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Long-range navigation on complex networks using Lévy random walks
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We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks,
that is inspired by Lévy random walks, generalizing previous navigation rules. We obtained exact expressions for
the stationary probability distribution, the occupation probability, the mean first passage time, and the average
time to reach a node on the network. We found that the long-range navigation using the Lévy random walk
strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the
network. The dynamical effect of using the Lévy walk strategy is to transform a large-world network into a
small world. Our exact results provide a general framework that connects two important fields: Lévy navigation
strategies and dynamics on complex networks.
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I. INTRODUCTION

Networks are ubiquitous in almost every aspect of the
human endeavor, explaining the recent burst of work in this
area [1–4]. Besides the topology of the different kinds of
networks, the dynamical processes that take place on them
is of utmost importance. In particular, random walks are the
natural framework to study diffusion, transport, navigation,
and search processes in networks, with applications in a variety
of systems, such as the propagation of epidemics and traffic
flow [5,6], animal [7–9] and human mobility [10–15], and the
dynamics on social networks [16–20].

The problem of random walks on networks has been
addressed before, using a strategy of navigation that considered
the motion to nearest neighbors [21]. Here we introduce a gen-
eralization of this navigation rule by considering that the transi-
tion probability is not restricted to nearest neighbors, allowing
transitions that follow a power law as a function of the distance
(integer number of steps) between nodes. This generalized
navigation rule was inspired by the study of Lévy flights where
the random displacements l obey asymptotically a power-law
probability distribution of the form P (l) ∼ l−α [22].

Random walks on networks are related to the problem of
searching since one strategy of search is precisely to navigate
the network, starting from a source node, using a random walk
until finding a target node [5]. The problem of searching and
foraging has received considerable attention recently [23–25].
In particular, it has been shown that, under some general
circumstances, Lévy flights provide a better strategy to search
or navigate, compared with a strategy based on Brownian
motion [24,26]. For instance, in the problem of foraging by
animals [24,27,28], Lévy strategies are rather common, as well
as in the problem of human mobility and behavior [10,29–33].
In a similar fashion, we are proposing that our Lévy random
walk navigation strategy (LRW) can be more efficient than the
normal random walk strategy (NRW) to cover the network.

This generalized navigation strategy can consider some
common situations encountered in real networks. For instance,
in social networks one can take advantage of the full or partial
knowledge of the network beyond our first acquaintances.
Currently, using social network sites, one can identify the
friends of your acquaintances (second-nearest neighbors) or
the friends of the friends of your acquaintances (third-nearest

neighbors) and so on to search for a job, an expert opinion,
etc. In this way, one can contact a second- or third-nearest
neighbor of a friend directly, without the intervention of the
friend. This situation corresponds to a long-range navigation
on a network: a social network in this case. Thus, in this
paper we are connecting two important fields: Lévy navigation
strategies and dynamics on complex networks.

We study the dynamics on an undirected network by
means of a master equation that we solve exactly without any
approximation. We obtain exact expressions for the stationary
distribution, the random walk centrality [21], the mean first
passage time (MFPT) [34], and the average time to reach
any node on the network. We use a formalism in terms
of eigenvalues and eigenvectors of the transition probability
matrix associated with the process.

II. LEVY RANDOM WALKS ON NETWORKS

We consider an undirected connected network with N

nodes i = 1, . . . ,N , described by an adjacency matrix A with
elements Aij = Aji = 1 if there is a link between i, j and
Aij = Aji = 0 otherwise. We consider the case where Aii = 0
to avoid loops on the network. The degree of the node i is
given by ki = ∑N

l=1 Ail . Another matrix associated with the
network is the distance matrix D, with elements dij that denote
the integer number of steps of the shortest path connecting
node i to node j . For undirected networks D is a symmetric
N × N matrix. The average distance 〈d〉 scales as a power of
N for large-world networks, whereas 〈d〉 scales as log N for
small-world networks [1].

