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Complex networks possess a rich, multiscale structure reflecting the dynamical and functional organization of
the systems they model. Often there is a need to analyze multiple networks simultaneously, to model a system by
more than one type of interaction, or to go beyond simple pairwise interactions, but currently there is a lack of
theoretical and computational methods to address these problems. Here we introduce a framework for clustering
and community detection in such systems using hypergraph representations. Our main result is a generalization
of the Perron-Frobenius theorem from which we derive spectral clustering algorithms for directed and undirected
hypergraphs. We illustrate our approach with applications for local and global alignment of protein-protein
interaction networks between multiple species, for tripartite community detection in folksonomies, and for
detecting clusters of overlapping regulatory pathways in directed networks.
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I. INTRODUCTION

Complex networks in nature and society represent in-
teractions between entities in inhomogeneous systems and
understanding their structure and function has been the focus of
much research. On the macroscopic scale, complex networks
are characterized by, among others, a degree distribution,
characteristic path length, and clustering coefficient, which are
markedly different from those of regular lattices or uniformly
distributed Erdős-Rényi random graphs [1,2], while on the
microscopic scale, they contain network motifs, i.e., small
subgraphs occurring significantly more often than expected
by chance [3]. The intermediate level usually exhibits the
presence of communities or modules, i.e., sets of nodes with
a significantly higher than expected density of links between
them, with typical examples being friendship circles in social
networks, websites devoted to similar topics in the World Wide
Web, or protein complexes in protein interaction networks
[4–7].

However, the limitations of modeling a complex system by
a network with a single type of pairwise interaction are be-
coming more and more clear. Folksonomies, i.e., online social
communities where users apply tags to annotate resources such
as images or scientific articles, have a tripartite structure with
three types of interactions [8,9]. In biology, cellular systems are
characterized by different types of networks which represent
different physical interaction mechanisms operating on differ-
ent time scales, intertwined with each other through extensive
feedforward and feedback loops [10,11]. To understand how
evolutionary dynamics shapes molecular interaction networks,
we need to compare them between multiple species with
nontrivial many-to-many relations between their respective
node sets [12]. In order to move beyond simple networks
of pairwise interactions to model these and other systems,
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one suggestion has been to use hypergraphs, where edges
are arbitrarily sized subsets of nodes. Although a number
of studies have generalized various concepts, from graph
theory to hypergraphs [8,9,13–16], a rigorous mathematical
foundation and general-purpose algorithm for clustering and
community detection in hypergraphs is still lacking.

Here we present a framework for spectral clustering
in hypergraphs, which is mathematically sound and
algorithmically efficient. It is based on a generalization of
the Perron-Frobenius theorem, which allows one to define
and compute a dominant eigenvector for hypergraphs and use
its values for optimally partitioning the hypergraph’s vertex
set, similar to the operation of standard spectral clustering
algorithms in ordinary graphs [17]. We demonstrate the
validity of our approach through practical applications in the
analysis of real-world networks. In particular, we address
the following problems. First, if two networks are defined on
separate node sets with a many-to-many mapping between
them (for instance, protein-protein interaction networks in
different species), it is a natural question to find matching
communities in the two networks. This is the so-called
network alignment problem [12]. We show that this problem
can be solved by finding clusters in a hypergraph where each
hyperedge consists of two matching edges, with one from
each network (see Sec. VIII A). Second, if multiple networks
are defined on the same node set (i.e., together they form an
edge-colored graph), there often exist functionally meaningful,
higher-order relations between the different edge types (for
instance, tripartite relations in folksonomies [8,9] or network
motifs in biological networks [10,11]). Finding communities
or modules with respect to these higher-order relations is what
we call the network integration problem. Here we show that
any higher-order edge relation between different networks
defines a subgraph pattern in the corresponding edge-colored
graph and that all instances of this pattern form a hypergraph.
Hypergraph-based clustering can then be applied to identify
modules in such edge-colored graphs (see Secs. VIII B and
VIII C).
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II. GRAPHS AND HYPERGRAPHS

A graph G is defined as a pair (V,E) of vertices V and edges
(pairs of vertices) E , which may or may not be directed. In
a weighted graph, a number is assigned to each edge which
may represent, e.g., the cost, length, or reliability of an edge. A
hypergraph is a generalization of a graph where an edge, called
hyperedge in this case, can connect any number of vertices, i.e.,
E is a set of arbitrarily sized subsets of V . A particular class of
hypergraphs are so-called k-uniform hypergraphs where each
hyperedge has the same cardinality k. Algebraically, a graph
can be represented by an adjacency matrix A of dimension
N × N , with N the number of vertices, such that Aij = 1
if {i,j} ∈ E , and 0 otherwise. For undirected graphs, A is a
symmetric matrix, and for weighted graphs, Aij is defined to
be the weight of the edge {i,j}. For k-uniform hypergraphs, the
notion of adjacency matrix can be generalized to an adjacency
multiarray or tensor T , with Ti1,...,ik = 1 if {i1, . . . ,ik} ∈ E , and
0 otherwise. For a general hypergraph, we define a function w

on the set of subsets of V such that w(E) = 1 for E ∈ E , and 0
otherwise. In general, we allow weighted hypergraphs where
w can be any non-negative function.

A path between two vertices i and j in a hypergraph
is defined as a sequence of vertices i = i1,i2, . . . ,ik+1 = j

and edges E1, . . . ,Ek such that for all m, {im,im+1} ⊂ Em. A
hypergraph is called connected if there exists a path between
any pair of vertices. A stronger constraint on the structure of
a hypergraph is that of irreducibility. A hypergraph is said to
be reducible if there exists a proper vertex subset I ⊂ V such
that for any i ∈ I and j1, . . . ,jm �∈ I , w({i,j1, . . . ,jm}) = 0,
and is said to be irreducible if it is not reducible. For ordinary
graphs, connectedness and irreducibility are equivalent, but for
hypergraphs this is not the case. An irreducible hypergraph is
clearly connected, but the opposite is not always true. Indeed, if
there exists a subset of vertices I such that paths crossing from
i ∈ I to j �∈ I can always be chosen to do so through an edge
of the form {i1, . . . ,ik,j1, . . . ,jm}, with k � 2, i1, . . . ,ik ∈ I ,
and j1, . . . ,jm �∈ I , then we can set w({i,j1, . . . ,jm}) = 0 for
all i ∈ I and j1, . . . ,jm �∈ I , thereby making the hypergraph
reducible, without breaking its connectivity.

