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By means of the concept of the balanced estimation of diffusion entropy, we evaluate the reliable scale
invariance embedded in different sleep stages and stride records. Segments corresponding to waking, light sleep,
rapid eye movement (REM) sleep, and deep sleep stages are extracted from long-term electroencephalogram
signals. For each stage the scaling exponent value is distributed over a considerably wide range, which tell us that
the scaling behavior is subject and sleep cycle dependent. The average of the scaling exponent values for waking
segments is almost the same as that for REM segments (∼0.8). The waking and REM stages have a significantly
higher value of the average scaling exponent than that for light sleep stages (∼0.7). For the stride series, the
original diffusion entropy (DE) and the balanced estimation of diffusion entropy (BEDE) give almost the same
results for detrended series. The evolutions of local scaling invariance show that the physiological states change
abruptly, although in the experiments great efforts have been made to keep conditions unchanged. The global
behavior of a single physiological signal may lose rich information on physiological states. Methodologically,
the BEDE can evaluate with considerable precision the scale invariance in very short time series (∼102), while
the original DE method sometimes may underestimate scale-invariance exponents or even fail in detecting
scale-invariant behavior. The BEDE method is sensitive to trends in time series. The existence of trends may lead
to an unreasonably high value of the scaling exponent and consequent mistaken conclusions.
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I. INTRODUCTION

Scale invariance embedded in physiological signals can
shed light on mechanisms of dynamical processes occurring
in the human body, based upon which one can construct theo-
retical models of the processes and evaluate the state of health
of disease sufferers [1,2]. A typical example is the scaling
behavior in different sleep stages. A cycle of healthy sleep
persists typically for 1 to 2 h, which constitutes a sequence of
sleep stages including waking, light sleep, rapid eye movement
(REM) sleep, and deep sleep. Little is known about the specific
functions of these circadian rhythms. It is believed that the
deep and REM sleep states are essential for physical recreation
and memory reconsolidation, respectively. Extensive work has
shown that heartbeat dynamics is characterized by long-range
correlations, and different long-range exponents are found for
healthy people and patients suffering from disease [3], and for
different sleep stages [4]. In particular, among the different
sleep stages, long-range correlation occurs solely during REM
sleep, which is similar to, while less pronounced than, that
during wakefulness. Hence, scale invariance embedded in
heartbeat intervals can be used as a monitor of intrinsic
neural-autonomic regulation of the circadian rhythms, which
may find a potential use in disease diagnosis and therapy. But
evaluation of scale invariance in physiological signals meets
two challenges.

Methodologically, variance-based methods, such as wavelet
analysis [5] and the detrended fluctuation approach [6], are
widely reported in the literature for calculation of scaling

*Corresponding author: hjyang@ustc.edu.cn

exponents. They can estimate correctly the values of the
scaling exponents for fractional Brownian motion, but in-
correctly those for Levy walks, and cannot even find the
scaling-invariant behavior existing in a Levy flight process
due to divergency of the second moment [7]. A successful
complementary method is diffusion entropy analysis. From a
stationary time series, one can construct all possible segments
with a specified length. Regarding the length as the time
duration, each segment can be regarded as a trajectory of a
particle starting from the original point. The time series is then
mapped to an ensemble with the trajectories being realizations
of a stochastic motion. From the distribution function of the
displacement one can calculate the Shannon entropy, which
is called the diffusion entropy by Scafetta et al. [7]. Detailed
work has proved its power in evaluation of scaling exponents
for both fractional Brownian and Levy motions [8].

In practice, to obtain the probability distribution function,
we divide the region of distribution of the displacement
into many bins and reckon the number of displacements
occurring in each bin. The probability occurring at a bin is
generally approximated by the relative frequency, namely, the
ratio between the number occurring and the total number of
realizations, which is perfect for an ensemble with an infinite
number of realizations. However, a physiological signal is
generally very short. Sometimes we can obtain a long time
series, but some phase transitions occur in the measurement
duration, which separate the series into short segments with
different scaling behaviors. For example, a typical cycle of
healthy sleep contains several thousands of heartbeat intervals,
in which a sequence of transitions occurs between different
sleep stages. Figure 2(a) presents a long-term heartbeat interval
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series for a healthy subject. The lengths for waking, REM
sleep, light sleep, and deep sleep stages are distributed in wide
regions from 101 to 103 without characteristic lengths (see
Sec. II C).

A short length of a time series may induce large statistical
fluctuations and/or bias in physical quantities such as probabil-
ity, moment, and entropy [9]. In a recent paper, Bonachela et al.
[10] reviewed the attempts at devising improved estimators of
entropy for small data sets and propose accordingly a balanced
estimator that performs well when the data sets are small. In
one of our recent papers, we proposed a concept called the
balanced estimator of diffusion entropy (BEDE) [11], in which
the original form of the entropy in diffusion entropy analysis
is replaced by a balanced estimator of entropy. Calculations
show that it gives reliable scaling exponents for short time
series with length ∼102.

