Brn| with the
approximate solutions at ε = 0.2. The lines labeled “approx |Bln|”
and “approx |Brn|” are, respectively, the results of the approximations
of |Bln| and |Brn| obtained by Eqs. (26), (28), and (25). (a) ω = 0.03.
(b) ω = 0.3.

Noninstanton tunneling is caused by the wave components
which go over (and are just below) the oscillating top of
the barrier. From Eq. (25), the magnitude of the terms in
the inner parentheses in the right-hand side of Eq. (20),
i.e., e

i
h̄
Pbm|bw |Blm + e− i

h̄
Pbm|bw |Brm, is roughly evaluated as

|Blm| for m � n∗. Then, from Eq. (28), it decays more than
exponentially with m. For m < n∗, Pbm takes an imaginary
value, then from Eq. (25), it is roughly estimated as

exp

(
−1

h̄
|Pbm||bw|

)
|Blm| ∼ exp

(
−1

h̄
|bw|

√
2h̄ω
m

)
|Blm|,

(29)

where 
m ≡ n∗ − m. It is, from Eqs. (26) and (28), true that
|Blm| increases with 
m, i.e., with decrease of m, until it

reaches the value
√

2h̄ω
πε

, but it is shown from a more detailed
analysis that Eq. (29) decays with 
m, if ω|bw| is large
enough, because the decay due to the barrier penetration,
exp(− 1

h̄
|Pbm||bw|), overwhelms the increase of |Blm|. Thus,
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the main contribution comes from the threshold component at
m = n∗ and/or one just below it(m = n∗ − 1), depending on
the positions of En∗ and En∗−1 with respect to E = 1. Here
we roughly estimate it only with the threshold component,
since the component at m = n∗ − 1 makes almost the same
contribution, when it is dominant. Then, from Eq. (20), the
spectrum |Tn| caused by noninstanton tunneling is estimated
as

|Tn| ∼
∣∣∣Jn∗−n

(
ε

h̄ω

)∣∣∣∣|Bln∗ |

∼
∣∣∣∣Jn∗−n

(
ε

h̄ω

)∣∣∣∣
∣∣∣∣Jn∗

(
ε

h̄ω

)∣∣∣∣. (30)

Applying the asymptotic forms of Jn in Eqs. (26) and (28) to
Jn∗−n( ε

h̄ω
) in Eq. (30), one can see that the spectrum |Tn| forms

a plateau over the range (En∗ − ε < E < En∗ + ε). Since |Bln|
at n = n∗ is estimated as

|Bln∗ | ∼
∣∣∣∣Jn∗

(
ε

h̄ω

)∣∣∣∣
∼

√
1

2πn∗ exp

{
− n∗

[
log

(
2n∗h̄ω

ε

)
− 1

]}

∼
√

h̄ω

2π (1 − EI )

× exp

(
−1 − EI

h̄ω

{
log

[
2(1 − EI )

ε

]
− 1

})
,

(31)

where the approximation n∗h̄ω ∼ 1 − EI is made use of in the
last line, then the height of the plateau spectrum is estimated
as

|Tn∗ | ∼
√

2h̄ω

πε
|Bln∗ |

∼ h̄ω

π
√

ε(1 − EI )

× exp

(
−1 − EI

h̄ω

{
log

[
2(1 − EI )

ε

]
− 1

})
, (32)

which is mainly determined by |Bln∗ |.
By using the approximation

Tn ∼ Ce− i
h̄
Ptn|bw |in

∗−nJn∗−n, (33)

where |C| ∼ |Bln∗ |, and Eq. (16) in Eq. (7), we get

�T (Q = bw,t) =
∑

n

Tne− i
h̄

(Ptnbw+Ent)

∼ Ce
i
h̄

( ε
ω

cos ωt−En∗ t), (34)

which means that the plateau spectrum is caused by the
modulation e

i
h̄

ε
ω

cos ωt due to the oscillation of the potential.
In the case that the semiclassical analysis based on SUMGT
is applied to the periodically perturbed rounded-off barrier,
the oscillation of the potential induces the oscillation of the
unstable manifold over the range (1 − ε < E < 1 + ε), which
forms the main body of the plateau spectrum [14,15].

A similar plateau spectrum caused by noninstanton tunnel-
ing is also observed for the periodically perturbed right-angled

step potential, and it is evaluated by essentially the same
approximation [19]. As pointed out in Ref. [19], noninstanton
tunneling observed for ω < ωcq is attributed to the multiple
absorption of quanta induced by the periodical perturbation,
which should occur for any periodically perturbed barriers
and step potentials. In the limit ω → 0, the number of quanta
absolved in the tunneling process becomes infinity, and the
tunneling probability caused by noninstanton tunneling decays
exponentially as predicted by Eq. (32) [19]. Actually, as
shown in Fig. 5(a), the prediction given by Eq. (32) at
ε = 0.2 well follows the change of the tunneling amplitude
obtained numerically in the range (1 � ω � 10), although the
prediction rather overestimates in magnitude. The reason of
the overestimation will be discussed later.

2. Fourier decomposition of adiabatic solution for En < 1

The approximations (26), (28), and (25) cannot be used
in Eq. (20) to reproduce the localized spectrum caused
by instanton-type tunneling (barrier penetrating tunneling),
because they ignore the phases of Bln and Brn. Since their
major parts widely spread over the energy range (EI − ε <

En < EI + ε), phase cancellation among the terms in Eq. (20)
is necessary to form a localized spectrum. But it is not easy
to evaluate the summation in Eq. (20) taking into account
the phase information of Bln and Brn. Instead, we here use
an adiabatic approximation based on the solution of the
unperturbed system (see Appendix A), because it is confirmed
that it works well in the low-frequency regime [17].