Directed hypergraphs can be defined in many ways. For
instance, for k-uniform hypergraphs, we can impose any form
of permutation symmetry, or lack thereof, between some or
all of the k dimensions in each edge. In this paper, we will
only consider the case where each edge E can be written
as a pair (S,T ), where S ⊂ V is called the “source” vertex
set and T ⊂ V is called the “target” vertex set, with weight
function w(S,T ). Underlying a directed hypergraph, there is
always an undirected hypergraph with edges E = S ∪ T for
every directed edge (S,T ). As is the case for ordinary directed
graphs, a stronger notion of connectivity is usually needed
than simple connectivity of this undirected hypergraph. We
defer the somewhat technical definition of strong connectivity
of directed hypergraphs to Appendix A.

III. DOMINANT EIGENVECTORS AND SPECTRAL
GRAPH CLUSTERING

Although countless measures have been designed to define
clusters in a graph [5–7], perhaps the simplest definition is that

a cluster is a subset of vertices with a high number of edges
between them, relative to its size. Mathematically, for a graph
with adjacency matrix A, the edge-to-node ratio of a subset
X ⊂ V can be written as

S(X) =
∑

i,j∈X Aij

|X| ,

where |X| denotes the number of elements in X. The number
of subsets of a set with N elements grows exponentially in
N and hence finding the subset with a maximal edge-to-node
ratio by exhaustive enumeration is computationally infeasible
for large graphs. However, if we denote by uX the unit vector
in RN which has uX,i = |X|−1/2 for i ∈ X, and 0 otherwise,
we can write S as a scalar product and obtain the simple upper
bound:

S(X) = 〈uX,AuX〉 � max
x∈RN ,x �=0

〈x,Ax〉
‖x‖2

= λmax, (1)

where 〈x,y〉 = ∑
i xiyi is the standard inner product on RN ,

‖x‖ = √〈x,x〉 is the length of x, and λmax is the largest
eigenvalue of A. By the Perron-Frobenius theorem [18], if the
graph is irreducible, then the dominant eigenvector x, which
satisfies λmax x = Ax, is unique, strictly positive (xi > 0 for
all i), and solves the variational problem on the right-hand side
of Eq. (1).

Hence, to find an approximate maximizer X of S, we can
take the set X for which uX is as close as possible to the
dominant eigenvector x, which is similar to what is done in
other spectral clustering algorithms based on the Laplacian or
modularity matrices [17], i.e., define

X̃ = argmax
X⊂V

〈uX,x〉 = argmax
X⊂V

1

|X|1/2

∑
i∈X

xi.

Since x > 0, X̃ is of the form Xc = {i : xi > c} for some
threshold value c. Instead of X̃, we therefore choose the
solution of the restricted variational problem

Xmax = argmax
c>0

S(Xc) (2)

as an approximate maximizer. Solving Eq. (2) is linear in the
number of vertices, since we only need to consider the values
c equal to the entries of x. Moreover, S(Xmax) � S(X̃), and
hence Xmax is a better approximation to the true maximizer of
S than X̃.

Thus we obtain a numerically highly efficient spectral graph
clustering algorithm:

(1) Calculate the dominant eigenvector x using, for in-
stance, a power method [19].

(2) Find the cluster Xmax which solves the restricted
variational problem in Eq. (2).

(3) Store Xmax, remove all edges between nodes in Xmax

from the edge set E , and repeat the procedure until no more
edges remain.

This result of this algorithm is a partition of the edges of the
input graph. Edge clustering algorithms have recently gained
popularity, as they allow for overlapping communities where
nodes may belong to more than one community [20,21].

This procedure generalizes immediately to directed or
bipartite graphs. In this case, a cluster consists of a source
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set X and target set Y with edge-to-node ratio

S(X,Y ) =
∑

i∈X,j∈Y Aij√|X| · |Y | .

The dominant eigenvector is replaced by the dominant left
and right singular vectors x and y corresponding to the largest
singular value of A, which are again unique and strictly positive
[18]. Xmax and Ymax are found by maximizingS(X,Y ) over sets
obtained by thresholding on the entries of x and y.

IV. PERRON-FROBENIUS THEOREM
FOR HYPERGRAPHS

Our aim is to generalize the previous graph spectral
clustering algorithm to arbitrary hypergraphs. For this purpose,
we first need a generalization of the Perron-Frobenius theorem.
Let H = (V,E) be an undirected hypergraph on N vertices.
Define, for x ∈ RN and p � 1,

Rp(x) =
∑
E∈E

w(E)
∏
i∈E

( |xi |
‖x‖p

) 1
|E|

, (3)

where w(E) is the non-negative weight of edge E and ‖x‖p =
(
∑

i |xi |p)1/p is the p norm of x. We have the following key
result:

Theorem. Rp attains its maximum on the set of unit
vectors SN

p = {u ∈ RN : ‖u‖p = 1}. If H is connected, there
is a unique maximizer x ∈ SN

p which is strictly positive and
satisfies the Euler-Lagrange equations

λp x
p

i =
∑

{E∈E :i∈E}

w(E)

|E|

( ∏
j∈E

xj

) 1
|E|

, (4)

subject to the constraint ‖x‖p = 1 and with λp = Rp(x).
By analogy with the matrix case, we call x the dominant
eigenvector of H.

For clarity, we first prove this theorem in the simpler case
when H is irreducible. The proof of the general case is given
in Appendix B.

Proof. Existence of a maximizer on SN
p follows from

Weierstrass’s theorem [18]. Clearly, since Rp(x) = Rp(|x|),
we can always choose a maximizer x to have non-negative
entries. Hence we can find x as a stationary point of the
Lagrangian

L(x) =
∑
E∈E

w(E)

(∏
i∈E

|xi |
) 1

|E|

− λ

p

(‖x‖p
p − 1

)
,

giving rise (for non-negative x) to the Euler-Lagrange equa-
tions

λx
p−1
i =

∑
{E∈E :i∈E}

w(E)

|E|

( ∏
j∈E,j �=i

xj

) 1
|E|

x
1

|E| −1

i . (5)

Let I = {i ∈ V : xi = 0} and i ∈ I . Assume there exists an
edge E = {i,j1, . . . ,jm} with j1, . . . ,jm �∈ I . Then the left-
hand side of Eq. (5) is 0, while the right-hand side is ∞.
Hence such an edge cannot exist, but this contradicts the
assumption of irreducibility of H. It follows that I = ∅ or

x > 0. Multiplying both sides of Eq. (5) by xi , we obtain
Eq. (4). Summing both sides in Eq. (4) over i gives λp =
Rp(x) = maxx ′ Rp(x ′).