We start with the discrete time master equation that
describes a random walker on a network [35]:

Pij (t + 1) =
N∑

m=1

Pim(t)wm→j , (1)

where Pij (t) is the occupation probability to find the random
walker in j at time t starting from i at t = 0. The quantity
wi→j is the transition probability to move from i to j in the
network. In the case where i �= j , it is given by

wi→j = d−α
ij∑

l �=i d
−α
il

, (2)
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where dij are the elements of the distance matrix D and wi→i =
0. This transition probability represents a dynamical process
where the random walker can visit not only nearest neighbors
but nodes farther away in the network. However, the farther
away they are, the less probable the event of hopping to that
node is. The power-law decay of this probability is controlled
by an exponent α, which is a parameter in our model and
varies in the interval 0 � α < ∞. There are two important
limiting cases: In Eq. (2), when α → ∞ we obtain wi→j =
Aij/ki , which corresponds to the normal random walk on
networks, previously studied by other authors [21], describing
transitions only to nearest neighbors with equal probability,
that is, inversely proportional to the degree of the node. On the
other hand, when α = 0, the dynamics allows the possibility
of hopping with equal probability to any node on the network;
in this limit, wi→j = (1 − δij )/(N − 1), where δij denotes the
Kronecker delta. For 0 < α < ∞, the random walker could
hop not only to nearest neighbors but to second-, third- and
m-nearest neighbors with a transition probability that decays
as a power law.

It is worth noticing that there are navigation strategies
where some links are added to a d-dimensional lattice with
a probability proportional to r−α , where r is a metric distance,
generating in this way a small-world network [36]. However,
in our case, the network is not modified, and the possibility
of long-range steps is determined dynamically by wi→j in
Eq. (2).

Let us now solve this problem, starting with the stationary
distribution. By iteration of Eq. (1), Pij (t) takes the form

Pij (t) =
∑

j1,...,jt−1

wi→j1wj1→j2 · · · wjt−1→j . (3)

Defining the quantity D
(α)
i ≡ ∑

l �=i d−α
il , from Eq. (2), we

obtain wi→j = D
(α)
j

D
(α)
i

wj→i . Using this relation in Eq. (3), the

detailed balance condition is obtained:

D
(α)
i Pij (t) = D

(α)
j Pji(t). (4)

In order to obtain the stationary distribution, we need to take
the limit of the occupation probability when the time tends to
infinity. In this limiting case, the information of the initial
condition is lost, and the stationary distribution gives the
asymptotic probability to be in a particular node. Thus, for
the stationary distribution P ∞

j = limt→∞ Pij (t) [37], Eq. (4)

implies D
(α)
i P ∞

j = D
(α)
j P ∞

i ; therefore

P ∞
i = D

(α)
i∑

l D
(α)
l

. (5)

Thus, we have obtained in Eq. (5) the exact expression of
the stationary distribution P ∞

i , which is proportional to the
quantity D

(α)
i given by the sum of the inverse of the distances,

weighted by α, to node i. Equation (5) generalizes previous re-
sults, and it is valid for any undirected network. Again, we have
two limiting cases: When α → ∞, Eq. (5) gives P ∞

i = ki∑
j kj

,

which is precisely the result obtained for normal random walks
[5,21]; for α = 0, we obtain the expected result P ∞

i = 1
N

.

The quantity D
(α)
i can also be written as

D
(α)
i =

N−1∑
n=1

1

nα
k

(n)
i = ki + k

(2)
i

2α
+ k

(3)
i

3α
+ · · · , (6)

where k
(n)
i is the number of n-nearest neighbors of node i. This

equation gives a more clear interpretation of the quantity D
(α)
i :

For node i, it is the sum of the first-nearest neighbors plus the
second-nearest neighbors divided by 2α and so forth. We refer
to this quantity as the long-range degree.