In the adiabatic approximation, Pb is approximated by

P̃b(t) = i
√

2[a(t) − EI ], (35)

where a(t) = 1 + ε sin ωt is the instantaneous height of the
potential. The instantaneous transmissive coefficient T̃ (t) is
given by

T̃ (t) = e− i
h̄
PI |bw |[e− 1

h̄
|P̃b(t)||bw |B̃l(t) + e

1
h̄
|P̃b(t)||bw |B̃r (t)

]
(36)

∼ e− i
h̄
PI |bw |e− 1

h̄
|P̃b(t)||bw | 4PI P̃b(t)

[PI + P̃b(t)]2
, (37)

where the instantaneous values of the coefficients B̃l(t) and
B̃r (t) are obtained by substituting P̃b(t) into the place of Pb in
Eqs. (A13) and (A10), respectively.

The averaged weight over the period of the perturbation is
given by

T0 ∼ 〈T̃ (t)〉 = 1

T

∫ T

0
T̃ (t) dt, (38)

where T = 2π
ω

, and Tn is obtained by using the Fourier
decomposition,

Tn ∼ 1

T

∫ T

0
T̃ (t)einωt dt. (39)

Since P̃b(t) as well as T̃ (t) is a function of ωt , then the change
of variable from t to τ = ωt in the integrals in Eqs. (38) and
(39) shows that T0 and Tn are independent of ω. But the width
of the spectrum envelope changes proportionally to ω, because
the interval between the nearest peaks is h̄ω.
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Let us assume that ε 	 1 − EI and ε ∼ (or 	)h̄ 	 1. The
expansion of P̃b in powers of ε is given by

P̃b(t) = i
√

2(1 − EI )

√
1 + ε

1 − EI

sin ωt (40)

∼ i
√

2(1 − EI )

[
1 + 1

2

ε

1 − EI

sin ωt

+
∞∑

m=2

(−1)m−1 (2m − 3)!!

m!2m

εm

(1 − EI )m
sinm ωt

]

∼ i
√

2(1 − EI )

(
1 + 1

2

ε

1 − EI

sin ωt

)
. (41)

Then e− 1
h̄
|P̃b(t)||bw | is estimated as

e− 1
h̄
|P̃b(t)||bw | ∼ e− |bw |

h̄

√
2(1−EI )O(e±|bw |ε2/(1−EI )3/2h̄)

×
∞∑

m=0

1

m!

[
− ε|bw|

h̄
√

2(1 − EI )

]m(
eiωt − e−iωt

2i

)m

. (42)

We hereafter take O(e±|bw |ε2/(1−EI )3/2h̄) ∼ O(1) because of
ε2/h̄ 	 ε2/h̄2 ∼ (or 	)O(1) from the assumption.

The constant term in Eq. (42) is estimated as

e− |bw |
h̄

√
2(1−EI )

∞∑
m=0

1

m!m!

[
ε|bw|

2h̄
√

2(1 − EI )

]2m

∼ e− |bw |
h̄

√
2(1−EI )

[
1 + ε2|bw|2

8h̄2(1 − EI )

]
. (43)

Then 〈T̃ (t)〉 is approximated by

〈T̃ (t)〉 ∼ e− i
h̄
PI |bw | 4PIPb

(PI + Pb)2
e− |bw |

h̄

√
2(1−EI )

×
[

1 + ε2|bw|2
8h̄2(1 − EI )

]
. (44)

The term of e−inωt (n > 0) in Eq. (42) is evaluated as

e− |bw |
h̄

√
2(1−EI )e−inωt

×
{ ∞∑

l=0

1

(n + l)!l!
(−1)n+l

[
− ε|bw|

2ih̄
√

2(1 − EI )

]n+2l
}

.

(45)

If |ε|bw|/(2h̄
√

2(1 − EI ))| is not larger than one, it is further
approximated as

e− |bw |
h̄

√
2(1−EI ) 1

n!

[
ε|bw|

2ih̄
√

2(1 − EI )

]n

e−inωt . (46)

Then Tn(n > 0) is estimated as

Tn ∼ e− i
h̄
PI |bw | 4PIPb

(PI + Pb)2
e− |bw |

h̄

√
2(1−EI ) 1

n!

[
ε|bw|

2ih̄
√

2(1 − EI )

]n

(47)

and |T−n| ∼ |Tn| from the approximation (42). It means that
|Tn| decays with |n| as |Tn/T0| ∼ O(1/|n|!).

Figure 8 shows the comparison of tunneling spectra
obtained numerically with those given by the adiabatic
solution (39) with Eqs. (35) and (36) at ε = 0.2 and at three
values of ω, ω = 0.01, 0.03, and 0.1. The numerical results
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FIG. 8. (Color online) Comparison of tunneling spectra in the
low-frequency regime with those obtained by the adiabatic solu-
tion. (a) Tunneling spectra at ε = 0.2 for ω = 0.01, 0.03, 0.1.
(b) Corresponding spectra obtained by the adiabatic solution (39)
with Eqs. (35) and (36).

in Fig. 8(a) are well reproduced by the adiabatic solutions in
Fig. 8(b), namely, the maximum of the spectrum |T0| almost
agrees with the averaged adiabatic weight (38), which means
that in the limit ω → 0, the tunneling amplitude converges
on the averaged weight estimated as “unperturbed weight”
×[1 + O(ε2/h̄2)] in Eq. (44) rather than the maximum
instantaneous weight, “unperturbed weight” ×[1 + O(ε/h̄)],
which is larger than it. Furthermore, for all the spectra
obtained numerically, the peaks |Tn| at the same n take almost
the same value independently of ω, and they decrease as
1/|n|! with |n| as shown by Eq. (47). Therefore there is a
scaling law in the limit ω → 0 with respect to the width of
the spectrum envelope, namely, it is proportional to h̄ω.