Next assume y > 0 is another maximizer of Rp. Denote
c = mini(xi/yi), u = cy, and z = x − u � 0. Since ‖x‖p =
‖y‖p = 1, we have c < 1 and cp � c for p � 1. Denote
I = {i ∈ V : zi = 0}. For any i ∈ I , by the Euler-Lagrange
equations,

0 = λp

(
x

p

i − cpy
p

i

)
�

∑
{E∈E :i∈E}

w(E)

[ ( ∏
j∈E

xj

) 1
|E|

−
( ∏

j∈E

uj

) 1
|E|

]
.

Since each term in the last sum is non-negative, they must
all be zero. Hence for any j1, . . . ,jk �∈ I , if {i,j1, . . . ,jk} ∈ E ,
then

0 =
k∏

m=1

xjm
−

k∏
m=1

ujm

=
k∑

m=1

(
m−1∏
n=1

ujn

) (
xjm

− ujm

) (
k∏

n=m+1

xjn

)
. (6)

Again each term in this sum is non-negative and must therefore
be zero, but this contradicts j1, . . . ,jk �∈ I . Hence edges with
i ∈ I and j1, . . . ,jk �∈ I do not exist, but this contradicts the
assumption of irreducibility. Since I �= ∅, we must have I = V
or x = y.

Next consider directed hypergraphs with hyperedges E =
(S,T ), S,T ⊂ V as defined before. Then, define Rp,q(x,y) for
x,y ∈ RN and p,q � 1,

Rp,q(x,y) =
∑

(S,T )∈E
w(S,T )

∏
i∈S

( |xi |
‖x‖p

) 1
2|S| ∏

j∈T

( |yj |
‖y‖q

) 1
2|T |

.

(7)

By identical arguments as for undirected hypergraphs, it can be
shown that for a strongly connected directed hypergraph, there
exists a unique pair x ∈ SN

p and y ∈ SN
q such thatRp,q(x,y) �

Rp,q (x ′,y ′) for all x ′,y ′ ∈ RN . These maximizers are strictly
positive and satisfy the Euler-Lagrange equations

λp,qx
p

i =
∑

{(S,T )∈E :i∈S}

w(S,T )

2|S|

(∏
i ′∈S

xi ′

) 1
2|S|

( ∏
j∈T

yj

) 1
2|T |

,

(8)

λp,qy
q

j =
∑

{(S,T )∈E :j∈T }

w(S,T )

2|T |

(∏
i∈S

xi

) 1
2|S|

( ∏
j ′∈T

yj ′

) 1
2|T |

,

(9)

subject to the constraints ‖x‖p = ‖y‖q = 1 and with λp,q =
Rp,q (x,y). Details are given in Appendix B.
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V. SPECTRAL CLUSTERING AND BICLUSTERING
IN HYPERGRAPHS

Having a generalization of the Perron-Frobenius theorem,
it is straightforward to also generalize the spectral clustering
method. Define, for X ⊂ V ,

Sp(X) =
∑

E⊂X w(E)

|X| 1
p

= Rp(uX) � Rp(x), (10)

with x the dominant eigenvector and uX ∈ SN
p now defined

by uX,i = |X|−1/p for i ∈ X, and 0 otherwise. The parameter
p balances cluster size versus edge density. For p = 1, Sp is
the ratio of edges to nodes in X. Taking p > 1 diminishes the
influence of the denominator and progressively favors a high
number of edges rather than a high number of edges per node
in high-scoring clusters (further details are given in Sec. VII).
The spectral clustering algorithm becomes as follows:

(1) Calculate the maximizer x of Rp.
(2) Find the cluster Xmax which solves the restricted

variational problem

Xmax = argmax
c>0

Sp(Xc),

with Xc = {i ∈ V : xi > c}.
(3) Store Xmax, remove all hyperedges between nodes in

Xmax from the edge set E , and repeat the procedure until no
more hyperedges remain.

The maximizer can be calculated using a generalization of
the power method for matrices [19] or tensors [22]: starting
with an initial vector x(0) and defining λ(0)

p = ‖x(0)‖p = 1, we
compute x(n+1) from x(n) using the Euler-Lagrange equations
(4) in the following steps:

x
(n+1)
i ←

[ ∑
{E∈E :i∈E}

w(E)

|E|

( ∏
j∈E

x
(n)
j

) 1
|E|

] 1
p

, (11)

λ(n+1)
p = ‖x(n+1)‖p, (12)

x
(n+1)
i ← x

(n+1)
i

λ
(n+1)
p

, (13)

iterated until the components of x(n) become stationary or,
equivalently, λ(n)

p has converged to the dominant eigenvalue,
i.e., ∣∣∣∣1 − λ(n+1)

p

λ
(n)
p

∣∣∣∣ < ε, (14)

where ε is a predefined numerical tolerance threshold. Due
to the uniqueness of x, the choice of starting vector is not
important. By taking a non-negative one, such as the uniform
vector x(0) = [1,1, . . . ,1]T /N1/p, we ensure that the powers
of 1/|E| occurring in the Euler-Lagrange equations are always
defined unambiguously. Many of the hypergraphs occurring in
real-world applications are not connected. In such cases, it
is important to ensure that x(0) has support only on a single
connected component to obtain the unique maximizer for that
component.

Although we typically view a cluster as a subset of vertices,
it is actually a subset of hyperedges (all hyperedges E ⊂ Xmax)

and thus can be considered as a subhypergraph as well. Higher-
scoring clusters can thus be obtained by recursively applying
the previous procedure to each of the clusters itself until no
more subdivision that improves the score is found.

For directed hypergraphs, we have a biclustering method.
Define, for X,Y ⊂ V and p,q � 1,

Sp,q(X,Y ) =
∑

S⊂X,T ⊂Y w(S,T )

|X| 1
2p |Y | 1

2q

.

Approximate maximizers Xmax and Ymax are found by solving
the restricted variational principle,

(Xmax,Ymax) = argmax
(c1,c2)

Sp,q

(
Xc1 ,Yc2

)
,

with Xc1 = {i ∈ V : xi > c1} and Yc2 = {i ∈ V : yi > c2},
where x and y are the unique solutions of the Euler-Lagrange
equations (8) and (9), which can again be calculated using a
power algorithm.

