
PHYSICAL REVIEW E 86, 056114 (2012)

Network coordination and synchronization in a noisy environment with time delays

D. Hunt,1,2 B. K. Szymanski,2,3 and G. Korniss1,2,*

1Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590, USA
2Social and Cognitive Networks Academic Research Center, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590, USA

3Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590, USA
(Received 18 September 2012; published 30 November 2012)

We study the effects of nonzero time delays in stochastic synchronization problems with linear couplings in
complex networks. We consider two types of time delays: transmission delays between interacting nodes and
local delays at each node (due to processing, cognitive, or execution delays). By investigating the underlying
fluctuations for several delay schemes, we obtain the synchronizability threshold (phase boundary) and the scaling
behavior of the width of the synchronization landscape, in some cases for arbitrary networks and in others for
specific weighted networks. Numerical computations allow the behavior of these networks to be explored when
direct analytical results are not available. We comment on the implications of these findings for simple locally or
globally weighted network couplings and possible trade-offs present in such systems.
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I. INTRODUCTION

Since the classic works by Kalecki [1] and Frisch and
Holme [2] on the emergence of macroeconomical patterns
(business and economics cycles), it has been well established
that time delays occurring on microscopic scales can have
profound effects on the global response of complex systems.
Among other early key results were the works by Hutchinson
[3] and May [4], showing that time delays can have funda-
mental impact on logistic growth in population dynamics [5].
The importance of time delay becomes even more explicit in
interacting individual- or agent-based models [6–10], where
the delays can correspond to time scales in the interactions
(e.g., transmission delays) or to time scales of the local decision
and execution by the individuals. In this paper, we consider the
simplest, yet fundamental, model for such networked systems,
taking into consideration the effects of the network topology
and couplings, noise, and time delays [11]. This paper provides
an extended account of our recent Letter [11], providing more
details, generalizations, and comparisons to certain weighted
networks and considering different types of delays.

In network synchronization [12], coordination, or consen-
sus problems [6], individuals or entities represented by nodes
in the network attempt to adjust their local state variables (e.g.,
pace, load, phase, or orientation) in a decentralized fashion.
(In this paper, we use the terms synchronization, coordination,
and consensus synonymously in this broader sense.) Nodes
interact or communicate only with their local neighbors in
the network, often with the intention to improve global
performance. These couplings can be represented by directed
or undirected, weighted or unweighted links. Applications of
the corresponding models range from physics, biology, and
computer science to control theory, including synchronization
problems in distributed computing [13], symbolic dynamics
[14], congestion control in communication networks [6,15–18]
and in vehicular traffic [19,20], flocking animals [21–23],
bursting neurons [24], and cooperative control of vehicle
formation [25].
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Synchronization, coordination, or consensus in complex
networks cuts across numerous fields that address global be-
havior through decentralized local actions facilitated by sparse
interactions. There has already been much investigation into
the efficiency and optimization of synchronization [12,26–29]
in weighted [15,16,30] and directed [6,31,32] topologies.
Because of limitations in communication, transportation,
processing, or cognitive resources, the local information on
the state of the network neighborhood may not always be
current, nor is it even given for the same instant at a past time
for all components. These time delays can have drastic effects
on system behavior [7] and further complicate predictability
of the network’s global performance.

The impact of time delays on stochastic differential
equations involving a single stochastic variable, with recent
applications to postural sway [33,34], stick balancing on a
fingertip [35,36], and the scaling of a congestion window in
internet protocols [37], have been investigated in the past two
decades [38–41]. Here we focus on the interplay of network
topology, couplings, noise, and time delays. Our motivation is
to understand how network-connected individuals contribute
to global goals by performing delayed actions and/or using
delayed information facilitated by local interactions in a noisy
environment.

The phenomena of spontaneous synchronization, coordina-
tion, or consensus arise in a variety of disciplines [6,7,12,16].
For example, it describes the consensus that arises in bird
flocks as each bird makes velocity adjustments to match
the group, which is crucial in accomplishing such tasks as
avoiding predators [22,23]. Similarly, it can be applied to
a collection of autonomous vehicles working cooperatively
to carry out a task [18]. Risk can be managed without
central governance in uncertain environments through the
synchronicity or spontaneous cooperation of individuals. This
appears in economics when considering stock trades [42]; in
ecology there is the reward of reproduction and the danger
of predation for chirping cicadas and flashing fireflies [43].
While there are adversarial relationships between individ-
ual participants, there are still mutual benefits (predictive
insight or bodily protection) from the collective behavior.
Massively parallel and distributed computing schemes require

056114-11539-3755/2012/86(5)/056114(18) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.056114


D. HUNT, B. K. SZYMANSKI, AND G. KORNISS PHYSICAL REVIEW E 86, 056114 (2012)

synchronization across processors [13,44–46] in order to avoid
diverging progressions of simulation time but must be balanced
with the cost of communication. Synchronization of coupled
phase oscillators [47] (the Kuramoto model [48]) has many
applications, recently to spatial patterns in flashing microflu-
idic arrays [49] and to circuits comprising optomechanical
arrays [50]. In neural networks, time delays critically affect
the synchronization of excitatory fronts [51–53]. All these
examples are instances of a group coming to consensus [6]
without an omniscient global operator. They fundamentally
rely on the communication between individuals, which may
be (and often is) sent through noisy channels [39–41].

A. The model

In the model we consider here, the state of each node i

is described by a local scalar state variable hi . In stochastic
network coordination or consensus problems, nodes locally
adjust their state in an attempt to match that of their neighbors
through linear couplings in the presence of noise. However,
they react to the information or signal received from their
neighbors with some time lag, and the evolution of the states of
the nodes is governed by the differential time-delay equations

∂thi(t) = −
∑

j

Cij

[
hi

(
t − τ o

i

) − hj

(
t − τ o

i − τ tr
ij

)] + ηi(t).

(1)

Here Cij is the coupling strength between nodes i and j ,
and ηi is the noise present at node i, satisfying 〈ηi(t)ηj (t ′)〉 =
2Dδij δ(t − t ′), where D is the noise intensity. In general, the
time delays can be heterogeneous, depending on the properties
and network locations of both nodes: τ o

i is the local delay at
node i, corresponding to processing, cognitive, or execution
delays, while τ tr

ij is the transmission delay between nodes i

and j . Without the noise term, the above equation is often
referred to as the (deterministic) consensus problem [6,18] on
the respective network. In this sense, the networked agents try
to coordinate or reach an agreement or balance regarding a
certain quantity of interest.

A standard measure of synchronization, coordination, or
consensus in a noisy environment is the width [13,15]

〈w2(t)〉 =
〈

1

N

N∑
i=1

[hi(t) − h̄(t)]2

〉
, (2)

where h̄(t) = (1/N )
∑N

i=1 hi(t) is the global average of the lo-
cal state variables and 〈. . .〉 denotes an ensemble average over
the noise. A network is “synchronizable” if it asymptotically
reaches a steady state with a finite width, i.e., 〈w(∞)〉 < ∞.
When the network is well synchronized (or coordinated), the
values hi for all nodes are near the global mean h̄ and the width
is small.

B. Coordination without time delays

Without time delays, Eq. (1) takes the form

∂thi(t) = −
∑

j

Cij [hi(t) − hj (t)] + ηi(t)

= −
∑

j

�ijhj (t) + ηi(t), (3)

where �ij = δij

∑
l Cil − Cij is the network Laplacian. Equa-

tion (3) is a multivariate Ornstein-Uhlenbeck process [54] and
is also referred to as the Edwards-Wilkinson process [55]
on a network [13,15]. Starting from a flat initial profile
{hi(0) = 0}Ni=1 for symmetric couplings, one can show that
the width evolves as [54]

〈w2(t)〉 = D

N

N−1∑
k=1

(1 − e−2λkt )

λk

, (4)

where λk , k = 0,1,2, . . . ,N − 1, are the eigenvalues of the
network Laplacian. Note that as a result of measuring the local
state variables hi from the mean h̄ in Eq. (2), the singular
contribution of λ0 = 0 (associated with the uniform mode)
automatically cancels out from the sum in Eq. (4). Thus, a finite
connected network is always synchronizable with steady-state
width

〈w2(∞)〉 = D

N

N−1∑
k=1

1

λk

. (5)

In the limit of infinite network size, however, network
ensembles with a vanishing (Laplacian) spectral gap may
become unsynchronizable, depending on the details of the
small-λ behavior of the density of eigenvalues [12,13,15]. This
type of singularity is common in purely spatial networks (in
particular, in low dimensions) where the relevant response
functions and fluctuations diverge in the long-wavelength
(small-λ) limit [13,56]. In complex networks [57–60] these
singularities are typically suppressed as a result of sufficient
amount of randomness in the connectivity pattern generating
a gap or “pseudo-” gap. [13,26,61–64].