3. Overview of the approximate solutions for ω < ωcq

In Fig. 9 we compare the tunneling spectra obtained numer-
ically with the approximation solution for noninstanton tun-
neling (multiphoton-assisted tunneling) and with the adiabatic
solution for instanton-type tunneling(barrier penetration).
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FIG. 9. (Color online) Comparison of tunneling spectra obtained
numerically with the approximate solution for noninstanton tunneling
and with the adiabatic solution for instanton-type tunneling. The
line labeled “Approx |Tn|” denotes the approximate solution of the
plateau spectrum given by Eq. (30). The line labeled “Averaged Ad.
Sol.” indicates the averaged adiabatic weight given by Eq. (38) with
Eqs. (35) and (36), and it is drawn in the range (E−nmax � E � Enmax ),
where nmax is defined by nmax = max{n||Tn/T0| � 10−2,n > 0} using
|Tn| in Eq. (47). (a) The localized spectrum at ε = 0.2 and ω = 0.03.
(b) The mixed spectrum at ε = 0.2 and ω = 0.3. (c) The plateau
spectrum at ε = 0.4 and ω = 0.3.

As shown in Fig. 9(a) and 9(b), the averaged adiabatic
weight denoted by the line labeled “Averaged Ad. Sol.,”
which is obtained by Eq. (38) with Eqs. (35) and (36), well
approximates the height of the localized spectrum in (a) as
well as the height of the head lobe of the mixed spectrum
in (b). The line is drawn in the range (E−nmax � E � Enmax ),
where nmax is defined by nmax = max{n||Tn/T0| � 10−2,n >

0} using |Tn| in Eq. (47), and it well approximates the width of
the localized spectrum in Fig. 9(a) and that of the head lobe in
Fig. 9(b). These results together with those in Fig. 8 indicate
that the adiabatic solution provides a good approximation to
instanton-type tunneling.

The line labeled “Approx |Tn|” denotes the approximate
solution of the plateau spectrum given by Eq. (30). It shows
good agreement in shape with the plateau spectrum in Fig. 9(c)
as well as the side shoulder of the mixed spectrum in Fig. 9(b),
though it overestimates them in height. The overestimation
is also confirmed in Fig. 5 (a). Indeed, the line labeled
“Approximation ε = 0.2,” obtained by Eq. (38) with Eqs. (35)
and (36) well follows the numerical result at ε = 0.2 in
a certain range, but it always takes larger values than the
numerical result. The fact that the plateau and the side
shoulder are smaller in height than the approximate solutions
is attributed to destructive interference among the terms of
Blm and Brm at m = n∗ (dominant) and m = n∗ ± 1 (second
dominant) in Eq. (20). Note that for the case of the periodically
perturbed right-angled step potential which corresponds to the
case of Brm = 0 and for which the terms for m < n∗ are
substantially zero, the same approximation is in very good
agreement in height as well as in shape with the plateau
spectrum obtained numerically [19].

As a result, judging the winner of the competition between
the two characteristic tunneling mechanisms, the instanton and
noninstanton mechanisms, is simply done by comparison of
amplitude between the adiabatic solution of the localized spec-
trum and the approximate solution of the plateau spectrum. The
winner determines the tunneling amplitude, but both tunneling
mechanisms contribute to the formation of the entire spectrum,
when the contribution of noninstanton tunneling is not much
smaller than that of instanton-type tunneling.

D. High-frequency range: ω > ωcq

In the range ω > ωcq , the tunneling amplitude is mainly
determined by the two components, the fundamental energy
level at n = 0 and the first excited energy level at n = 1. As
shown in Appendix B, we take into account only the two levels
in calculation of Bln, Brn, Rn, and Tn. As a result, T0 and T1

are estimated as

T0 ∼ e− i
h̄
PI |bw |

[
e− 1

h̄
|Pb0||bw | 4iPI |Pb0|

(PI + i|Pb0|)2

+
(

ε

2h̄ω

)2

e
i
h̄
Pb1|bw |2PIf (EI )

]
(48)

and

T1 ∼ −ie− i
h̄

(Pt1−Pb1)|bw | 2ε

h̄ω
PIPb1g(EI ) ∼ O

(
ε

h̄ω

)
, (49)

where f (EI ) = f̃ (PI (EI ),Pb0(EI ),Pb1(EI ),Pt1(EI )) and
g(EI ) = g̃(PI (EI ),Pb0(EI ),Pb1(EI ),Pt1(EI )) are functions of
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O(1). In the limit ω → ∞, T0 converges on the unperturbed
solution [see Eq. (A14)], while T1 decays as ∝ 1/ω. The power
law decay of the first excited state (∝ 1/ω) (or the decay of
tunneling probability as ∝ 1/ω2) seems to be the common
feature in the high-frequency range for periodically perturbed
right-angled potentials, i.e., rectangular barrier, step and so
on, although an exponential decay is observed for periodically
perturbed rounded-off potentials [17,19].

In the range (ωcq < ω < ε
h̄

e
1
h̄
|Pb0||bw |), the relation |T1| >

|T0| is satisfied, and the first excited state dominates the
tunneling process. But the unperturbed instanton becomes
dominant, when ω goes beyond this range, namely, ω >
ε
h̄

e
1
h̄
|Pb0||bw | and |T1| < |T0|(∼ e− 1

h̄
|Pb0||bw |). This change of the

tunneling amplitude is actually seen in Fig. 5(b).