VI. RELATION TO PREVIOUS WORK

The matrix algorithm for clustering in a simple graph has
its roots in a method for image pattern recognition [23], and
the use of the singular value decomposition to detect densely
linked sets in directed networks goes back to the work of
Kleinberg [24]. The novelty here lies in the definition of
a discrete cluster through solving the restricted variational
problem, instead of using an ad hoc cutoff on the eigenvector
entries. For k-uniform hypergraphs, we can define rescaled
variables yi = x

1/k

i such that maximizing Rp(x) becomes
equivalent to maximizing

R′
p′(y) =

∑
i1,...,ik

Ti1,...,ik yi1 , . . . ,yik

‖y‖k
p′

,

with p′ = kp. In this case, the Theorem presented in Sec. IV
reduces to a multilinear extension of the Perron-Frobenius
theorem to non-negative irreducible tensors of arbitrary
dimension, which has been the subject of several recent
papers [25–27] (which all depend on the strong irreducibility
condition). The Proof given in Sec. IV is considerably simpler,
holds for general connected hypergraphs, and follows more
closely the proof of the matrix theorem [18]. In the unscaled
variational problem for R′

p′ , the maximizer is unique for
p′ � k and thus it is unsuited for generalizing to arbitrary
hypergraphs where the uniqueness condition would become
p′ � kmax, which is the maximum edge size in the hypergraph.
This explains why we introduced the geometric average over
the values xj in Eq. (3).

For k = 3, we have previously used a similar approach
to find clusters of three-node network motifs in integrated
interaction networks [28,29]. In this case, an adjacency tensor
Trst is defined to be 1 if an instance of a three-node query
motif or graph pattern exists between vertices (r,s,t), and 0
otherwise. More generally, we can define for any k-node query
pattern a k-uniform hypergraph consisting of all instances
of the query pattern in a given graph G. Our algorithm will
identify clusters of vertices in G with a high number of
pattern instances between them, which often have a functional
meaning in biological networks [28,30].
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Another example for k = 3 concerns the analysis and clus-
tering of multiply linked data [31,32] or multislice networks
[33]. Here we are given a set of M directed or undirected graphs
and define a hypergraph adjacency tensor as Tijm = A

(m)
ij ,

where A(m) denotes the adjacency matrix of the mth graph.
Clustering in this case identifies vertex sets which are densely
connected in multiple, but not necessarily all, graphs.

VII. ALGORITHM VALIDATION

A. Random geometric graphs

The dominant eigenvector of a graph’s adjacency matrix
is often considered as a centrality measure (“eigenvector
centrality” [1]) and is, in essence, equal to a simplified
PageRank [34] for ranking global vertex importance. It may
thus come as a surprise to see it playing a role in identifying
localized clusters (however, see the references in the previous
section). In order to demonstrate the validity of our approach
and illustrate the statements in Sec. V, we applied it to
randomly generated geometric graphs of various sizes (see
Appendix C 1 for details).

For visualization purposes, we generated as a toy example
a random geometric graph with 100 vertices and radius r2 =
0.02 [Fig. 1(a)]. The graph is evidently modular and the six
highest-scoring edge clusters identified by our algorithm (with
p = 1) are indicated in color. The profiles of the corresponding
dominant eigenvectors are clearly localized on a subset of
nodes [Fig. 1(b)], illustrating that in a modular network, the
dominant eigenvector indeed indicates the location of a single
cluster. Furthermore, comparing the edge-to-node ratio for
each of the discovered edge clusters with the theoretical upper
bound in Eq. (1) shows that the solution of the restricted
variational problem [Eq. (2)] must be close to the true
maximum [Fig. 1(c)].

For a more systematic analysis, we performed triangle-
based clustering on sequences of geometric graphs with
constant expected edge density and varying size. Triangle-
based clustering searches for overlapping sets of triangles in
an ordinary graph and corresponds to the simplest form of
k-clique clustering [35]. Here we considered each instance of
a triangle in the input graph as a hyperedge in a three-uniform
hypergraph to which we applied our spectral clustering
algorithm. The parameter p can be used to identify clusters
at different levels of resolution. Independent of network size,
there is a low-p phase where the fraction of nodes in a cluster
is small compared to total network size, and a high-p phase
where a cluster consists of a macroscopic network portion
[Fig. 1(d)]. Interestingly, at p = 1, cluster size does not
depend on network size [Fig. 1(d), inset]. Hence clustering
based on (hyper)edge-to-node ratio scores [Eq. (10)] does
not suffer from a resolution limit problem where cluster
size grows with network size irrespective of the presence of
“natural” clusters at smaller scales [36,37]. As in the previous
example, the cluster scores are always close to their theoretical
upper bounds, demonstrating that the solution of the restricted
variational problem is close to the true optimum in all cases
(see Fig. S1 of Supplemental Material [38]).

B. Edge-to-node scaling parameter

The transition in Fig. 1(d) as a function of the edge-to-
node scaling parameter p is a general feature, independent
of the actual hypergraphs used, and can be easily understood
as follows. Assume we have a hypergraph H = (V,E) with
N = |V| nodes and M = |E | hyperedges. Then the relative
score of any set X ⊂ V with n = |X| nodes and m hyperedges
compared to the score of the total hypergraph is

Sp(X)

Sp(V)
= m

M

(
N

n

) 1
p

= α2

α
1/p

1

≡ sp(α1,α2),

with α1 and α2 the fractions of nodes and edges in X. The
phase diagram of sp as a function of these two variables
is independent of the actual hypergraph under consideration
(Fig. 2). Naturally, not all combinations of α1 and α2 are
admissible. In general, there exists a boundary α2 � f (α1)
with f (α1) ≈ α1 for α1 ≈ 1. In sparse hypergraphs, we
typically have M ∼ N1+δ with δ small, where often δ = 0.
Locally, however, the edge density can be much higher.
For instance, in ordinary edge clustering, m ∼ n2, and in
triangle-based clustering, m ∼ n3, for n not too large. Hence,
as α1 decreases from 1, the boundary function f (α1) will
deviate more and more from the diagonal α2 = α1. In Fig. 2,
we have sketched a typical shape of a boundary function (thick
line). At p = 1 (Fig. 2, top left), the contour lines of sp are
straight lines and sp will clearly be maximal at small values of
(α1,α2). As p increases, the contour lines become increasingly
more concave, pushing the value where sp attains its maximum
towards α1 = 1. For the idealized boundary function in Fig. 2,
the transition is in fact discontinuous and jumps from being
at α1 = 0.1 (origin of the axes) to α1 = 1 around p = 1.95
(bottom left).