We study now the random walk centrality and the MFPT.
The occupation probability Pij (t) in Eq. (1) can be expressed
as [21,35]

Pij (t) = δt0δij +
t∑

t ′=0

Pjj (t − t ′)Fij (t ′), (7)

where Fij (t) is the first-passage probability starting in node i

and finding node j for the first time after t steps. Using the
discrete Laplace transform f̃ (s) ≡ ∑∞

t=0 e−stf (t) in Eq. (7),
we have

F̃ij (s) = [P̃ij (s) − δij ]/P̃jj (s). (8)

In finite networks, the MFPT, defined as the mean number
of steps taken to reach node j for the first time, starting from
node i [35], is given by 〈Tij 〉 ≡ ∑∞

t=0 tFij (t) = −F̃ ′
ij (0). Using

the moments R
(n)
ij ≡ ∑∞

t=0 tn{Pij (t) − P ∞
j }, the expansion in

series of P̃ij (s) is

P̃ij (s) = P ∞
j

1

(1 − e−s)
+

∞∑
n=0

(−1)nR(n)
ij

sn

n!
. (9)

Introducing this result in Eq. (8), we obtain for the MFPT the
expression

〈Tij 〉 = 1

P ∞
j

[
R

(0)
jj − R

(0)
ij + δij

]
. (10)

In Eq. (10) there are three different terms: The mean first return

time 〈Tii〉 = 1
P ∞

i

, the quantity τj ≡ R
(0)
jj

P ∞
j

, which is independent

of the initial node, and
R

(0)
ij

P ∞
j

. The time τi is interpreted as

the average time needed to reach node i from a randomly
chosen initial node of the network. The quantity Ci ≡ τ−1

i is
the random walk centrality introduced in [21] and gives the
average speed to reach the node i performing a random walk.
In our case, this quantity corresponds to a generalization of the
random walk centrality based on the long-range degree given
in Eq. (6).

Using Eq. (10), we obtain

〈T̄ 〉 ≡
N∑

j=1
i �=j

〈Tij 〉P ∞
j =

N∑
m=1

R(0)
mm , (11)

where the time 〈T̄ 〉 is the average of the MFPT over the
stationary distribution P ∞

j and, as shown here, is a constant
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independent of i. In the context of Markovian processes it
is known as Kemeny’s constant and is related to a global
MFPT [38].

In order to calculate τi and 〈Tij 〉 we need to find Pij (t).
We start with the matrical form of the master equation 
P (t) =

P (0)Wt . The transition probability matrix W is a stochastic

matrix with elements Wij = wi→j , and 
P (t) is the probability
vector at time t . Using Dirac’s notation,

Pij (t) = 〈i|Wt |j 〉, (12)

where {|m〉}Nm=1 represents the canonical base of RN . Due to
the existence of the detailed balance condition, the matrix W
can be diagonalized, and its spectrum has real eigenvalues [39].
We find a solution of (1) in terms of the right eigenvectors of
the stochastic matrix W that satisfy W|φi〉 = λi |φi〉 for i =
1, . . . ,N . The set of eigenvalues is ordered in the form λ1 = 1
and 1 > λ2 � · · · � λN � −1. Using the right eigenvectors,
we define the matrix Z with elements Zij = 〈i|φj 〉. The matrix
Z is invertible, and a new set of vectors 〈φ̄i | is obtained by
means of Z−1

ij = 〈φ̄i |j 〉. Thus

δij = (Z−1Z)ij =
N∑

l=1

〈φ̄i |l〉〈l|φj 〉 = 〈φ̄i |φj 〉. (13)

Using the diagonal matrix � ≡ diag(λ1,..,λN ), we obtain W =
Z�Z−1. Therefore, Eq. (12) takes the form

Pij (t) = 〈i|Z�tZ−1|j 〉 =
N∑

l=1

λt
l 〈i|φl〉〈φ̄l|j 〉. (14)

From Eq. (14), P ∞
j = 〈j |φ1〉〈φ̄1|j 〉, where the result 〈i|φ1〉 =

const was used. Using the definition of R
(0)
ij , we have

R
(0)
ij =

N∑
l=2

1

1 − λl

〈i|φl〉〈φ̄l|j 〉. (15)