IV. CORRESPONDENCE BETWEEN THE
SEMICLASSICAL AND QUANTUM

INTERPRETATIONS

In this section we discuss the tunneling features of the
periodically perturbed Eckart barrier, which can be reproduced
in the low and middle frequency ranges by the complex
semiclassical method, and we discuss the correspondence
between the semiclassical interpretation for the Eckart barrier
and the quantum interpretation for the rectangular barrier.

A. Semiclassical formula

The semiclassical S matrix for periodically perturbed
scattering potentials is given by [29,32]

S(EO,EI ) ∼ lim
|QI |,|QO |→∞

∑
c.t.

√|PI ||PO |√
2πih̄PIPO

√
− ∂2SS

∂EI∂EO

× e−i(POQO−PI QI )/h̄e
i
h̄
SS (QO,EO,QI ,EI ), (50)

where the classical action is defined by

SS =
∫ QO

QI

P dQ −
∫ tO

tI

H (Q,P,ωt) dt + EOtO − EI tI .

(51)

The summation
∑

c.t. is taken over all the contributing
(complex) trajectories satisfying the input and output boundary
conditions, which are, respectively, given by [29,32]

I = {(tI ,Q,P )|tI ∈ C, Q = QI, P = PI (= −
√

2EI )}
(52)

and

F = {(tO,Q,P )|tO ∈ C, Q= QO, P = PO(=−
√

2EO)}.
(53)

Due to the periodicity of the system, the initial points of the
contributing trajectories appear periodically with the period
T (=2π/ω) in the initial plane I. Then it is possible to
reproduce the quantum probability by using the trajectories
whose initial points are in a unit interval. To do this, the

C1

2C

C0

Re

s
Im

s

t 01
s=0

S+g1

g2

g3

S+

g1

g2

g3
- S+

-

-S

S

S

Sg0g0S- +

FIG. 10. Singularities and representative integration paths on the
lapse time plane.

semiclassical S matrix is rewritten as [32]

S(EO,EI ) ∼ lim
|QI |,|QO |→∞

∑
n

h̄ωδ(EO − EI − nh̄ω)

×
∑

c.t.∈I∗

1√
2πih̄

√|PI ||PO |√
PIPO

√
− ∂2SS

∂EI∂EO

× e−i(POQO−PI QI )/h̄eiSS (QO,EO,QI ,EI )/h̄, (54)

where I∗ = {tI | − T < RetI � 0} denotes a unit of I. The
periodicity creates comb spikes with the interval h̄ω, which
is represented as

∑
n h̄ωδ(EO − EI − nh̄ω). In numerical

calculation, δ(EO − EI − nh̄ω) is, for normalization, replaced
by δn,(EO−EI )/h̄ω.

B. Unperturbed solution and instanton-type tunneling

The classical solution for the unperturbed system is given
by [29]

Q(t) = sinh−1{λ cosh[
√

2EI (t − t0)]}, (55)

where λ ≡ √
1/EI − 1 and t0 is the time at which the

trajectory hits the turning point [29,32]. Giving an initial
condition [Q = QI (
1),P = PI (= − √

2EI < 0)] at t = tI ,
the interval between t0 and tI is determined by t0 − tI =
(QI − log λ)/

√
2EI ≡ t01.

As shown in Fig. 10, the solution has singularities in the
lapse time plane s = t − tI , and the singularities are aligned
along two vertical lines, i.e., entrance singularities Sg−

n and
exit singularities Sg+

n . The distances between the singularities
are given as follows: Sg±

n − Sg±
n+1 = iπ/

√
2EI and Sg+

n −
Sg−

n = 2 1√
2EI

sinh−1(1/λ).
In Fig. 10 topologically different integration paths used

for calculation of complex trajectories are also drawn. The
trajectory along the integration path C1 gives the major con-
tribution to tunneling. The complex trajectory with imaginary
time evolution along the vertical part of the path C1 is called
“instanton” [20], and the imaginary depth of the instanton is
determined by [16]

tinst(EI ) = −π/
√

2EI . (56)

The tunneling amplitude for the unperturbed system is esti-
mated by using the instanton,

WI = exp

(
−1

h̄
ImSI0

)
, (57)
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where ImSI0 denotes the imaginary part of the classical action
along the instanton, which is obtained as

ImSI0 =
√

2EI

1 − EI

EI + √
EI

. (58)

When a small perturbation with ω 	 1 is applied to the
system, a localized tunneling spectrum is observed. It is
expected that the topology of integration paths is essentially
the same as that of the unperturbed solution [13–15] and
that the adiabatic approximation based on the instanton
can be applicable. The instantaneous classical action is
given by

ImSI =
√

2EI

a(t) − EI

EI + √
a(t)EI

, (59)

where a(t) = 1 + ε sin ωt denotes the height of the time
dependent barrier. At a glance the effective tunneling weight
of instanton seems to be given by exp(− 1

h̄
ImSI ) at a(t) =

1 − ε, i.e., the smallest imaginary action during the period of
the perturbation. However, the tunneling amplitude is really
given by the time average of instantaneous instanton weights
[16]:

Wav = 1

T

∫ T

0
exp

(
−1

h̄
ImSI

)
dt, (60)

which is estimated as

Wav ∼ exp

[
−π

h̄

√
2(1 −

√
EI )

](
1 + ε2π2

8h̄2

)
. (61)

The correction in the last parentheses due to the perturbation is
of O(ε2/h̄2), which is the same order as that of the periodically
perturbed rectangular barrier in Eq. (44). The height of nth
spectrum peak is given by

Wav,n = 1

T

∫ T

0
exp

(
−1

h̄
ImSI

)
exp(iωnt) dt, (62)

which is estimated for n > 0 as

Wav,n ∼ exp

[
−π

h̄

√
2(1 −

√
EI )

]
1

n!