Since the transition is, in general, sharp as a function of p

and can even be discontinuous, we will in practice only use
the default edge-to-node ratio score with p = 1 to identify
dense hypergraph clusters, or use a large value of p (typically
p � 10) to identify connected hypergraph components.

C. Algorithm efficiency

For an undirected hypergraph with N nodes, M hyperedges,
and maximum edge size kmax, the update steps in the power
algorithm are at most of the order kmaxM [Eq. (11)] and
N [Eqs. (12) and (13)]. The number of steps needed to
reach convergence depends on the convergence parameter ε

[Eq. (14)] and therefore possibly also on the hypergraph size.
In practice, a maximal number of iterations Imax is defined
and convergence manually inspected when Imax is exceeded.
Determining the optimal threshold value is, at most, of the
order of N (number of possible threshold values) times M

(calculation of the edge-to-node ratio score). Taken together,
runtime is bounded by

trun � Imax[O(kmaxM) + O(N )] + O(MN ).

For directed hypergraphs, determining the optimal thresh-
old pair over all possible combinations of entries of the
dominant singular vector pair (x,y) is of the order of N2M ,
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(a) Randomly generated geometric graph (b) Dominant eigenvector profiles

(d) Relative cluster size vs. resolution parameter p(c) Cluster scores and upper bounds

FIG. 1. (Color online) (a) Example of a randomly generated geometric graph with 100 vertices and radius r2 = 0.02, showing the largest
connected component with the six highest-scoring edge clusters indicated by filled nodes. (b) Dominant eigenvector profiles for the six
highest-scoring edge clusters. (c) Edge-to-node ratio scores (left blue bars) and theoretical upper bound (right red bars) for all 25 edge clusters.
(d) Cluster size as the fraction � of total number of network nodes for the highest-scoring triangle-based cluster in random geometric graphs
with N = 200, 400, 600, 800, and 1000 nodes and constant edge density (ρ = 4) as a function of p. Each data point is an average over 10
random networks. The inset shows the absolute mean cluster size and standard deviation over 10 random networks as a function of N for p = 1.

which is often prohibitive. In such instances, taking

Xmax = argmax
c

Rp,q

(
uXc

,y
)
,

Ymax = argmax
c

Rp,q

(
x,uYc

)
,

where we used the same notation as in Sec. V, results in an
approximation which is again O(MN ).

VIII. APPLICATIONS

A. Local and global alignment of complex networks

The core idea for applying hypergraph clustering to the
analysis of edge-colored graphs is to translate the relation
between multiple interaction types (edge colors) into higher-

order hypergraph edges. We illustrate this idea by showing
that local and global alignment of complex networks with a
bipartite many-to-many mapping between their vertex sets can
be naturally viewed as a hypergraph clustering problem.

Network alignment is the problem of finding topologically
similar regions between two or more networks. In local
network alignment, small subgraphs in each network are
aligned independently of the alignment of other subgraphs,
whereas global network alignment aims to find a maximal
alignment for each connected component in the input graphs.
Network alignment methods for comparing molecular in-
teraction networks between different species come in two
main flavors. Topological network alignment finds conserved
regions between networks taking only the topology of each
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FIG. 2. (Color online) Phase diagrams of sp(α1,α2) for p = 1,1.65,1.95, and 5 (left to right, top to bottom). More yellow (lighter gray)
indicates higher values of sp; the thin lines are contours of constant sp , while the thick line indicates a possible boundary of admissible states.
Colors (gray scale levels) are relative to the minimum and maximum in each panel and not comparable between panels.

network into account [39]. The second class of methods
takes into account that networks in different species have
evolved from a common ancestor through gene duplication
and divergence mechanisms and hence there exists a mean-
ingful mapping between the nodes in each network [12].
Methods have been developed which assume a one-to-one
mapping [40], but in general a many-to-many map should be
considered [41].

More formally, consider two ordinary graphs G1 and
G2, whose vertices are connected by a bipartite graph M.
The directed alignment hypergraph H between G1 and G2

is defined as the four-uniform hypergraph containing the
edges ({i,j},{k,l}), if and only if {i,j} ∈ G1, {k,l} ∈ G2, and

{i,k},{j,l} ∈ M [Fig. 3(a)]. Such alignment hyperedges are
also called interologs. Interolog mapping is routinely used to
transfer annotation information from one organism to another
[42] and interolog analysis is at the heart of previous network
alignment methods [41,43]. Here we propose to address the
network alignment problem by identifying hyperedge clusters
in the alignment or interolog hypergraph. Indeed, in a local
alignment, we search for small regions in each graph which
map nearly perfectly onto each other, i.e., have a high density
of interologs between them. This corresponds to hypergraph
clusters which maximize Sp for values of p close to one. In a
global alignment, we search for maximally matching regions
in each graph, i.e., connected components in the interolog
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(b) Examples of local yeast-human protein complex alignments

(c) Example of a local yeast-human functional network alignment(a) Network alignment hyperedge

PH1 PH2

PY1 PY2

H

Y

FIG. 3. (a) A (directed) hyperedge in the yeast-human protein interaction network alignment hypergraph is an interolog: a pair of interacting
yeast (Y) proteins and a pair of interacting human (H) proteins connected by orthology relations (dashed lines). (b) Examples of aligned protein
complexes (cluster no. 19 left, no. 1 right). (c) Example of a functional network alignment (cluster no. 48). In all panels, yeast proteins are
white and human proteins are gray; protein interactions are solid lines and orthology relations are dashed lines.

hypergraph. These correspond to hypergraph clusters which
maximize Sp for large values of p.

We used our spectral clustering algorithm to locally and
globally align protein-protein interaction networks between
yeast and human, using orthology groups for mapping con-
served proteins between both organisms (see Appendix C 2
for details). Protein-protein interaction networks represent
binary, undirected associations between proteins and they
are, at present, the most extensively characterized molecular
interaction networks in biology [11,44]. Typical examples of
high-scoring local alignment clusters are conserved protein
complexes (see Supplemental Material [38]). Figure 3(b)
shows two examples: first is a set of proteins that maps one-
to-one between yeast and human from the minichromosome
maintenance (MCM) complex (cluster no. 19), which plays
an important role in DNA replication and is indeed conserved
among all eukaryotes [45]; and second (cluster no. 1) is a
set of components of the V-type ATPase (a proton pump),
which has expanded in human compared to yeast by gene
duplications [46]. Other local alignment clusters reflect more
general functional networks than protein complexes (see
Table S3 of Supplemental Material [38]). Figure 3(c) shows
cluster no. 48, which is an example of a conserved network
involved in nucleic acid metabolism centered around the
general transcription factor TBP (SPT15 in yeast), i.e., the
TATA-binding protein. The largest connected component in
the network alignment hypergraph maps 651 yeast proteins to

766 human proteins and contains 90% of all interologs (see
Table S4 of Supplemental Material [38]), showing that there
exists a high degree of network conservation at a global scale,
which is consistent with previous findings using topological
network alignment [39].