As is also clear from Eq. (5), synchronization or coordina-
tion can be arbitrarily improved in this case of no time delays,
e.g., by uniformly increasing the coupling strength by a factor
of σ > 1, resulting in Cij → σCij (λk → σλk) and yielding

〈w2(∞)〉σ = 1

σ
〈w2(∞)〉σ=1. (6)

The stronger the effective coupling σ (e.g., achieved by
more frequent communications in real networks), the better
the synchronization; the width is a monotonically decreasing
function of σ .

II. UNIFORM LOCAL TIME DELAYS

We first consider the case with symmetric coupling Cij =
Cji when transmission delays are negligible (τ tr

ij = 0) and local
delays are uniform (τ o

i ≡ τ ). Then Eq. (1) is governed by a
single uniform time delay [11]

∂thi(t) = −
N∑

j=1

Cij [hi(t − τ ) − hj (t − τ )] + ηi(t)

= −
N∑

j=1

�ijhj (t − τ ) + ηi(t). (7)

This equation has a similar form to that of Eq. (3) but with
the inclusion a delay τ .
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A. Eigenmode decomposition and scaling

By diagonalizing the symmetric network Laplacian �, the
above set of equations of motion decouples into separate modes

∂t h̃k(t) = −λkh̃k(t − τ ) + η̃k(t), (8)

where λk (k = 0,1,2, . . . ,N − 1) are the eigenvalues of the
network Laplacian, and h̃k and η̃k are the time-dependent
components of the state and noise vectors, respectively, along
the kth eigenvector. Thus, the amplitude h̃k of each mode (with
the exception of the uniform mode with λ0 = 0) is governed
by the same type of stochastic delay-differential equation

∂t h̃(t) = −λh̃(t − τ ) + η̃(t), (9)

with λ > 0, where we temporarily drop the index k of
the specific eigenmode for transparency and to streamline
notation.

While the above stochastic delay-differential equation has
an exact stationary solution for the stationary-state variance
[38,40], we first review the formal solution [11,65], which
provides some insights and connections between the solutions
of the underlying characteristic equation and the existence
(and the scaling) of the stationary-state fluctuations of the
stochastic problem. The formal solution can also be applied
to more general linear (or linearized) coordination problems
with multiple time delays [66] and can serve as the starting
point to extract the asymptotic behavior [67] near the singular
points (synchronization boundary).

Performing standard Laplace transform on Eq. (9) [with
ĥ(s) = ∫ ∞

0 e−st h̃(t) dt], the characteristic equation associated
with its homogeneous (deterministic) part becomes

g(s) ≡ s + λe−sτ = 0. (10)

As shown in Appendix A [with h(t) ≡ 0 for t � 0] the
time-dependent fluctuations can be written formally as

〈h̃2(t)〉 =
∑
α,β

−2D(1 − e(sα+sβ )t )

g
′(sα)g′(sβ)(sα + sβ)

. (11)

Hence, they remain finite (i.e., a stationary distribution
exists) if

Re(sα) < 0, (12)

for all α, where sα , α = 1,2, . . . , are the solutions of the
characteristic equation, Eq. (10), on the complex plane. We
can explicitly make the simplification

〈h̃2(∞)〉 =
∑
α,β

−2D

g
′(sα)g′(sβ)(sα + sβ)

=
∑
α,β

−2D

(1 + τsα)(1 + τsβ)(sα + sβ)
. (13)

Equation (10) is perhaps the oldest and most well-known
(transcendental) characteristic equation from the theory of
delay-differential equations [2,5,18,68], with the linear sta-
bility analysis of numerous nonlinear systems reducing to this
one. It has an infinite number of (in general, complex) solutions
for τ > 0 and the condition in Eq. (12) holds if

λτ <
π

2
. (14)
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FIG. 1. (Color online) Time evolution of an individual mode
obtained by numerically integrating Eq. (9) with λ = 1, D = 1, and
�t = 0.001 for several delays chosen to show the various behaviors
across the separating/critical points λτ = 1/e and π/2: (a) λτ =
0.2 < 1/e, (b) 1/e < λτ = 1.5 < π/2, and (c) λτ = 1.7 > π/2.

Long-time dynamics of the solution of Eq. (9) is governed
by the zero(s) of Eq. (10) with the largest real part. In particular,
for λτ � 1/e, the zero with the largest real part is purely
real; hence no sustained oscillations occur [Fig. 1(a)]. For
1/e < λτ < π/2, all zeros have imaginary parts (including the
ones with the largest real part) and are arranged symmetrically
about the real axis. This results in persistent oscillations that
do not diverge so long as condition (14) is satisfied, as shown
in Fig. 1(b). The first pair of zeros to acquire positive real parts
are the two with smallest imaginary parts. Once the product
λτ fails to satisfy the condition in Eq. (14), the oscillation
amplitude grows in time [Fig. 1(c)]. Specific time series for
〈h2(t)〉 are shown in Fig. 2, where the real parts of solutions
have become positive for delays τ = 1.60 and 2.00 but remain
negative for the rest.
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FIG. 2. (Color online) Time series of the fluctuations of a single
mode (λ = 1) averaged over 104 realizations of noise (with D = 1)
by numerically integrating Eq. (9) with �t = 0.01 for different delays
(from bottom to top in increasing order of τ ).
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FIG. 3. (Color online) (a) Steady-state fluctuations of an individual mode as a function of λ obtained by numerical integration of Eq. (9)
for several delays with D = 1 and �t = 0.01. (b) Scaled fluctuations of an individual mode and the analytic scaling function [Eq. (19)] (solid
curve).

To obtain the general scaling form of the fluctuations in
the stationary state, we define zα ≡ τsα (α = 1,2, . . .). One
can easily see that the new variables zα are the corresponding
solutions of the scaled characteristic equation,

z + λτe−z = 0, (15)

and hence can only depend on λτ , i.e., zα = zα(λτ ). Thus,

sα(λ,τ ) = 1

τ
zα(λτ ). (16)

Substituting this into Eq. (13) yields

〈h̃2(∞)〉 = Dτf (λτ ), (17)

where

f (λτ ) =
∑
α,β

−2

(1 + zα)(1 + zβ)(zα + zβ)
(18)

is the scaling function. This scaling [Eq. (17)] is illustrated
by plotting 〈h̃2(∞)〉/τ vs λτ , fully collapsing the data for
different τ values (with fixed noise intensity D) (Fig. 3).

As mentioned earlier, Eq. (9) has an exact solution for the
stationary-state variance obtained by Küchler and Mensch [38]
(briefly reviewed in Appendix B), providing an exact form for
the scaling function

f (λτ ) = 1 + sin (λτ )

λτ cos (λτ )
. (19)

The asymptotic behavior of the scaling function near the
singular points, λτ = 0 and λτ = π/2, can be immediately
extracted from the exact solution given by Eq. (19) (see also
Ref. [67] for a more generalizable method),

f (λτ ) �
{ 1

λτ
0 < λτ 	 1

4
π(π/2−λτ ) 0 < π

2 − λτ 	 1.
(20)

The scaling function f (x) (x ≡ λτ ) is clearly nonmono-
tonic; it exhibits a single minimum, at approximately x∗ ≈

0.739 with f ∗ = f (x∗) ≈ 3.06, found through numerical
minimization of Eq. (19). The immediate message of the above
result is rather interesting: For a single stochastic variable
governed by Eq. (9) with a nonzero delay, there is an optimal
value of the “relaxation” coefficient, λ∗ = x∗/τ , at which
point the stationary-state fluctuations attain their minimum
value 〈h̃2(∞)〉 = Dτf ∗ ≈ 3.06Dτ . This is in stark contrast
with the zero-delay case (the standard Ornstein-Uhlenbeck
process [54]) where 〈h̃2(∞)〉 = D/λ; i.e., the stationary-state
fluctuation is a monotonically decreasing function of the
relaxation coefficient.