(
επ

i2
√

2h̄

)n

, (63)

and |Wav,−n| = |Wav,n|. |Wav,n| is independent of ω but
decreases with |n| as |Wav,n/Wav| ∼ O(1/|n|!). Therefore,
instanton-type tunneling generates essentially the same lo-
calized spectrum in the lower-frequency range as that of the
periodically perturbed rectangular barrier.

Figure 11 shows the comparison of tunneling spectra
at ε = 0.2 in the low-frequency regime with the adiabatic
instanton spectra obtained by Eqs. (60) and (62). The adiabatic
instanton spectra in Fig. 11(b) are almost the same as the
tunneling spectra obtained numerically in Fig. 11(a) for ω =
0.01 and 0.03. However, the spectrum obtained numerically
at ω = 0.1 more extends to an upper energy range compared
with the adiabatic spectrum in Fig. 11(b), while they show
good agreement in the lower half, i.e., En < EI . Therefore,
the spectra of the periodically perturbed rounded-off barrier
have the same properties in the limit ω → 0 as those of the
periodically perturbed rectangular barrier, and the same scaling
law with respect to the width of the spectrum envelope exists
for both systems: the width ∝ h̄ω.
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FIG. 11. (Color online) Comparison of tunneling spectra in the
low-frequency regime with the spectra obtained by the adiabatic
instanton for the periodically perturbed Eckart barrier. (a) Tunneling
spectra at ε = 0.2 for ω = 0.01, 0.03, 0.1. (b) Corresponding spectra
of the adiabatic instanton solution given by Eqs. (60) and (62).

To confirm the reproducibility of the localized spectrum
by the complex semiclassical method, we carry out the full
complex semiclassical calculation with the semiclassical S
matrix (54). Figure 12 shows the semiclassical result at ε = 0.2
and ω = 0.03. In Fig. 12(a), the initial set of contributing
trajectories C extends to positive and negative imaginary
sides compared with the imaginary depth of the unperturbed
instanton. This indicates that as the initial point goes to
the upper or lower end of the branch C, the imaginary
part of the classical action takes larger values, which make
extremely smaller contributions to tunneling. In the complex
semiclassical theory, the rapidly dropping tails of the spectrum
envelope are attributed to the increasing imaginary part of
the classical action. The resultant tunneling spectrum in
Fig. 12(b) well reproduces the localized spectrum obtained
by the quantum calculation in Fig. 11(a).
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FIG. 12. (Color online) Tunneling spectrum reproduced by the
full complex semiclassical calculation at ε = 0.2 and ω = 0.03.
(a) The set of the initial points of contributing trajectories C on
the complex initial time plane. For comparison, the imaginary depth
of the unperturbed instanton is drawn. (b) Semiclassical tunneling
spectrum.

C. SUMGT weight in low- and middle-frequency ranges

Noninstanton tunneling in the low- and middle-frequency
ranges (ω < ωcq) can be reproduced by the complex semi-
classical method. It is explained by stable-unstable manifold
guided tunneling (SUMGT) [13–16].

When the classical transportation to the transmissive side is
prohibited, namely, the only quantum tunneling contributes to
the transportation, the real part of the initial plane I does not
intersect with the stable manifold Ws of the unstable periodic
orbit at the top of the barrier. However, as shown in Fig. 13,
there always exists in the complex domain the intersection
between I and Ws , which forms isolated points called the
critical point tIc. The SUMGT trajectories are those trajectories
which start from a small neighborhood of the critical point, go
toward the unstable periodic orbit guided by the complex Ws ,
and pass close to it. After that, some of SUMGT trajectories
go to the transmissive side guided by the complex unstable
manifold Wu, thereby contributing to tunneling, though the
others guided by the complex Wu in the other side, i.e., the re-
flective side, contribute to reflection. With the help of the

Imt

Re t
Re EI

I

I

WS

E = EI

FIG. 13. (Color online) Initial plane at E = EI and stable man-
ifold Ws in the complex domain. The bullet denotes the intersection
between them, i.e., critical point.

Melnikov method [33,34], we can prove the existence of the
critical point in the complex domain and evaluate the tunneling
probability caused by SUMGT [13–17].

By using the Melnikov method, the imaginary part of the
critical point ImtIc is estimated as

ImtIc = 1

ω
cosh−1

{
1 − EI

ε(1 − χ (ω))

}
, (64)

where χ (ω) is defined by

χ (ω) ≡ 2ω

∫ ∞

0

sin ωs

1 + e2
√

2s
ds

= ω

[
1

ω
− π

2
√

2
cosech

(
ωπ

2
√

2

)]
. (65)

In the low-frequency range (ω 	 1), χ (ω) is approximated as
χ (ω) ∼ π2

48 ω2 and ImtIc is inversely proportional to ω:

ImtIc ∼ 1

ω
cosh−1[(1 − EI )/ε]. (66)

In the range of ω in which the relation ImtIc < |tinst(EI )| is
satisfied, where |tinst(EI )| is the imaginary depth of instanton
defined by Eq. (56), SUMGT seems to overwhelm instanton-
type tunneling. Since |tinst(EI )| is independent of ω and
ImtIc converges on π

2
√

2
(< |tinst(EI )|) in the limit ω → ∞,

then SUMGT governs the tunneling process in the range
(ωci < ω < ωcq), where ωci is the value of ω at which
ImtIc = |tinst(EI )| [17].