B. Tripartite community detection in online folksonomies

Folksonomies, i.e., online communities where users col-
laboratively create and annotate data, are examples of social
systems that cannot be adequately modeled by ordinary graphs.
For instance, tagged social networks such as Flickr [47] or
CiteULike [48] have a tripartite structure that is best modeled
by a three-uniform hypergraph [8,9]. Using CiteULike as a
concrete example, each hyperedge consists of a user who
has annotated an academic article with a certain keyword or
tag [48] [Fig. 4(a)]. Traditionally, the community structure
of such tripartite networks has been analyzed by considering
one-mode ordinary graph projections of the hypergraph, e.g.,
by connecting two users if they have annotated the same
articles or connecting two tags if they have been applied to
the same articles [9]. In contrast, hypergraph-based clustering
preserves the tripartite structure of folksonomy data and
reveals additional levels of community structure. We applied
our spectral clustering algorithm to a subset of the CiteULike
data set containing more than 400 000 (user, article, tag)
entries and identified nearly 14 000 hyperedge clusters (see
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(a) (b)

(c)

FIG. 4. (a) CiteULike hyperedge, which represents one instance of a user (hexagonal node) who has annotated an article (circular node)
with a certain tag (rectangular node). (b) Example of two tripartite communities where the same set of users (top) has annotated two sets of
articles (middle) with two sets of tags (bottom). Only the two central articles and one central tag (“pattern recognition”) overlap between the
two clusters. User-tag edges have been omitted for clarity. (c) Coarse-grained view of the CiteULike hypergraph using the 100 highest-scoring
hyperedge clusters. Each node represents a cluster (with node size proportional to the number of hyperedges in the cluster) and edges represent
significant overlap between clusters (overlap score > 0.5; edge size proportional to overlap score). Solid edges: user overlap; dashed edges:
tag overlap; wavy edges: article overlap.
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(a) Combinatorial path cluster

(b) Hierarchical path cluster

FIG. 5. (Color online) Examples of high-scoring combinatorial [(a), cluster no. 6] and hierarchical [(b), cluster no. 1] path clusters in
the yeast transcriptional regulatory network. Red (dark gray) rectangular nodes: knocked-out transcription factors (TFs); yellow (light gray)
circular nodes: genes differentially expressed upon knock out of the TFs; white diamond-shaped nodes: all other TFs. Node size is proportional
to out-degree and edge width to edge “betweenness” (defined for the purposes of this figure as the number of shortest paths between all pairs
of cluster nodes passing through a given edge).

Appendix C 3 for details). The additional level of detail present
in hyperedge clusters is illustrated by looking at the user,

article, or tag overlap between clusters. Figure 4(b) shows
an example of two hyperedge clusters formed by the same
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set of users who have annotated different sets of articles by
different sets of tags. Only one tag, i.e., “pattern recognition,” is
common between both clusters. The remaining tags show that
the articles in the first cluster are about collective computing
and swarm intelligence, whereas those in the second cluster
deal with image analysis (see Table S1 of Supplemental
Material [38]), which are indeed two distinct subjects within
the broad field of pattern recognition.

In general, we expect such subdivisions of one-mode
projected communities to occur at the level of users (i.e., the
same set of users annotating different sets of articles using
different sets of tags), but much less at the level of articles or
tags (i.e., we do not expect different sets of users to annotate
the same set of articles using different sets of tags, or to use the
same set of tags for different sets of articles). Indeed, the 100
highest-scoring clusters (which together contain about 20%
of all hyperedges) overlap predominantly at the user level, to
a much lesser extent at the tag level, and hardly overlap at
the article level, while about 21 of these clusters do not have
any significant overlap (overlap > 50%; see Appendix C 3 for
details) with any other cluster [Fig. 4(c)]. Significant article
overlap occurs in only two instances. In both cases, it concerns
a subset of users who have annotated a subset of articles from a
larger cluster with an additional set of tags. Tag overlap occurs
more frequently than article overlap, but with lower overlap
percentages than user overlaps. Overlapping tags are typically
general tags which can be applied to a broad spectrum of
articles. For instance, the ten tags occurring most frequently
in the top 100 clusters are bibtex-import, learning, social,
evolution, review, support, govt, non-us, collaboration, and
design. Thus we conclude that hyperedge clusters capture
topic-specific tripartite (user, article, tag) communities which
reveal more structure of the underlying data than user, article,
or tag communities based on a single data dimension only.

C. Path clustering in regulatory networks

Unlike protein-protein interaction networks, which are
undirected, regulatory networks, which control the cellular
response to external or internal perturbations, are directed and
represent the flow of information within a cell [10]. In tran-
scriptional regulatory networks, the response to perturbations
can be measured experimentally by genetically knocking out a
transcription factor (TF) and measuring the resulting changes
in gene expression levels on a genome-wide scale [49]. In
yeast, direct physical binding interactions between a TF and its
target genes [50] as well as perturbational response data for the
same TF [49] are available for a comprehensive set of almost
200 TFs (see Appendix C 4 for details). On average, only 3% of
the genes which respond to a knock-out perturbation of a TF are
also direct physical targets of that TF, and various approaches
have been proposed to understand the mechanisms of indirect
regulation and propagation of network perturbations in this
context [51–54]. It is thought that perturbational responses are
organized in a modular way, in the sense that groups of genes
will be affected by the knock out of a TF through the same in-
termediate regulatory pathways. However, due to the variable
length of these pathways, previous approaches for clustering
in directed networks (e.g., [55–57]), which identify densely in-
teracting node sets, are not directly applicable to this problem.