B. Implications for coordination in unweighted networks

Since the eigenvectors of the Laplacian are orthogonal for
symmetric couplings, the width can be expressed as the sum
of the fluctuations for all nonuniform modes

〈w2(∞)〉 = 1

N

N−1∑
k=1

〈
h̃2

k(∞)
〉 = Dτ

N

N−1∑
k=1

f (λkτ ), (21)

where λk is the eigenvalue of the kth mode. Thus, condition
(14) must be satisfied for every k > 0 mode for synchroniz-
ability, or equivalently [69],

λmaxτ <
π

2
. (22)

The above exact delay threshold for synchronizability has
some profound consequences for unweighted networks. Here
the coupling matrix is identical to the adjacency matrix,
Cij = Aij , and the bounds and the scaling properties of the
extreme eigenvalues of the network Laplacian are well known.
In particular [70,71],

N

N − 1
kmax � λmax � 2kmax, (23)

where kmax is the maximum node degree in the network
[i.e., 〈λmax〉 = O(〈kmax〉)]. Thus, τkmax < π/4 is sufficient for
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FIG. 4. (Color online) The fraction of synchronizable networks ps(τ,N ) taken from ensembles of 104 random constructions of ER and BA
networks with 〈k〉 ≈ 6. (a) ps vs N . (b) and (c) Scaled plots of the same data according to Eq. (24), for ER and BA networks, respectively.

synchronizibility [69], while τkmax > π/2 leads to the break-
down of synchronization with certainty. These inequalities
imply that even a single (outlier) node with a sufficiently
large degree can destroy synchronization or coordination in
unweighted networks (regardless of the general trend, if any,
of the tail of the degree distribution). Naturally, network
realizations selected from an ensemble of random graphs
with a power-law tailed degree distribution typically have
large hubs, making them rather vulnerable to intrinsic network
delays [6,18]. For example, Barabási-Albert (BA) [58,59] and
uncorrelated [72,73] scale-free (SF) networks with structural
degree cutoff (yielding λmax ∼ kmax ∼ N1/2) and similarly SF
network ensembles with natural cutoff (exhibiting λmax ∼
kmax ∼ N1/(γ−1)) for N 
 1 [60,72] are particularly vulnera-
ble. Thus, for any fixed delay, increasing the size of scale-free
networks will eventually lead to the violation of condition (22)
and in turn, to the breakdown of synchronization. In contrast,
the typical largest degree (hence the largest eigenvalue of the
Laplacian) grows much slower in Erdős-Rényi (ER) random
graphs [74], as λmax ∼ kmax ∼ ln(N ).

To illustrate the above finite-size dependence, we define
the fraction of synchronizable networks ps(τ,N ), which
is equivalent to the probability that a randomly chosen
realization of a network ensemble satisfies λmax < π/2τ .
Thus, ps(τ,N ) = P <

N (π/2τ ), where P <
N (x) is the cumulative

probability distribution of the largest eigenvalue of the network
Laplacian. In Fig. 4, we show the fraction of synchronizable
networks for BA and ER network ensembles by employing
direct numerical diagonalization of the corresponding network
Laplacians and evaluating condition (22) for each realization.

For N 
 1 the cumulative distribution for the largest
eigenvalue exhibits the asymptotic scaling P <

N (x) ∼
φ[x/〈λmax(N )〉] [64]. Thus, the fraction of synchronizable
networks should scale as

ps(τ,N ) = P <
N (π/2τ ) ∼ φ[π/2τ 〈λmax(N )〉]

= ψ[τ 〈λmax(N )〉]. (24)

In Figs. 4(b) and 4(c), we demonstrate the above scaling for
ER and BA networks, respectively.

Since the scaling function is known exactly [Eq. (19)], the
eigenmode decomposition [Eq. (21)] allows one to evaluate

the stationary width for an arbitrary network with a single
uniform time delay by utilizing numerical diagonalization of
the network Laplacian

〈w2(∞)〉 = Dτ

N

N−1∑
k=1

f (λkτ ) = Dτ

N

N−1∑
k=1

1 + sin (λkτ )

λkτ cos (λkτ )
. (25)

The optimal (minimal) width occurs when all eigenvalues
of the Laplacian are degenerate so that the couplings and/or
delay can be tuned to the minimum of Eq. (19). For each
mode in Eq. (25), such degeneracy is present in the case of
a fully-connected network with uniform couplings, optimized
to Cij = x∗/Nτ (i �= j ) and Cii = 0. For general networks,
better synchronization can be achieved when the eigenvalue
spectrum is narrow relative to the range of synchronizability so
that most eigenvalues can fall near the minimum of Eq. (19).
We have not investigated in detail how to achieve a narrow
spectrum, but strategies for doing so by tuning coupling
strengths or adding or removing links have been explored by
others [31,32].

C. Scaling, optimization, and trade-offs in networks with
uniform delays

With the knowledge of the scaling function in Eq. (25),
one also immediately obtains the width for the case of an
arbitrary but uniform effective coupling strength σ , where
Cij = σAij . The effective coupling strength can now be tuned
for optimal synchronization. However, there is a trade-off
between how well the network synchronizes and the range over
which it is synchronizable. When the eigenvalue spectum is not
narrow, diminishing the couplings uniformly in order to satisfy
Eq. (22) may cause small eigenvalues to be pushed farther
up the left divergence of the scaling function. Figure 5(a)
shows this trade-off in uniform reweighting (Cij → σCij ).
The monotonicity of these widths means that the uniform delay
should always be minimized to obtain the best synchroniza-
tion. The same conclusion can be drawn from Fig. 5(b), which
shows that networks synchronize better and do not become
unsynchronizable until greater link strengths when the delay
τ is minimized. Because globally reweighting the coupling
strengths corresponds to a uniform scaling of the eigenvalues,
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FIG. 5. (Color online) Stationary-state widths obtained through numerical diagonalization and utilizing Eq. (25) for a typical BA network
with N = 100 (a) for several coupling strengths, (b) for several delays, and (c) scaled so that the nonzero delay curves collapse.

we can define the width of a network by a scaling function
F (στ ) [see Fig. 5(c)]

〈w2(∞)〉σ,τ = Dτ

N

N−1∑
k=1

f (σλkτ ) = DτF (στ ). (26)

Fluctuations from small eigenvalues dominate other con-
tributions to the width for small στ ; hence the optimal value
occurs near the end of the synchronizable region, where the
network fails to meet condition (22).

As an alternative to varying the (effective) uniform coupling
strength σ , consider a scenario where the frequency (or rate)
of communication is controlled for each node according to

∂thi(t) = −pi(t)
N∑

j=1

Aij [hi(t − τ ) − hj (t − τ )] + ηi(t).

(27)

In the above scheme, pi(t) is a binary stochastic variable
for each node, such that at each discretized time step,
pi(t) = 1 with probability p and pi(t) = 0 with probability
1 − p (for simplicity, we employ uniform communication
rates). The local network neighborhood remains fixed, while
nodes communicate with their neighbors only at rate p at
each time step. As an application for trade-off, consider a
system governed by the above equations and stressed by
large delays, where local pairwise communications at rate
p = 1 would yield unsynchronizability, i.e., τλmax>π/2 (see
Fig. 6). The width diverges for one of two reasons: Either
communication is too frequent and the system fails to satisfy
condition (22), or there is no synchronization (p = 0) and the
system is overcome by noise. However, the divergence of the
width is faster in the former, accelerated by overcorrections
made by each node due to the delay. With an appropriate
reduction in the communication rate, the width reaches a
finite steady state, recovering synchronizability, as can be seen
in Fig. 6. Decreasing the frequency of communication can
counterintuitively allow a network to become synchronizable

for delays and couplings that would otherwise cause the width
to diverge.