Therefore, the time τi is given by

τi =
N∑

l=2

1

1 − λl

〈i|φl〉〈φ̄l|i〉
〈i|φ1〉〈φ̄1|i〉 , (16)

and for i �= j in Eq. (10), the MFPT 〈Tij 〉 is

〈Tij 〉 =
N∑

l=2

1

1 − λl

〈j |φl〉〈φ̄l|j 〉 − 〈i|φl〉〈φ̄l|j 〉
〈j |φ1〉〈φ̄1|j 〉 . (17)

Finally, using (11) and (15), we obtain

〈T̄ 〉 =
N∑

m=1

N∑
l=2

1

1 − λl

〈φ̄l|m〉〈m|φl〉 =
N∑

l=2

1

1 − λl

. (18)

Therefore, we have obtained exact expressions for the occupa-
tion probability Pij (t), the stationary distribution P ∞

i , the time
τi , the MFPT 〈Tij 〉, and the time 〈T̄ 〉 in terms of the spectrum
and the left and right eigenvectors of W. Notice that the time
〈T̄ 〉 is a constant that can be calculated using only the spectrum
of eigenvalues of W.

In order to analyze the navigation of a Lévy random walker
on the network, we introduced another global time that is
simply the average of the quantity τi over all the nodes on

FIG. 1. (Color online) τi vs ki for a scale-free network with
N = 5000 nodes, using three values of the exponent α. The inset
depicts P ∞

i vs ki , and the solid line indicates the limiting case
α = 0.

the network, defined as τ ≡ 1
N

∑N
m=1 τm. This global time τ

gives the average number of steps needed to reach any node
on the network independently of the initial condition. In the
particular, yet important, case of regular networks (such as
lattices and complete graphs) where the stationary probability
is a constant given by P ∞

i = 1/N , we obtain that both global
times 〈T̄ 〉 and τ are the same, τ = 〈T̄ 〉. For example, when
α = 0, the matrix W has eigenvalues λ1 = 1 and λj = − 1

N−1

for j = 2,3, . . . ,N , and Eq. (18) gives τ = (N−1)2

N
.

III. ANALYSIS OF THE RESULTS

In what follows we use the exact results obtained by our
matrix formalism, given in Eqs. (14)–(18), to calculate the
corresponding quantities. It is important to stress that the
results in Figs. 1 and 2 are not numerical but exact calculations

FIG. 2. (Color online) The time τ vs α for different networks
with N = 5000. (top) The results for a 1D lattice, a 2D square
lattice (50 × 100), and a random tree (network without loops); we
used periodic boundary conditions in both lattices. (bottom) The
results for a SF network and an ER network at the percolation
threshold.
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using the eigenvalues and eigenvectors of the matrix W. In
Fig. 1 we show the quantity τi , which represents the average
time needed to reach node i from any node in the network.
We use in Fig. 1 a scale-free network of the Barabási-Albert
(BA) type, in which each node has a degree that follows
asymptotically a power-law distribution p(k) ∼ k−β [40]. We
show three cases with different values for the exponent α in
Eq. (2) that correspond to three different navigation rules. The
cases α = 1,2 correspond to a LRW, and the limiting case
α → ∞ corresponds to a NRW [21]. In the inset we show
the stationary distribution P ∞

i for different values of degree
ki . From Fig. 1 we can conclude that (1) according to the
inset, using LRW, it is more probable to reach the nodes with a
small degree (which are the majority of nodes on the network),
compared with NRW, and (2) for nodes with a degree lower
than a critical degree, which is the vast majority, LRW can
diminish the time to cover most of the network, compared
with NRW. On the other hand, the time to reach those nodes
with a high degree is lower using NRW than LRW since LRW
covers more uniformly the entire network, despite the degree
of the nodes. Therefore, if the purpose is to cover the vast
majority of the network, it is better to use a LRW strategy, but
if the goal is to reach the few highly connected nodes, it is
better to use a NRW.