Here we address the problem of identifying sets of nodes
which respond to the knock out of a TF through similar regu-
latory paths by defining a nonuniform hypergraph where each
hyperedge corresponds to a shortest path between two nodes in
the original regulatory network. Hypergraph-based clustering
will then find sets of nodes with a high number of shortest paths
running through them and such clusters form potential “signal-
propagation” modules, which is consistent with the notion that
high information flow in a network is associated to high values
of a node’s “betweenness” centrality (defined as the number
of shortest paths between all pairs of nodes passing through a
given node). To test this hypothesis, we calculated all directed
shortest paths in the regulatory network of yeast between a TF
and the genes differentially expressed upon knock out of that
TF. The resulting hypergraph contained 1332 hyperedges be-
tween 788 nodes, and spectral clustering identified 25 nonsin-
gleton and 14 singleton clusters (see Appendix C 4 for details).
Topologically, there appear to exist two distinct types of path
clusters. Combinatorial path clusters contain genes responding
to the knock out of multiple TFs and form a network of densely
overlapping paths. Figure 5(a) shows a combinatorial cluster
of 199 shortest paths from 20 TFs to 186 genes involved in gly-
colysis and gluconeogenesis. Hierarchical path clusters have
a layered structure, where the perturbational signal of usually
not more than one TF flows to its targets via a limited number of
intermediate TFs, in a strictly hierarchical manner [Fig. 5(b)].
The functional relevance of regulatory path clusters is demon-
strated by the fact that they contain a significant fraction of the
genes affected by the deletion of the cluster’s TF and that they
strongly overlap with specific functional categories (see Tables
S5 and S6 of Supplemental Material [38]). For simplicity, we
considered here only the shortest paths in the transcriptional
regulatory network, but clearly the approach can be extended
to paths composed of multiple interaction types.

IX. CONCLUSIONS

Over the past decade, graph theory has become crucial
to represent and reason about complex network data. In
particular, clustering, i.e., the detection of densely inter-
connected groups of vertices with few connections to the
rest of the network, has become a standard coarse-graining
procedure to understand the structure and function of complex
networks. With more and more data becoming available to
highlight different aspects of the same complex systems, a
need has arisen to analyze networks with multiple types of
interactions simultaneously. In this paper, we have proposed to
use hypergraphs to characterize higher-order relations between
simple graphs and we have introduced efficient algorithms for
clustering and biclustering in such hypergraphs.

Our main result is a spectral clustering algorithm for hy-
pergraphs, based on a generalization of the Perron-Frobenius
theorem for directed and undirected hypergraphs. More pre-
cisely, we have shown that like in ordinary graphs, there exists
a unique, positive vector, called the dominant eigenvector, over
the set of vertices of a hypergraph, which maximizes a natural
generalization of the Rayleigh-Ritz ratio for matrices. The
importance of this result lies in the fact that the ratio of the
number of edges to the number of nodes in any subset of
vertices can be expressed as the same Rayleigh-Ritz ratio, in
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graphs and hypergraphs alike. Densely interconnected clusters
can therefore be found very efficiently by first computing the
dominant eigenvector and then converting it to a discrete
set of vertices. Uniqueness of the dominant eigenvector
guarantees unambiguity of the solution and rapid convergence
of the numerical procedure, whereas positivity implies that the
discretization can be achieved by setting an optimal threshold
on its entries.

Our work has been motivated by concrete problems of data
integration in social and biological networks. We have given
three practical examples for using hypergraph-based clustering
in these contexts, namely, the alignment of protein-protein
interaction networks between multiple species using interolog
clustering, the detection of tripartite communities in
folksonomies, and the identification of overlapping regulatory
pathways in perturbational expression data using shortest
path clustering. Undoubtedly, many more applications for
hypergraph-based clustering exist in the analysis of other bio-
logical, social, computer, communication, or neural networks.
From a theoretical point of view, we have considered the edge-
to-node ratio as a simple quality score for clusters in graphs and
hypergraphs. Although this score has many attractive proper-
ties, such as its direct relation with the dominant eigenvector
and the absence of any resolution limit problems, it will still be
of interest to generalize clustering algorithms based on other
quality scores from graphs to hypergraphs as well. Popular
methods like those based on minimal cutsets or modularity
maximization also rely on spectral properties of, respectively,
the graph Laplacian and modularity matrix. Although
certain mathematical aspects, such as eigenvalue multiplicity
and its implications on algorithm convergence and cluster
discretization, are more complicated in these cases, we believe
our work lays the theoretical foundations for future studies
in this direction.
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APPENDIX A: STRONG CONNECTIVITY OF DIRECTED
HYPERGRAPHS

Consider first an undirected hypergraph H = (V,E) on
N vertices. Although connectedness of H does not imply
irreducibility, we do have the property that if there exists
a proper subset I ⊂ V such that for all i1, . . . ,ik ∈ I and
j1, . . . ,jm �∈ I , w({i1, . . . ,ik,j1, . . . ,jm}) = 0, then H is not
connected (since there can then be no path that starts in I and
escapes from I ). Hence, ifH is connected, no such set I exists.

For a directed hypergraph H = (V,E), we can define an
underlying undirected hypergraph H̃ = (V,Ẽ) by considering
all possible partitions of a subset E ⊂ V into source and tar-
get sets, i.e., w̃(E) = ∑

{(S,T ):S∪T =E} w(S,T ). This procedure

generalizes the definition of a symmetric adjacency matrix
B = A + AT from the asymmetric adjacency matrix A of a
directed graph. Clearly, to call H connected, we shall ask that
H̃ is connected as defined in Sec. II.

Now consider two subsets I,J ⊂ V such that I ∪ J is
neither empty nor equal to V . Since H̃ is connected, there exist
vertices i1, . . . ,ik ∈ I , j1, . . . ,j� ∈ J , and h1, . . . ,hm �∈ I ∪ J

such that

w̃({i1, . . . ,ik,j1, . . . ,j�,h1, . . . ,hm}) > 0.

This implies that there exists at least one partition of these
nodes into a source and target set with nonzero directed weight.
We ask slightly more, namely, that there is a partition of the
form

w({i1, . . . ,ik,h1, . . . ,hn},{j1, . . . ,j�,hn+1, . . . ,hm}) > 0,

i.e., the source as well as the target set should contain at least
one element not in I or J . Note that the requirement that all i’s
go into the source set and all j ’s go into the target set is purely
notational convenience, since I or J are allowed to be empty,
as long as their union is not. If the above condition is fulfilled
for all pairs of sets (I,J ), we say that the directed hypergraph
H is strongly connected.

APPENDIX B: GENERAL PROOF OF THE
PERRON-FROBENIUS THEOREM FOR CONNECTED

HYPERGRAPHS

Consider a non-negative maximizer x ofRp(x) and without
loss of generality assume ‖x‖p = 1. Let again I = {i ∈ V :
xi = 0} and assume I �= ∅. Let k be the smallest integer for
which there exists at least one set i1, . . . ,ik ∈ I and at least
one set j1, . . . ,jm �∈ I such that w({i1, . . . ,ik,j1, . . . ,jm}) > 0.
Such k must exist, since H is connected (see Appendix A). For
ε > 0, define

x̃i =
{

xi i �∈ I

ε i ∈ I.