D. Coordination and scaling in weighted networks

For the case of uniform delays, we compare two cases:
networks with weights that have been normalized locally by
node degree and networks with weights that are globally
uniform. The couplings for local weighting are defined as
Cij = σAij /ki (a common weighting scheme in generalized
synchronization problems [12]), while for uniform couplings
Cij = σAij /〈k〉. In turn, the weighted (or normalized) Lapla-
cian becomes � = σK−1L where K is the diagonal matrix
with node degrees on its diagonal, Kij = δij ki , and L is
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p = 0.8
p = 0.9
p = 1.0

FIG. 6. (Color online) Time evolution of the width obtained by
numerically integrating Eq. (27) with D = 1, �t = 0.005, and
averaged over 103 realizations of noise for several communication
rates p on a BA network of size N = 100 and average degree 〈k〉 = 6
with τλmax = 1.2 × π/2.
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FIG. 7. (Color online) Fraction of synchronizable networks for (a) uniform global weights and (b) local weights for the same ensemble of
networks used in Fig. 4.

the graph Laplacian, Lij ≡ δij

∑
l Ail − Aij = δij ki − Aij .

Similarly, for uniform couplings, the corresponding Lapla-
cian becomes � = σ 〈k〉−1L. Note that the overall coupling
strength (communication cost) is the same in both cases,
σ

∑
ij Aij /ki = σ

∑
ij Aij /〈k〉 = σN .

In the locally weighted case, the eigenvalue spectrum of
K−1L is known to be confined within the interval [0,2] [75],
so any network of this class will be synchronizable, provided
στ < π/4. With globally uniform weighting, the increase of
λmax with N will lead to fewer synchronizable networks as
N grows (holding 〈k〉 constant). Figure 7(a) showsthat it is
more likely for an ER network to be synchronizable than
a BA network of the same size N when the couplings are
weighted uniformly by 〈k〉 (with all ER networks remaining
synchronizable over the range of N for the two smallest
delays). However, this is not always the case when couplings
are weighted locally by node degree [Fig. 7(b)], although
nearly all of these networks remain synchronizable over the
delays in Fig. 7(a). The behavior of the width for typical
networks is shown in Fig. 8 to compare the effects of these
two normalizations.

In both the BA and ER case, synchronization is better and
is maintained for longer delays when the coupling strengths
are weighted locally by node degree.

III. MULTIPLE TIME DELAYS

To generalize the basic model, we now allow for a
distinction in transmission and processing time delays. In this
case, Eq. (1) becomes

∂thi(t) = −
∑

j

Cij [hi(t − τo) − hj (t − τo − τtr)] + ηi(t),

(28)

where the local delay τo and the transmission delay τtr are
the same for all nodes and links, respectively. Although
the synchronizability condition and steady state width cannot
be determined in a closed form for arbitrary networks as is the
case of Eq. (7), focusing on special cases does offer insight.

A. Fully-connected networks

Consider the case of a fully-connected network of size N

with uniform link strengths σ , where the local state variables
evolve according to

∂thi(t) = − σ

N − 1

∑
j �=i

[hi(t − τo) − hj (t − τ )] + ηi(t)

= − σ

N − 1

∑
j �=i

[hi(t − γ τ ) − hj (t − τ )] + ηi(t)

= − σ

N − 1

∑
j �=i

[hi(t − τ ) − hj (t − τ )]

+ σhi(t − τ ) − σhi(t − γ τ ) + ηi(t)

= − σ

N − 1

∑
j

�ijhj (t − τ ) + σhi(t − τ )

− σhi(t − γ τ ) + ηi(t), (29)

0 0.4 0.8
στ

0

10

20

〈w
2 〉/τ

BA locally weighted couplings
BA uniform global couplings
ER locally weighted couplings
ER uniform global couplings

FIG. 8. (Color online) Scaled widths simulated with �t = 0.01
of a typical BA and a typical ER network, each of size N = 100 and
with 〈k〉 = 6.
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FIG. 9. (Color online) Phase diagram (synchronization boundary) for fully-connected networks with uniform coupling strength σ/(N − 1)
in the (τo,τ ) plane. (Here without loss of generality due to scaling, we used σ = 1.) (a) All system sizes (for N � 300 they are essentially
indistinguishable from the N = 30 000 case at these scales); (b) system sizes N = 30, 300, 3000, 30 000 in an enlarged region for visibility.
With the exception of the analytically solvable case of N = 2 [66], the synchronization boundaries, corresponding to stability limits, were
obtained from the analysis of the zeros of Eq. (31).

where τ ≡ τo + τtr, γ ≡ τo/τ , and �ij = δijN − 1. Normal-
izing the global coupling with 1/(N − 1) ensures that the
coupling cost per node remains constant and the region
of synchronization remains finite in the limit of N → ∞.
Using the fact that the graph Laplacian of the complete
graphs has a single, nonzero eigenvalue N [which is (N−1)-
fold degenerate], each nonuniform mode (associated with
fluctuations about the mean) obeys

∂t h̃(t) = −σ h̃(t − γ τ ) − σ

N − 1
h̃(t − τ ) + η̃(t). (30)

As in the case of uniform delays, we perform a Laplace
transform on the deterministic part to obtain the characteristic
polynomial and equation,

g(s) ≡ s + σ

N − 1
e−τs + σe−γ τs = 0. (31)

Note that for N = 2, the region of stability or synchroniz-
ability can be obtained analytically [66], and for completeness
we show it in Fig. 9 in the (τo,τ ) plane. In this simple
case of two coupled nodes, the synchronization boundary
is monotonic, and the local delay is dominant: There is no
singularity (for any finite τtr) as long as στo < 1/2 [66], while
for any τtr, there is a sufficiently large τo resulting in the
breakdown of synchronization.

For N � 3, the phase diagram (region of synchronizability)
can be obtained numerically by tracking the zeros of the
characteristic equation Eq. (31) (i.e., identifying when their
real parts switch sign) shown in Fig. 9. Note that keeping
track of infinitely many complex zeros of the characteristic
equations would be an insurmountable task. Instead, in order
to identify the stability boundary of the system, one only needs
to know whether all solutions have negative real parts. This
test can be done by employing Cauchy’s argument principle
[76,77] (see Appendix C for details). Similar to the N = 2 case,
the local delay is always dominant; i.e., there are critical values

of στo above or below which the system is unsynchronizable
or synchronizable for any τtr. [These critical values approach
π/2 as N → ∞, since in this case Eqs. (30) and (31) reduce
to the familiar forms of Eqs. (9) and (10), respectively, with
the known analytic threshold.] The behavior with the overall
delay τ = τo + τtr, however, is more subtle: There is a range of
τo where varying τ yields reentrant behavior with alternating
synchronizable and unsynchronizable regions (as can be seen
by considering suitably chosen horizontal cuts for fixed τo

in Fig. 9). Thus, in this region (for fixed local delays τo),
stabilization of the system can also be achieved by increasing
the transmission delays.

In the special case γ = 0, the network is always synchro-
nizable for all N , and the width can be obtained exactly (see

0 10 20
τ

0.98

1

〈w
2 〉

N = 10
4

N = 10
3

N = 10
2

FIG. 10. (Color online) Analytic results for stationary-state
widths for fully-connected networks of several sizes for the special
case γ = 0 [Eq. (32)]. Here D = 1 and σ = 1.
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FIG. 11. (Color online) Time series of the fluctuations of a single
mode for several delays obtained from numerical integration of
Eq. (35) with γ = 0.5, λ = 1.8, D = 1, and �t = 0.01, averaged
over 103 realizations of the noise ensemble.