From Eq. (54), the semiclassical weight of the SUMGT
trajectory is evaluated as

WS = h̄ω√
2πh̄

exp

(
−1

h̄
ImSS

)
. (67)

The imaginary part of the classical action of the SUMGT
trajectory ImSS is well approximated by that of the critical
trajectory that starts at the critical point tIc. The imaginary
part of the classical action of the critical trajectory can be
evaluated with the help of the Melnikov method [14–17].
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As a result, we obtain the following expression of ImSS :

ImSS ∼ ImtIc(1 − EI ) − 1 − EI

ω
tanh(ωImtIc)

+
√

2 sinh(ωImtIc)
∫ 0

∞
dx

∫ x

∞
ds

ε sin ωs

cosh2(
√

2s)
.

(68)

Taking into account the fact that the last term in the right-hand
side of Eq. (68) take a finite value in the limit ω → 0 and using
Eq. (66), we can estimate ImSS in the low-frequency range as

ImSS ∼ ImtIc(1 − EI ) − 1 − EI

ω
tanh(ωImtIc) (69)

∼ 1 − EI

ω

(
cosh−1

[
(1 − EI )

ε

]

− tanh

{
cosh−1

[
(1 − EI )

ε

]})
. (70)

For the case that 1 − EI 
 ε, ImSS is further approximated
as

ImSS ∼ 1 − EI

ω
{log[2(1 − EI )/ε] − 1}, (71)

and we obtain

WS ∼ h̄ω√
2πh̄

exp

(
−1 − EI

h̄ω

{
log

[
2(1 − EI )

ε

]
− 1

})
.

(72)

Equation (72) is very similar to the approximate amplitude of
multiphoton-assisted tunneling for the periodically perturbed
rectangular barrier in Eq. (32). Especially the arguments of
the exponential functions coincide with each other. There-
fore, the noninstanton tunneling induced by SUMGT for
the periodically perturbed rounded-off barrier has the same
characteristic in the range (ω < ωcq) as multiphoton-assisted
tunneling for the periodically perturbed rectangular barrier.
However, they exhibit different characteristics for ω > ωcq .
Namely, the exponential decay is observed for the periodically
perturbed rounded-off barrier, but the power law decay occurs
for the periodically perturbed rectangular barrier [17,19].

In Fig. 2, the line labeled “SUMGT” is the result of
Eq. (67) with Eq. (69) and those labeled “Instanton” and
“Averaged instanton” are given by Eq. (57) with Eq. (58)
and Eq. (60) with Eq. (59), respectively. Near the intersection
between the SUMGT weight and the averaged instanton Wav,
they well capture the transition from instanton-type tunneling
to noninstanton tunneling at each value of ε. However the
SUMGT weight overestimates the tunneling amplitude near
ωcq due to the ignorance of the last term in Eq. (68). Actually
the calculation using Eq. (68) shows better agreement with it
as shown in Refs. [16,17].

V. DISCUSSION

In this paper we have studied tunneling for the periodically
perturbed barriers, especially in the low- and middle-frequency
ranges, in order to comprehensively understand noninstanton
tunneling compared with instanton-type tunneling from the
quantum and semiclassical viewpoints. The periodically per-
turbed rectangular barrier, for which we can handle the exact

form of the quantum solution, is used for the purely quantum
analysis, while the periodically perturbed Eckart barrier is ap-
propriate for the semiclassical analysis. Very similar tunneling
phenomena are observed for both systems through the whole
range of perturbation frequency. Especially similar transitions
between noninstanton tunneling and instanton-type tunneling
are observed with change of the perturbation frequency.

In the low- and middle-frequency ranges (ω < ωcq), non-
instanton tunneling is interpreted as stable-unstable manifold
guided tunneling (SUMGT) from the semiclassical viewpoint.
Actually, the critical trajectory starting at the critical point tIc

on the complex stable manifold guides the SUMGT trajecto-
ries, and the tunneling amplitude is estimated by the imaginary
part of the classical action of the critical trajectory. From
the quantum viewpoint, it is regarded as multiphoton-assisted
tunneling, which makes large jumps of energy absorbing a lot
of quanta from the input energy to excited energy levels above
the barrier. The tunneling amplitude can be estimated by the
coefficient Bln (or Brn) at n = n∗, namely at the threshold
energy level En∗ = EI + n∗h̄ω [see Eq. (32)]. Bln (or Brn) is
the coefficient of the left (or right) -going wave component
in the interaction region (−|bw| < Q < 0) and gives the
transition rate from the input energy EI to the energy level
En. The set of coefficients |Bln| forms the plateau distribution
whose flat top spreads over the range (E − ε < E < EI + ε)
so that the threshold coefficient Bln∗ at E = En∗ (> EI + ε) is
out of the flat top and exists on the upper cliff of the plateau.
Thus, |Bln∗ | takes an exponentially small value compared with
those on the flat top of the plateau, and so does the tunneling
amplitude caused by noninstanton tunneling. Therefore, the
tunneling amplitude of the mutiphoton-assisted tunneling is
determined by how steep the slope of the cliff is.

At a glance, the two interpretations of noninstanton tun-
neling, SUMGT and multiphoton-assisted tunneling, are quite
different, but they predict essentially the same change of the
tunneling amplitude as ω going to zero, i.e., the exponential
decay. From the semiclassical viewpoint, the imaginary depths
of SUMGT trajectories are inversely proportional to ω in the
low-frequency range, and so do the imaginary parts of their
classical actions. It induces the exponential decay of the tun-
neling amplitude in the limit ω → 0. On the other hand,
the cliff of the plateau distribution of |Bln| becomes steeper
exponentially in the limit ω → 0, and then the magnitude of
the threshold coefficient |Bln∗ | and the tunneling amplitude
decay exponentially. Since the tunneling amplitude generated
by instanton-type tunneling (barrier penetration) is almost
constant independently of ω in the low-frequency range, then
instanton-type tunneling overwhelms noninstanton tunneling
below a threshold frequency at which the tunneling amplitude
of noninstanton tunneling is equal to that of instanton-type
tunneling, while noninstanton tunneling takes the maximum
in the middle range above the threshold frequency.