We will show that for ε small enough, Rp(x̃) > Rp(x), which
contradicts the assumption that there can exist a maximizer
with zero elements. We have

‖x̃‖p
p = ‖x‖p

p + |I |εp = 1 + |I |εp,

or, to leading order in ε,

1

‖x̃‖p

= 1 − |I |
p

εp + o(εp). (B1)

For the denominator of Rp(x̃), we have

∑
E∈E

w(E)

(∏
i∈E

x̃i

) 1
|E|

=
∑

{E∈E :E∩I=∅}
w(E)

(∏
i∈E

xi

) 1
|E|

+
∑

{E∈E :E∩I �=∅}
w(E)

(∏
i∈E

x̃i

) 1
|E|

= Rp(x) +
∑

{E∈E :E∩I �=∅}
w(E)

(∏
i∈E

x̃i

) 1
|E|

.

(B2)
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From the preceding discussion, it follows that the leading term
in ε of the second term in Eq. (B2) is of the order of ε

k
k+m for

some k,m � 1. Hence, for ε small enough, the extra positive
term of order ε

k
k+m in Eq. (B2) offsets the negative term of

order εp in Eq. (B1), and we get, for some c > 0,

Rp(x̃) =
[

1 − |I |
p

εp + o(εp)

][
Rp(x) + cε

k
k+m + o(ε

k
k+m )

]

= Rp(x) + cε
k

k+m + o(ε
k

k+m ) > Rp(x).

Having established that a maximizer x must be positive,
x > 0, the remainder of the proof is the same as the proof for
irreducible hypergraphs, since in Eq. (6) it suffices that at least
one jm �∈ I arrives at a contradiction, which is guaranteed by
the connectedness of H.

For directed hypergraphs, the condition (and definition) of
strong connectivity in Appendix A is tailormade to ensure
that the above argument still goes through. More precisely,
if (x,y) are a pair of non-negative maximizers of Rp,q(x,y)
[cf. Eq. (7)], then define I = {i ∈ V : xi = 0} and J = {j ∈
V : yj = 0}. Setting the zero elements in x and y to a
small positive value ε, strong connectivity implies that the
numerator of Rp,q increases by a term of order εα with α < 1,
whereas the denominator (the norms of x and y) can only
decrease Rp,q by a term of order ε

p+q

2 with p,q � 1. The
uniqueness argument again follows along the lines leading
to Eq. (6).

APPENDIX C: NETWORK DATA AND
NUMERICAL SETTINGS

Here we summarize the data sources and parameter settings
used in the example applications (Secs. VII and VIII).

1. Random geometric graphs

A geometric graph with N vertices and radius r is defined by
a set V of points in a metric space and edges E = {(u,v) ∈ V :
0 < ‖u − v‖ � r}. We generated random geometric graphs
by sampling with uniform probability N points in the unit
square [0,1] × [0,1] and taking the standard two-norm as the
distance measure. For a given vertex, the probability that it is
connected to any other vertex is πr2. Hence, if we increase
N while keeping ρ = Nr2 constant, we obtain a sequence
of random geometric graphs with constant average expected
degree.

2. Alignment of yeast and human PPI networks

We obtained physical protein-protein interactions (PPI) for
yeast from the BioGRID [58] database and physical and func-
tional PPIs for human from the BioGRID and STRING [59]
databases. The yeast network had 36 391 interactions between
4847 proteins; the human network had 40 630 interactions
between 9602 proteins. We integrated these networks with
orthology mappings from the InParanoid database [60]. There
were 3390 orthology relations between 2245 yeast and 3255
human proteins which had at least one interaction in their
respective PPI networks. We performed recursive spectral
clustering on the directed alignment hypergraph consisting

of 2567 interolog hyperedges [cf. Fig. 3(a)]. At p = q = 1,
180 clusters with at least two hyperedges were found; 119
hyperedges had no connections in the hypergraph, forming
singleton clusters. The complete distribution of hyperedges,
nodes, and scores for all clusters is shown in Fig. S2 of the
Supplemental Material [38]; the functional analysis of the local
and global alignment clusters is given in Tables S2 and S3 of
the Supplemental Material [38].

3. Tripartite community detection in the CiteULike data

We obtained the complete “who-posted-what” data from
CiteULike [48], containing (as of 1 February 2012) 16 553 642
(user, article, tag) entries. To create a more manageable
data set, we considered all entries from 2005, resulting in a
hypergraph of 466 948 (user, article, tag) hyperedges between
4693 users, 121 071 articles, and 36 489 tags. Recursive
hypergraph spectral clustering with p = 1 identified 13 987
clusters with at least two hyperedges; 4616 hyperedges formed
singleton clusters. The complete distribution of hyperedges,
nodes, and scores for all clusters is shown in Fig. S3 of the
Supplemental Material [38]. While comparing the user, article,
and tag overlap of two hyperedge clusters, we were primarily
interested to detect when the set of users, articles, or tags of
a smaller cluster is entirely contained in a larger cluster (cf.
Fig. 4). We therefore used the overlap score defined for two
sets X and Y as

ovlp(X,Y ) = |X ∩ Y |
min(|X|,|Y |) ,

which reaches its maximum value of 1 whenever X ⊂ Y or
Y ⊂ X.

4. Path clustering in the yeast transcriptional
regulatory network

We obtained a network of 11 373 physical transcription
factor (TF) binding interactions between 198 TFs and 3535
target genes in yeast from [50] and knock-out microarray data
for 266 TFs from [49]. The knock-out data can be represented
as a directed network of perturbational interactions where
each TF is connected to the genes which respond to the
knock-out perturbation of that TF. In addition, 182 TFs with
physical binding data also had knock-out data for a total of
7090 perturbational interactions. We constructed a directed
hypergraph consisting of 1332 hyperedges and 788 nodes,
where each hyperedge is a shortest path in the regulatory
network between a TF and a gene differentially expressed
upon knock out of that TF. We defined the source set of a
hyperedge as the knocked-out TF and the target set as the
remainder of the path. Recursive spectral clustering identified
39 clusters of which 14 were singletons.

5. Supplementary data and algorithm implementation

An implementation of the clustering algorithm in JAVA,
together with the input data and clustering results described in
Sec. VIII, is available from the project home page in Ref. [61].
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