Appendix B 2 b),

〈w2(∞)〉 = 1

N

N−1∑
k=1

〈
h̃2

k(∞)
〉

= D(N − 1)

N

α + σ
N−1 sinh(ατ )

α
[
σ + σ

N−1 cosh(ατ )
] (32)

with α = σ
√

1 − 1/(N − 1)2, as shown in Fig. 10. For τ =
τtr → ∞, the above expression becomes

〈w2(∞)〉 = D(N − 1)

N

1

σ
√

1 − 1/(N − 1)2
. (33)

B. Locally weighted networks

Now we consider Eq. (28) with specific locally weighted
couplings (already utilized for uniform local time delays in
Sec. II D), Cij = σAij /ki . The set of differential equations
then have the form

∂thi(t) = − σ

ki

∑
j

Aij [hi(t − γ τ ) − hj (t − τ )] + ηi(t)

= − σ

ki

∑
j

Lijhj (t − τ ) + σhi(t − τ )

− σhi(t − γ τ ) + ηi(t)

= −σ
∑

j

�ijhj (t − τ ) + σhi(t − τ )

− σhi(t − γ τ ) + ηi(t), (34)

where σ controls the coupling strength and � = K−1L is
now the locally weighted network Laplacian (Kij = δij ki , and
Lij = δij

∑
l Ail − Aij = δij ki − Aij ). Diagonalization yields

∂t h̃k(t) = σ (1 − λk)h̃k(t − τ ) − σ h̃k(t − γ τ ) + η̃k(t), (35)

where λk is the eigenvalue of the kth mode of the normalized
graph Laplacian K−1L. Figure 11 shows the evolutions of a
particular mode with delays on either side of the critical delay.

The characteristic equation for the kth mode is then

gk(s) = s + σ (λk − 1)e−τs + σe−γ τs = 0. (36)

Defining the new scaled variable z = τs, this equation
becomes

z + (στ )(λk − 1)e−z + (στ )e−γ z = 0. (37)

Hence, the solutions of the original characteristic equation
depends on σ and τ in the form of skα = τ−1zkα(στ ).
Although the scaling function of the width in the case of
locally normalized couplings with two time delays cannot be
expressed in a closed form, the general scaling behavior is
identical to Eq. (26) [as follows from the formal solution shown
in Appendix D, Eq. (D11)], i.e., 〈w2(∞)〉σ,τ = DτF (στ ). The
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FIG. 12. (Color online) Comparison of (a) the widths and (b) the scaled widths for several coupling strengths σ on a typical locally weighted
BA network of size N = 100 and 〈k〉 ≈ 6 for γ = 0.2; simulated with D = 1 and �t = 0.001.
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FIG. 13. (Color online) Synchronization boundaries for several modes with (a) λk � 1 and (b) λk � 1 of a weighted network, obeying
Eq. (35) and determined by analyzing the zeros of Eq. (37).

corresponding scaling behavior and scaling collapse, obtained
from numerical integration of Eq. (34), are shown in Fig. 12.

The stability or synchronization boundary was again de-
termined by employing Cauchy’s argument principle [76,77],
applied separately for each mode (Appendix C). Figure 13
shows the most important eigenvalues to determine syn-
chronizability: The greatest restriction to the critical delay
τc = (τo + τtr)c for a given γ belongs to either the smallest
or largest eigenvalues. An alternative presentation is given in
Fig. 14, which shows that it is not always the same eigenvalue
that consistently limits synchronizability for all values of γ ;
rather it is the eigenvalue that falls on the lowest point on the
boundary curve. The contributions of a few example modes
to the width are shown in Fig. 15(a). Note that the order of
divergences is not the same as the ordered eigenvalues, in
accordance with Fig. 13. The contributions of a single mode
for various values of γ is shown in Fig. 15(b). Since it is τo

that has a greater impact on whether or not a network can
synchronize, larger total delays τ are tolerated for smaller γ

since more of the delay comes from transmission. Because
of the great sensitivity of 〈h2〉 on �t near the divergence for
longer delays, an adaptive algorithm was implemented, which
would halve �t until consecutive runs agreed within 1%.

With this understanding of the underlying modes, let us
return to synchronization of the entire system. Incorporating all
relevant eigenvalues results in the synchronization boundary
shown in Fig. 16(a) for several representative networks. The
cut for a carefully chosen local delay in Fig. 16(b) shows the
previously mentioned reentrant behavior as the transmission
delay is increased. Note that the optimal width within each
synchronizable region worsens with larger delay, so that
while synchronizability can be recovered with increasing
τtr, better synchronization is possible by decreasing τtr. To
compare the contribution of modes within the synchronizable
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FIG. 14. (Color online) Synchronization boundaries determined by analyzing the zeros of Eq. (37) for various delay ratios γ , shown
separately for (a) γ � 0.5 and (b) γ � 0.6.
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FIG. 15. (Color online) Width contributions for (a) several modes with γ = 0.3 and (b) several delay ratios with λ = 1.2, found by
numerically integrating Eq. (35) with D = 1 and σ = 1. The vertical lines correspond to the stability limits obtained from the analyses of the
zeros of Eq. (36) with the same λ.

regime, consider again the two topologies of BA and ER
graphs. For fixed γ , Fig. 17 shows that a BA graph remains
synchronizable for larger delays than a ER graph when the
link strengths are weighted by node degree. However, the ER
graph synchronizes slightly better for the majority of the time
that it is synchronizable. Here it is not the topology but the
ratio γ that has the most drastic effect.

When γ < 1, the mode corresponding to λ0 = 0 includes
self-interaction terms and has the critical delay

τc(λ = 0) = π

1 + γ

1∣∣ cos
(
π

1−γ

1+γ

)∣∣ . (38)

While the uniform mode does not contribute to the width
because h̄ is removed from the state of the network (see
Appendix D), a diverging mean can introduce egregious
truncation errors into the numerical integration if h̄ diverges

exponentially while the width remains finite. Fortunately, this
can be avoided by simulating the network in the subspace
lacking the zero mode by removing the mean from each time
slice. Since the uniform mode is not allowed propagate, it does
not cause any problem with finite precision. The locations
of the zeros’ real parts for Eq. (37) are tracked again using
Cauchy’s argument principle (see Appendix C).

C. Arbitrary couplings and multiple delays

When there are multiple time delays involved in the syn-
chronization or coordination process, in general, one cannot
diagonalize the underlying system of coupled equations. This
happens to be the case for the scenario with two types of
time delay [Eq. (28)] on unweighted (or globally weighted)
graphs (as opposed to specific locally weighted ones discussed
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FIG. 16. (Color online) Synchronization boundaries for typical (a) ER and (b) BA networks of several sizes with locally weighted couplings.
The boundaries are found by numerical diagonalization and examining each mode through Eq. (36). (c) Widths along a slice of constant τo = 0.77
for the same N = 100 BA network used in (b). For stability comparison, the boundary is shown below with the slice indicated.