In Fig. 2, we show τ vs α for five different kinds of networks
using our exact results. In regular networks [one-dimensional
(1D) and two-dimensional (2D) lattices] τ is calculated using
Eq. (18), and for the other three networks τ is obtained by
averaging the quantities given by (16). The top panel of
Fig. 2 shows that for large-world networks, such as lattices
and trees (networks without loops [1]), the LRW strategy
navigates the network more efficiently. That is, for smaller
values of α the average number of steps tends to the value
(N − 1)2/N , whereas for larger values of α (corresponding
to NRW) the number of steps can be one or two orders of
magnitude larger. In the bottom panel we notice that even for
small-world networks, such as scale-free (SF) and Erdős-Rényi
(ER) [5] networks, the number of steps is larger for NRW than
for LRW. Thus, the LRW strategy reduces the global time τ

compared with the NRW strategy, transforming dynamically a
large-world network into a small world.

It is worth noticing that the walker can, in principle,
visit any node of the network in a single step, but with a
decreasing probability depending on the exponent α. The
dynamics involve small, intermediate, and large steps, drawn
from a probability distribution, given by Eq. (2), that decays
as a power law. Thus, the dynamics is more complex than
in a complete graph, where every node is connected to every
other node; however, as discussed before, in the limiting case
when α tends to zero, the transition probability tends to a
constant value given by wij = (1 − δij )/(N − 1), where N is
the number of nodes on the network. In this limiting case, we
arrive at a situation similar to a complete graph where each
node on the network is connected to every other node. We
show in Fig. 2 that the case α = 0 is optimum in the sense
that the average global time is minimum; however, even for
values of α ≈ 1, the difference between the LRW strategy and
the dynamics for α = 0 is negligible. This implies that the
overall effect of navigating using Lévy random walks can be
as effective as navigating on a complete graph.

FIG. 3. (Color online) Monte Carlo simulation of the number of
distinct visited sites Nv vs time in a network with N = 5000. (a)
A 1D lattice, (b) a random tree, and (c) a scale-free network. Each
curve is obtained from the average of 1000 realizations of the random
walker.

These results are confirmed in Fig. 3, where we show now
Monte Carlo simulations for the percentage of different visited
sites Nv in the network, as a function of time, for different
values of the exponent α. Small values (α = 1,3) correspond
to LRW, and large values (α = 10) correspond to NRW. In
Fig. 3(a), we depict the results for a 1D lattice, showing that the
number of visited nodes for NRW grows diffusively, whereas
for LRW it grows ballistically. In Fig. 3(b), we show the results
for trees, and we see that once again the LRW explores the
network faster than the NRW. Finally, in Fig. 3(c) we show that
even for scale-free networks there is some advantage in explor-
ing the network using the LRW strategy rather than the NRW
strategy. Even though the difference is smaller, we notice that
we can cover the network faster using LRW than using NRW.

IV. CONCLUSIONS

In summary, we have introduced a strategy of navigation
in general undirected networks, including complex networks,
inspired by Lévy random walks, that generalized previous
navigation rules. We obtained exact expressions, using a
matrix formalism, for the stationary probability distribution,
the occupation probability distribution, the mean first passage
time, and the average time to reach a node in any undirected
finite network. We found that, using the Lévy random walk
navigation strategy, we cover more efficiently the network
compared with the normal random walk strategy. For small-
world networks we obtained that the average time to reach any
node on the network is smaller than the time required using the
normal random walk strategy. For large-world networks, this
difference can be one or two orders of magnitude. Additionally,
we found that for large-world networks, like trees or lattices,

056110-4



LONG-RANGE NAVIGATION ON COMPLEX NETWORKS . . . PHYSICAL REVIEW E 86, 056110 (2012)

the Lévy navigation strategy can induce dynamically the
small-world effect, thus transforming a large-world network
into a small world. Finally, our exact results provide a general
formalism that connects two important fields: Lévy navigation
strategies and dynamics on complex networks.

ACKNOWLEDGMENTS

J.L.M. thanks M. Shlesinger and A.-L. Barabási for useful
comments. A.P.R. acknowledges support from CONACYT
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