In the low-frequency range, the localized tunneling spec-
trum generated by instanton-type tunneling satisfies the scaling
law with respect to the width of the spectrum envelope, i.e.,
the width ∝ h̄ω. In the case of the periodically perturbed
rectangular barrier, the adiabatic approximation based on
the unperturbed solution clarifies the following facts. The
heights of the spectrum peaks |Tn| at the same number n

are independent of ω; |T0| is estimated as “the unperturbed
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tunneling amplitude” ×[1 + O(ε2/h̄2)] and |Tn| decays with
|n| as |Tn/T0| ∝ 1/|n|!. Then the width of the spectrum
envelope changes proportionally to h̄ω, because the interval
of the nearest peaks is h̄ω. This scaling law is necessary
to preserve the transmissive probability in the limit ω →
0, otherwise the quantum probability diverges or decays
unphysically. For the periodically perturbed Eckart barrier, the
adiabatic approximation based on the instanton is available,
and we get essentially the same result for instanton-type
tunneling.

In the high-frequency range (ω > ωcq), the tunneling phe-
nomena are mainly ruled by the component of the fundamental
energy level at E = EI caused by instanton-type tunneling
and that of the first excited energy level at E = EI + h̄ω due
to single-photon-assisted tunneling. The first excited level is
larger in tunneling amplitude than the fundamental energy
level when ω is just above ωcq . However, the transition
rates from the fundamental to excited energy levels decay
monotonically with ω, while the tunneling amplitude of the
fundamental converges on that of the unperturbed system in
the limit ω → ∞. Therefore the total tunneling amplitude
converges on that of the unperturbed system. The decay rate
of the first excited energy level depends on the potential
shape: the power law decay(∝ 1/ω) for the rectangular barrier,
but the exponential decay for the rounded-off barrier.

As a consequence, we get the comprehensive scenario of
tunneling phenomena observed for the periodically perturbed
barriers in the whole range of the perturbation frequency from
the semiclassical and quantum viewpoints. Application to two
or more dimensional potential barriers and extension for the
case that resonance tunneling occurs are problems for future
research. For two or more dimensional potential barriers,
many interesting approaches have been proposed providing
successful results from rigorous and practical requirements,
e.g., the reaction operator combined with visualization
using the Weyl symbol [7], the semiclassical transition state
theory [35,36] and the quantum instanton model [37]. It is
an important problem to clarify the relation between our
approach and those, especially for noninstanton tunneling in
the semiclassical regime, i.e., SUMGT.
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APPENDIX A: SOLUTION OF THE UNPERTURBED
RECTANGULAR BARRIER

In this Appendix, we obtain the solution of the unperturbed
rectangular barrier. The input, reflective and transmissive
waves are, respectively, written as

�I = e− i
h̄
EI te− i

h̄
PI Q, (A1)

�R = Re− i
h̄
EI te

i
h̄
PI Q, (A2)

�T = T e− i
h̄
EI te− i

h̄
PI Q, (A3)

where PI = √
2EI . In the interaction region(bw < Q <

0), the left- and right-going waves are, respectively,
given by

�l = Ble
− i

h̄
EI te− i

h̄
PbQ, (A4)

�r = Bre− i
h̄
EI te

i
h̄
PbQ, (A5)

where Pb = √
2(EI − 1) for EI > 1 and Pb = i

√
2(1 − EI )

for EI < 1.
Imposing continuity conditions on the wave at the bound-

aries, Q = 0 and Q = bw, we obtain the coefficients, Bl , Br ,
R, and T . The continuity at Q = 0 gives

1 + R = Bl + Br (A6)

and the continuous differentiability is written as

(−1 + R)PI = Pb(Br − Bl). (A7)

From the continuity at Q = bw = −|bw|, we get

T e
i
h̄
PI |bw | = Ble

i
h̄
Pb|bw | + Bre− i

h̄
Pb|bw | (A8)

and from the continuous differentiability, we obtain

−PIT e
i
h̄
PI |bw | = −PbBle

i
h̄
Pb|bw | + PbBre− i

h̄
Pb |bw |. (A9)

Combining Eq. (A8) with Eq. (A9) gives

Br = −PI − Pb

PI + Pb

e
i
h̄

2Pb |bw |Bl. (A10)

From Eqs. (A6) and (A7), we get

(PI + Pb)Bl + (PI − Pb)Br = 2PI . (A11)

Substitution of Eq. (A10) into Eq. (A11) gives

Bl = 2PI

(PI + Pb) − (PI −Pb)2

PI +Pb
e

i
h̄

2Pb |bw | (A12)

and we get the reflective and transmissive coefficients
from Eqs. (A6) and (A8). For the case that EI < 1 and
exp(− 2

h̄
|Pb||bw|) 	 1, Eqs. (A12) and (A8) are approximated

as

Bl = 2PI

(PI + Pb) − (PI −Pb)2

PI +Pb
e− 2

h̄
|Pb||bw | ∼ 2PI

PI + Pb

, (A13)

T = e− i
h̄
PI |bw |(Ble

− 1
h̄
|Pb||bw | + Bre

1
h̄
|Pb||bw |)

∼ e− i
h̄
PI |bw |e− 1

h̄
|Pb||bw | 4PIPb

(PI + Pb)2
. (A14)