056114-11



D. HUNT, B. K. SZYMANSKI, AND G. KORNISS PHYSICAL REVIEW E 86, 056114 (2012)

0 2 4 6 8
στ

0

1

2

〈w
2 〉/τ

BA γ = 0.1
ER γ = 0.1
BA γ = 0.3
ER γ = 0.3

FIG. 17. (Color online) The scaling functions of a typical locally
weighted BA network and a typical ER network for two delay ratios,
with both networks of size N = 100, found by numerically integrating
Eq. (34) with D = 1 and �t = 0.001. The vertical lines correspond to
the stability limits obtained from the analyses of the zeros of Eqs. (37).

in Sec. III B). First, we briefly present a generally applicable
method to determine the region of synchronizability or stability
computationally [76,77]. For arbitrary couplings Cij , the
deterministic part of Eq. (28) (from which one can extract
the characteristic equation) becomes

∂thi(t) = −Cihi(t − τo) +
∑

j

Cijhj (t − τ ), (39)

where Ci = ∑
l Cil and τ = τo + τtr. After Laplace transform,

these equations become

sĥi(s) = −Ciĥi(s)e−sτo +
∑

j

Cij ĥj (s)e−sτ , (40)

or equivalently,∑
j

(sδij + Ciδij e
−sτo − Cij e

−sτ )ĥj (s) = 0. (41)

Hence, nontrivial solutions of the above system of equations
require

det M(s) = 0, (42)

where

Mij (s) = sδij + Cie
−sτoδij − Cij e

−sτ . (43)

Stability or synchronizability requires that Re(s) < 0 for
all solutions of the above (transcendental) characteristic
equation [Eq. (42)]. To identify the stability boundary of this
coupled system, one does not need to know and determine
the (infinitely many) complex solutions of the characteristic
equation, but only whether all solutions have negative real
parts. To test that, one again can employ the argument principle
[76,77] (Appendix C). Note that the above method can be
immediately generalized to arbitrary heterogeneous (local and
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FIG. 18. (Color online) Scaled width curves for a typical BA
network compared to those of a typical ER network of size N =
100 with 〈k〉 ≈ 6 and D = 1, determined by numerically integrating
Eq. (28) for the two types of coupling schemes with γ = 0.1 and
�t = 0.01.

transmission) time delays. To compare synchronizability with
locally weighted couplings of the same cost [Eq. (34)], here we
considered Cij = σAij /〈k〉. The results are shown in Fig. 18.
The synchronization boundary was determined using the above
scheme, while the width was obtain by numerically integrating
Eq. (28). Not only does local reweighting of the coupling
strength improve synchronization, but it also extends the region
of synchronizability.

IV. SUMMARY

Through our investigations we have explored the impact
and interplay of time delays, network structure, and coupling
strength on synchronization and coordination in complex
interconnected systems. Here we considered only linear
couplings, already yielding a rather rich phase diagram and
response. While nonlinear effects are crucial in all real-life
applications [9,51–53], linearization and stability analysis
about the synchronized state yields equations analogous to the
ones considered here [8,10]. Hence, the detailed analysis of
the linear problems can provide some insights to the complex
phase diagrams and response of nonlinear problems.

For a single uniform local delay, the synchronizability of
a network is governed solely by the largest eigenvalue and
the time delay. This result links the presence of larger hubs to
the vulnerability of the system becoming unstable at smaller
delays. The quality of synchronization within the stable regime
is described by the width, which can be enumerated exactly
for arbitrary symmetric couplings, provided the spectrum is
known. We have also established the boundaries of the region
of synhronizability in terms of the delay and the overall
coupling strength (associated with communication rate) and
provided the general scaling behavior of the width inside this
region. Our results underscored the importance of the interplay
of stochastic effects, network connections, and time delays, in
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that how “less” (in terms of local communication efforts) can
be “more” efficient (in terms of global performance).

For more general schemes with multiple time delays, we
have shown how stability analysis in general delay differential
equations can be applied to ascertain the synchronizability of
a network. For cases where, at least in principle, eigenmode
decomposition is possible, we have identified the general scal-
ing behavior of the width within the synchronizable regime.
However, in these cases it is not always the same eigenvalue
that determines stability for all γ . In the nonmonotonic nature
of the scaling function, we see that there is a fundamental
limit to how well a network can synchronize in the presence
of noise. In the case when transmission and reaction are
two independent and significant sources of delay, there is
an additional parameter for tuning: the ratio of local delay
to the total delay. By fixing the local delay and cutting
across different values of the ratio, there is the possibility that
the network will enter into and emerge from synchronizable
regions. Understanding these influences can guide network
design in order to maintain and optimize synchronization by
balancing the trade-offs in internodal communication and local
processing.
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APPENDIX A: STEADY-STATE FLUCTUATIONS FOR A
SINGLE-VARIABLE STOCHASTIC DELAY EQUATION

For a single (linearized) stochastic variable h(t) with
multiple time delays {τω}�ω=1 and delta-correlated noise, one
starts with the following general form

∂th(t) = A0h(t) +
�∑

ω=1

Aωh(t − τω) + η(t), (A1)

where 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). Formally, the noise η(t) plays
the role of the inhomogeneous part of the above inhomo-
geneous linear first-order differential equation. Performing
Laplace transformation [ĥ(s) = ∫ ∞

0 e−sth(t) dt], the charac-
teristic polynomial g(s) (and the corresponding characteristic
equation) associated with the homogeneous (deterministic)
part of the above equation becomes

g(s) ≡ s − A0 −
S∑

ω=1

Aωe−τωs = 0. (A2)

For the initial condition h(t) ≡ 0 for t � 0 (which we
employ throughout this paper), we can easily obtain the
Laplace transformed Green’s function of Eq. (A1) (i.e., the
solution when η(t) is replaced by δ(t − t ′)), which has the form

Ĝ(s) = e−st ′

g(s)
. (A3)

Performing the inverse transform, one finds

G(t,t ′) = 1

2πi

∫ x0+i∞

x0−i∞
dsest Ĝ(s)

= 1

2πi

∫ x0+i∞

x0−i∞
ds

es(t−t ′)

g(s)
= �(t − t ′)

∑
α

esα (t−t ′)

g
′ (sα)

,

(A4)

where sα (α = 1,2, . . .) are the zeros of the characteristic
equation g(s) = 0 on the complex plane [Eq. (A2)]. In the
above inverse transform, the infinite line of integration is
parallel to the imaginary axis (s = x0) and is chosen to be
to the right of all zeros of the characteristic polynomial in
order to apply the residue theorem by closing the contour
with an infinite semicircle to the left of this line. Note that
the Green’s function G(t,t ′) depends only on the variable
t − t ′, reflecting the time translation symmetry of the problem.
Utilizing the Grenn’s function, we can now formally write the
general solution of Eq. (A1) (for the same initial conditions) as

h(t) =
∫ ∞

0
dt ′G(t,t ′)η(t ′) =

∫ t

0
dt ′G(t,t ′)η(t ′)

=
∫ t

0
dt ′

∑
α

esα (t−t ′)

g
′(sα)

η(t ′). (A5)

For more general initial conditions, see Ref. [78].
After averaging over the noise, one finds that the fluctua-

tions of h(t) are

〈h2(t)〉

=
〈∫ t

0
dt ′η(t ′)

∑
α

esα (t−t ′)

g
′(sα)

∫ t

0
dt ′′η(t ′′)

∑
β

esβ (t−t ′′)

g
′(sβ)

〉

=
∫ t

0
dt ′

∫ t

0
dt ′′

∑
α

esα (t−t ′)

g
′(sα)

∑
β

esβ (t−t ′′)

g
′(sβ)

〈η(t ′)η(t ′′)〉

=
∑
α,β

1

g
′(sα)g′(sβ)

∫ t

0
dt ′

∫ t

0
dt ′′esα (t−t ′)esβ (t−t ′′)2Dδ(t ′−t ′′)

=
∑
α,β

2D

g
′(sα)g′(sβ)

∫ t

0
dt ′ e(sα+sβ )(t−t ′)

=
∑
α,β

−2D(1 − e(sα+sβ )t )

g
′(sα)g′(sβ)(sα + sβ)

. (A6)

As is explicit from the above equation, the zero with the
largest real part of all sα governs the long-time behavior of the
stochastic variable h(t). In particular, h(t) reaches a stationary
limit distribution for t → ∞ with a finite variance if and only
if Re(sα) < 0 for all α. In this case,

〈h2(∞)〉 =
∑
α,β

−2D

g
′(sα)g′(sβ)(sα + sβ)

, (A7)

otherwise it diverges exponentially with time. Note that the
condition for the existence of an asymptotic stationary limit
distribution is the same as the one for the stability of the
deterministic (homogeneous) part of Eq. (A1) about the hi = 0
fixed point [5,18].
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APPENDIX B: EXACT SCALING FUNCTIONS
FOR TIME-DELAYED STOCHASTIC

DIFFERENTIAL EQUATIONS

Küchler and Mensch [38] obtained the analytic stationary-
state autocorrelation function for the stochastic delay-
differential equation,

∂th(t) = ah(t) + bh(t − τ ) + η(t), (B1)

with 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). Special cases (with suitably
chosen coefficients a and b) can be directly utilized for two of
our special cases in our network investigations. Specifically,
for (1) unweighted networks with symmetric couplings and
uniform local time delays with no transmission delays and
(2) the case with only transmission delays on the complete
graph, to be discussed at the end of this Appendix, in
Appendix B 2 a and Appendix B 2 b, respectively. Here we
briefly present an equivalent derivation of their results, using
the formalism used in our paper.

We define the stationary-state autocorrelation function
as

K(t) = 〈h(t ′)h(t ′ + t)〉, (B2)

where it is implicitly assumed that t ′ → ∞. From this defini-
tion and the invariance under time translation in the stationary
state, it follows that the interpretation of the autocorrelation
function can be formally extended to t < 0 by

K(t) = 〈h(t ′)h(t ′ + t)〉 = 〈h(t ′ + t)h(t ′)〉
= 〈h(t ′)h(t ′ − t)〉 = K(−t), (B3)

and also

K̇(t) = −K̇(−t). (B4)

As one would like to obtain a directly solvable equation
of motion for the autocorrelation function, one must first
find expressions for its time derivatives. Employing the
equation of motion for h(t) [Eq. (B1)], we obtain for t � 0
that

K̇(t) = ∂tK(t) = ∂t 〈h(t ′)h(t ′ + t)〉 = 〈h(t ′)∂th(t ′ + t)〉
= 〈h(t ′){ah(t ′ + t) + bh(t ′ + t − τ ) + η(t ′ + t)}〉
= a〈h(t ′)h(t ′ + t)〉 + b〈h(t ′)h(t ′ + t − τ )〉

+ 〈h(t ′)η(t ′ + t)〉 (B5)

= aK(t) + bK(t − τ ), (B6)

where in the last step we used 〈h(t ′)η(t ′ + t)〉 = 0 (i.e., Itô’s
convention [54,79]). The above expression, combined with the
(analytic) extension of the autocorrelation function in Eq. (B3),
yields the condition

K̇(0) = aK(0) + bK(τ ) (B7)

in the limit of t → +0. Differentiating Eq. (B6) again with
respect to t and exploiting the properties of Eqs. (B3) and
(B4), we find

K̈(t) = aK̇(t) + bK̇(t − τ ) = aK̇(t) − bK̇(τ − t)

= a{aK(t) + bK(t − τ )} − b{aK(τ − t) + bK(−t)}
= a{aK(t) + bK(t − τ )} − b{aK(t − τ ) + bK(t)}
= (a2 − b2)K(t). (B8)

Note that the reduction of the equation of motion of the
autocorrelation function to a second order ordinary differential
equation (with no delay) is a consequence of Eq. (B1) having
only one delay time-scale. The general solution of Eq. (B8)
can be written as

K(t) = A cos (ωt) + B sin (ωt) (B9)

with ω = √
b2 − a2. From the definition of the autocorrelation

function in Eq. (B2) and from some of the basic properties of
the Green’s function (see Appendix B 1 below for details), it
also follows [38] that

K̇(0) = lim
t→0

∂t 〈h(t ′)h(t ′ + t)〉 = −D, (B10)

and from Eq. (B7),

aK(0) + bK(τ ) = −D. (B11)

Thus, the second order ordinary differential equation
Eq. (B8) with conditions Eqs. (B10) and (B11) can now be
fully solved, yielding

A = K(0) = D
−ω + b sin (ωτ )

ω[a + b cos (ωτ )]
(B12)

and

B = K̇(0)

ω
= −D

ω
. (B13)

Finally, the stationary-state variance of the stochastic
variable governed by Eq. (B1) can be written as

〈h2(t)〉 = 〈h(t)h(t)〉 = K(0) = D
−ω + b sin (ωτ )

ω[a + b cos (ωτ )]
. (B14)

Following the aforementioned technical detours and details
in Appendix B 1, we will discuss in Appendix B 2 the
applications of the above result to obtain the scaling function of
the fluctuations for the individual modes in specific networks.

1. General properties of the autocorrelation function
and the Green’s function

From the definition of the autocorrelation function in
Eq. (B2) and of the Green’s function in Eq. (A5), it follows
that

K(t) = 〈h(t ′)h(t ′ + t)〉 =
〈∫ t ′

0
du G(t ′,u)η(u)

∫ t ′+t

0
dv G(t ′ + t,v)η(v)

〉

=
∫ t ′

0
du

∫ t ′+t

0
dv G(t ′,u)G(t ′ + t,v)〈η(u)η(v)〉 = 2D

∫ t ′

0
du G(t ′,u)G(t ′ + t,u), (B15)
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and consequently

K̇(t) = ∂t 〈h(t ′)h(t ′ + t)〉 = 2D∂t

∫ t ′

0
du G(t ′,u)G(t ′ + t,u) = 2D

∫ t ′

0
du G(t ′,u)∂tG(t ′ + t,u)

= 2D

∫ t ′

0
du G(t ′,u)(−∂u)G(t ′ + t,u) = −2D

∫ t ′

0
du G(t ′,u)∂uG(t ′ + t,u). (B16)

Hence,

K̇(0) = −2D lim
t→0

∫ t ′

0
du G(t ′,u)∂uG(t ′ + t,u) = −2D

∫ t ′

0
du G(t ′,u)∂uG(t ′,u) (B17)

= −2D

∫ t ′

0
du ∂u

G(t ′,u)2

2
= −D{G(t ′,t ′) − G(t ′,0)} = −D{1 − 0} = −D, (B18)

where in the second term of the last expression above we
now explicitly exploited that G(t ′,t ′) = 0 and G(t ′,0) → 0 as
t ′ → ∞. The former can be seen by a segment-by-segment
integration and solution of Eq. (B1) with a delta source δ(t −
t ′) in the intervals (t − t ′) ∈ [nτ,(n + 1)τ ], n = 0,1,2, . . .

[38]; the solution in the [0,τ ] interval is particularly simple,
G(t,t ′) = exp[a(t − t ′)]. The latter property is trivial in that
the magnitude of the Green’s function in the stationary state
has to decay for large arguments.

2. Applications to special cases

a. Unweighted symmetric couplings with uniform local delays

For symmetric couplings Cij with uniform local delays, the
Laplacian �ij = δij

∑
l Cil − Cij in Eq. (7) can, in principle,

be diagonalized. Each mode is governed by Eq. (8), a special
case of Eq. (B1) with a = 0, b = −λ, and ω = |b| = λ (λ
being the eigenvalue of the respective mode). From Eq. (B14),
the steady-state variance of each mode then reduces to

〈h2(∞)〉 = D
1 + sin (λτ )

λ cos (λτ )
= Dτ

1 + sin (λτ )

λτ cos (λτ )
= Dτf (λτ ),

(B19)

yielding the analytic scaling function for each mode

f (x) = 1 + sin (x)

x cos (x)
, (B20)

with the scaling variable x = λτ .

b. Complete graphs with only uniform transmission delays

The exact stationary-state variance of Eq. (B1) can also be
applied to complete graphs with global coupling σ , which have
no local delays but do have uniform transmission delays, i.e.,
Eq. (30) with γ = 0, translating to a = −σ , b = −σ/(N − 1)
in Eq. (B1). The analytic expression from Eq. (B14) for the
stationary-state variance for each (nonuniform) mode becomes

〈h2(∞)〉 = D
α + σ

N−1 sinh(ατ )

α
[
σ + σ

N−1 cosh(ατ )
] , (B21)

with α = √
a2 − b2 = σ

√
1 − 1/(N − 1)2.