APPENDIX B: SOLUTION OF THE PERIODICALLY
PERTURBED RECTANGULAR BARRIER IN THE

HIGH-FREQUENCY RANGE

In the range ω > ωcq , only the two components T0 and
T1 are important to determine the tunneling amplitude. To
estimate T0 and T1, we take into account only the terms of the
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fundamental and first excited states in Eqs. (17) and (18):

i0J0

( ε

h̄ω

)
[(Pr0 + Pb0)Bl0 + (Pr0 − Pb0)Br0] + iJ1

( ε

h̄ω

)
[(Pr0 + Pb1)Bl1 + (Pr0 − Pb1)Br1] = 2PI , (B1)

i−1J−1

( ε

h̄ω

)
[(Pr1 + Pb0)Bl0 + (Pr1 − Pb0)Br0] + i0J0

( ε

h̄ω

)
[(Pr1 + Pb1)Bl1 + (Pr1 − Pb1)Br1] = 0, (B2)

and

i0J0

( ε

h̄ω

)
[(Pt0 − Pb0)e

i
h̄
Pb0|bw |Bl0 + (Pt0 + Pb0)e− i

h̄
Pb0|bw |Br0]

+ iJ1

( ε

h̄ω

)
[(Pt0 − Pb1)e

i
h̄
Pb1|bw |Bl1 + (Pt0 + Pb1)e− i

h̄
Pb1|bw |Br1] = 0, (B3)

i−1J−1

( ε

h̄ω

)
[(Pt1 − Pb0)e

i
h̄
Pb0|bw |Bl0 + (Pt1 + Pb0)e− i

h̄
Pb0|bw |Br0]

+ i0J0

( ε

h̄ω

)
[(Pt1 − Pb1)e

i
h̄
Pb1|bw |Bl1 + (Pt1 + Pb1)e− i

h̄
Pb1|bw |Br1] = 0. (B4)

By using the approximations for ε
h̄ω

	 1, J0( ε
h̄ω

) ∼ 1 and J±1( ε
h̄ω

) ∼ ± ε
2h̄ω

, Bl0, Br0, Bl1, and Br1 are obtained as

Bl0 ∼ 2PI

PI + i|Pb0| , (B5)

Br0 ∼ −2PI (PI − i|Pb0|)
(PI + i|Pb0|)2

e− 2
h̄
|Pb0||bw | −

(
ε

2h̄ω

)2

e− 1
h̄
|Pb0||bw |e

i
h̄
Pb1|bw |2PI

× (Pt1 − i|Pb0|)[(PI − i|Pb0|)(PI − Pb1) − (PI − Pb1)(Pt1 + Pb1)]

(PI + i|Pb0|)2
[
(Pt1 + Pb1)2 − (Pt1 − Pb1)2e

i
h̄

2Pb1|bw |] , (B6)

Bl1 ∼ −i

(
ε

2h̄ω

)
2PI (Pt1 + i|Pb0|)(Pt1 + Pb1)

(PI + i|Pb0|)
[
(Pt1 + Pb1)2 − (Pt1 − Pb1)2e

i
h̄

2Pb1|bw |] , (B7)

Br1 ∼ i

(
ε

2h̄ω

)
e

i
h̄

2Pb1|bw | 2PI (Pt1 + i|Pb0|)(Pt1 − Pb1)

(PI + i|Pb0|)
[
(Pt1 + Pb1)2 − (Pt1 − Pb1)2e

i
h̄

2Pb1|bw |] . (B8)

Then T0 and T1 are given by

T0 ∼ e− i
h̄
PI |bw |

[
e− 1

h̄
|Pb0||bw |Bl0 + e

1
h̄
|Pb0||bw |Br0 + i

ε

2h̄ω

(
e

i
h̄
Pb1|bw |Bl1 + e− i

h̄
Pb1|bw |Br1

)]

∼ e− i
h̄
PI |bw |

(
e− 1

h̄
|Pb0||bw | 4iPI |Pb0|

(PI + i|Pb0|)2
−

(
ε

2h̄ω

)2

e
i
h̄
Pb1|bw |2PI

×
{

(Pt1 − i|Pb0|)[(PI − i|Pb0|)(PI − Pb1) − (PI − Pb1)(Pt1 + Pb1)]

(PI + i|Pb0|)2[(Pt1 + Pb1)2 − (Pt1 − Pb1)2e
i
h̄

2Pb1|bw |]

− 2(Pt1 + i|Pb0|)Pb1

(PI + i|Pb0|)[(Pt1 + Pb1)2 − (Pt1 − Pb1)2e
i
h̄

2Pb1|bw |]

})

∼ e− i
h̄
PI |bw |

[
e− 1

h̄
|Pb0||bw | 4iPI |Pb0|

(PI + i|Pb0|)2
+

(
ε

2h̄ω

)2

e
i
h̄
Pb1|bw |2PIf (EI )

]
(B9)

and

T1 ∼ e− i
h̄
Pt1|bw |

[
i

ε

2h̄ω

(
e− 1

h̄
|Pb0||bw |Bl0 + e

1
h̄
|Pb0||bw |Br0

)
+ e

i
h̄
Pb1|bw |Bl1 + e− i

h̄
Pb1|bw |Br1

]

∼ −ie− i
h̄

(Pt1−Pb1)|bw | 2ε

h̄ω
PIPb1

Pt1 + i|Pb0|
(PI + i|Pb0|)[(Pt1 + Pb1)2 − (Pt1 − Pb1)2e

i
h̄

2Pb1|bw |]

∼ −ie− i
h̄

(Pt1−Pb1)|bw | 2ε

h̄ω
PIPb1g(EI ) ∼ O

(
ε

h̄ω

)
, (B10)

where f (EI ) = f̃ (PI (EI ),Pb0(EI ),Pb1(EI ),Pt1(EI )) and g(EI ) = g̃(PI (EI ),Pb0(EI ),Pb1(EI ),Pt1(EI )) are functions of O(1).
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M. Robnik, G. Vidmar, R. Höhmann, U. Kuhl, and H.-J.
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