APPENDIX C: APPLICATION OF CAUCHY’S ARGUMENT
PRINCIPLE WITH IMPLEMENTATION

For an arbitrary complex analytic function F (z), the number
of zeros NC inside a closed contour C (provided F (z) has no
poles or singularities inside C) is given by Cauchy’s argument
principle (see, e.g., Ref. [80]):

NC = 1

2πi

∮
C

F ′(z)

F (z)
dz = 1

2π
�C arg F (z), (C1)

where �C arg F (z) is the winding number of F (z) along the
closed contour C. The characteristic equations studied in this
paper can all be written as a sum of exponentials; hence there
are no singularities. To determine the stability boundary, we
follow Refs. [76,77] and use Eq. (C1) to track the number
of zeros of the characteristic equations with positive real part
(i.e., on the positive real half plane) by substituting Eqs. (36)
and (42) for F (z). We employed a numerical algorithm [76]
for enumerating the winding number with adaptive step
size. We restate the method here: A step of size h along
the contour in the direction ι̂ from s to s + hι̂ is accepted
if θ (s,s + (h/2)ι̂ < θ (s,s + hι̂) < ε = 1 where θ (s,s ′) ≡
|arg( det M(s)) − arg( det M(s ′))|mod2π . The subsequent step
size is then h → max{2,ε/�}; unacceptable steps are retried
with h → h/2. The winding number is the count of the number
of crossings of π without a return in the opposite direction.

We choose the contour so that it detects the first zero to cross
the imaginary axis and acquire a positive real part. Note that the
mode corresponding to the zero eigenvalue allows the solution
z = 0 for Eq. (37), so the zero at the origin is ignored. This
can be easily achieved by choosing the left edge of the contour
to be nonzero but still very small. This method can be applied
to any network structure with any delay scheme, provided the
approximate general behavior of the zeros is understood.

As an example, consider the simplest system of two coupled
nodes with uniform delay, which has a critical delay of π/4.
Figure 19 shows two cases explored while finding the critical
delay. In Fig. 19(a), τ = π/5 < τc and all real parts are
nonpositive so none fall within the contour. Tracking the
argument (right column) shows that the winding number is
correspondingly zero to verify that the delay is subcritical.
Alternatively, τ = π/3 > πc in Fig. 19(b), and there do indeed
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]

Re[s]

Im
[s

]

(a)

(b)

FIG. 19. (Color online) Numerical integration of Eq. (C1) to
identify the presence of zeros in the cases of a system of two coupled
nodes (τc = π/4) for (a) τ = π/5 and (b) τ = π/3. The left column
shows the zeros and the points sampled along the contour; the right
column shows the argument of the characteristic function (angular
coordinate) at these steps (radial coordinate).

exist zeros with positive real parts that fall within the contour.
The argument winds around the origin twice, signaling the
presence of the first two zeros to cross the imaginary axis,
indicating instability.

APPENDIX D: THE UNIFORM MODE AND THE WIDTH

1. Eigenmode decomposition

In synchronization and coordination problems, it is natural
to define an observable such as the width, which measures
fluctuations with respect to the global mean,

w2(t) = 1

N

N∑
i=1

[hi(t) − h̄(t)]2, (D1)

where h̄(t) = ∑N
i=1 hi(t). In what follows, we show that the

amplitude associated with the uniform mode of the normalized
Laplacian automatically drops out from the width. (In the case
of unnormalized symmetric coupling, the expression for the
width simplifies to the known form.)

For our problem with two types of time delays and locally
normalized couplings [Eq. (34)], decomposition along the
right eigenvectors of K−1L facilitates diagonalization. While
this normalized Laplacian is a nonsymmetric matrix, its
eigenvalues are all real and non-negative (with the smallest
being zero, λ0 = 0). The corresponding (normalized) right
eigenvector is

|e0〉 = N−1/2(1,1, . . . ,1)T . (D2)

Note that since the normalized Laplacian is nonsymmetric,
the eigenvectors are not orthogonal, i.e., 〈el|ek〉 �= δlk . To
ease notational burden, in this subsection we use the bra-ket

notation, not to be confused with ensemble average over the
noise. In this notation, 〈·| is a row vector and |·〉 is a column
vector, e.g., 〈e0| = N−1/2(1,1, . . . ,1). Using this notation, the
state vector is denoted by

|h(t)〉 = (h1(t),h2(t), . . . ,hN (t))T , (D3)

while the state vector relative to the mean is

|h(t) − h̄(t)〉 = (h1(t) − h̄(t),h2(t) − h̄(t), . . . ,hN (t) − h̄(t))T

= (h1(t),h2(t), . . . ,hN (t))T − h̄(t)(1,1, . . . ,1)T

= |h(t)〉 − h̄(t)
√

N |e0〉 = (1 − |e0〉〈e0|)|h(t)〉.
(D4)

Employing the above formalism, the width can be written as

w2(t) = 1

N

N∑
i=1

[hi(t) − h̄(t)]2 = 1

N
〈h − h̄|h − h̄〉. (D5)

Now we express the state vector as the linear combination
of the eigenvectors of the underlying Laplacian,

|h(t)〉
N−1∑
k=0

h̃k(t)|ek〉. (D6)

Employing the above eigenmode decomposition,
〈h − h̄|h − h̄〉 can be written as

〈h − h̄|h − h̄〉 = 〈h|(1 − |e0〉〈e0|)2|h〉 = 〈h|(1 − |e0〉〈e0|)|h〉

=
N−1∑
k=0

h̃k(t)〈ek| (1 − |e0〉〈e0|)
N−1∑
l=0

h̃l(t)|el〉

=
N−1∑
k,l=0

h̃k(t)h̃l(t)〈ek| (1 − |e0〉〈e0|) |el〉

=
N−1∑
k,l=0

h̃k(t)h̃l(t) (〈ek|el〉 − 〈ek|e0〉〈e0|el〉)

=
∑
k,l �=0

h̃k(t)h̃l(t) (〈ek|el〉 − 〈ek|e0〉〈e0|el〉)

=
∑
k,l �=0

h̃k(t)h̃l(t) (Ekl − Ek0E0l) , (D7)

where Ekl ≡ 〈ek|el〉. As can be seen explicitly from Eq. (D7),
the terms where either k or l are zero drop out from
the sum (as E00 = 1). It is also clear from Eq. (D7) that
〈h − h̄|h − h̄〉 = ∑

k �=0 h̃2
k(t) when the underlying coupling

is symmetric (and consequently the eigenvectors form an
orthogonal set, Ekl = δkl). Finally, the width can be written as

w2(t) = 1

N

N∑
i=1

[hi(t) − h̄(t)]2 = 1

N
〈h − h̄|h − h̄〉

= 1

N

∑
k,l �=0

h̃k(t)h̃l(t) (Ekl − Ek0E0l). (D8)

Note that the above result can be immediately applied
to the case of symmetric coupling with no transmission
delays [Eq. (7)]. There, the eigenvectors of the corresponding
Laplacian form an orthogonal set, and the above expression
collapses to w2(t) = 1

N

∑N−1
k=1 h̃2

k(t) [11].
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2. Ensemble average over the noise

We now use the general form of the solution given in
Appendix A [Eq. (A5)] for the respective eigenmodes of
normalized Laplacian coupling with two types of time delays
[Eq. (35)], giving

h̃k(t) =
∫ t

0
dt ′

∑
α

eskα (t−t ′)

g
′
k(skα)

η̃k(t ′), (D9)

where skα is the αth solution of the kth mode for the
characteristic equation gk(s) = 0 [Eq. (36)]. After averaging

over the noise, one obtains for the two-point function

〈h̃k(t)h̃l(t)〉 = −2Dχkl

∑
α,β

(1 − e(skα+slβ )t )

g
′
k(skα)g

′
l(slβ)(skα + slβ)

. (D10)

In the stationary state, one must have Re(skα) < 0 for all k

and α. Thus, the stationary state width can be written as

〈w2(∞)〉 = lim
t→∞

1

N

∑
k,l �=0

〈h̃k(t)h̃l(t)〉 (Ekl − Ek0E0l)

= −2D

N

∑
k,l �=0

∑
α,β

(Ekl − Ek0E0l) χkl

g
′
k(skα)g

′
l(slβ)(skα + slβ)

. (D11)
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