In the present paper, the BEDE method is used to evaluate
scaling behaviors in heartbeat series for different sleep stages
and stride time series for normal, fast, and slow walkers.
Results show that for finite records of physiological signals
the current methods in the literature may lead to unacceptable
errors for scaling exponents and wrong conclusions, while the
BEDE approach can provide us with a reliable estimation of
scaling exponents.

II. METHOD AND MATERIALS

A. Diffusion entropy

Let us review briefly the concept of diffusion entropy [7]
proposed to detect scale invariance in stationary series. For a
stationary time series ξ1,ξ2, . . . ,ξN , all the possible segments
with specified length s read

Xi(s) = {ξi,ξi+1, . . . ,ξi+s−1}, i = 1,2, . . . , N − s + 1.

(1)

We regard the length s as time and consequently Xi(s)
is the ith realization of a stochastic process. The total
N − s + 1 realizations form an ensemble of the process. The
displacement of the ith realization reads

xi(s) =
i+s−1∑
j=i

ξj . (2)

Dividing the interval in which the displacements occur
into M(s) bins, one can reckon the number of displacements
occurring in each bin, denoted by n(k,s), k = 1,2, . . . ,M(s).
The probability distribution function can be approximated by
the relative frequency

p(k,s) ∼ p̂(k,s) = n(k,s)

N − s + 1
, k = 1,2, . . . ,M(s). (3)

The consequent naive approximation of the Shannon
entropy reads

SDE(s) ∼ Snaive
DE (s) = −

M(s)∑
k=1

p̂(k,s) ln[p̂(k,s)]. (4)

Provided the stochastic process behaves in a scale-invariant
way, we have

p(k,s) ∼ 1

sδ
F

(
xmin(s) + (k − 0.5)ε(s)

sδ

)
,

(5)
k = 1,2, . . . ,M(s),

where ε(s) is the size of the bin, which is simply selected to be
a certain fraction of the standard deviation of the initial series.
Plugging Eq. (5) into Eq. (4) leads to

SDE(s) = −
∫ +∞

−∞
dyF (y) ln[F (y)] + δ ln(s) = A + δ ln(s).

(6)

The diffusion entropy (DE) has been used as a powerful
method to evaluate scaling invariance embedded in time series
in diverse fields, such as solar activity [12], spectra of complex
networks [13], physiological signals [14], DNA sequences
[15], geographical phenomena [16], and finance [17].

B. Balanced estimation of diffusion entropy

Unfortunately, extension of Eq. (6) to the naive approxima-
tion of diffusion entropy is a nontrivial step, i.e., generally
Snaive

DE (s) �= A + δ ln(s) [9]. Defining the relative error as
μ(k,s) ≡ p̂(k,s)−p(k,s)

p(k,s) , after a straightforward computation we
have

SDE(s) = Snaive
DE + M(s) − 1

2(N − s + 1)
+ O(M(s)). (7)

The leading order of error, M(s)−1
N−s+1 , vanishes as N − s → ∞,

while it may become unacceptably large when N − s is finite.
Especially for short time series the linear relation in Eq. (6) will
be distorted completely and one cannot find scaling-invariant
behavior. In the naive approximation of diffusion entropy there
exist simultaneously statistical error (variance) and systematic
error (bias). That is, p̂(k,s) ln[p̂(k,s)] is not an acceptable
estimation of its corresponding term p(k,s) ln[p(k,s)]. Hence,
our task is to find a different estimation of p(k,s) ln[p(k,s)],
denoted by ŜDE[n(k,s)], which minimizes the combination
of variance and bias. Here, we ignore correlations between
n(k,s), k = 1,2, . . . ,M(s).

We employ the solution proposed by Bonachela et al. [10].
Mathematically, this problem can be formulated as

∂�2(k,s)

∂ŜDE[n(k,s)]
= 0,

�2(k,s) =
∫ 1

0

[
�2

bias(k,s) + �2
stat(k,s)

]
×w[p(k,s)]dp(k,s), (8)

where

�2
bias(k,s) = (p(k,s) ln[p(k,s)] − 〈ŜDE[n(k,s)]〉)2,

(9)
�2

stat(k,s) = 〈(ŜDE[n(k,s)] − 〈ŜDE[n(k,s)]〉)2〉
are the bias and variance, respectively, and w[p(k,s)] is a
weight function depending on the specific problem. Generally,
we set w[p(k,s)] = 1 due to lack of extra knowledge. The
average 〈·〉 is obtained by using the binomial distribution
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function

Pn(j,s)[p(j,s)] = [N − s + 1]!

n(j,s)![N − s + 1 − n(j,s)]!

× [p(j,s)]n(j,s)[1 − p(j,s)]N−s+1−n(j,s).

(10)

A simple computation leads to Ref. [11]

ŜDE[n(k,s)] = n(j,s) + 1

N − s + 3

N−s+3∑
k=n(j,s)+2

1

k
. (11)

Consequently, a proper estimation of SDE(s) reads

ŜDE(s) = 1

N − s + 3

M(s)∑
j=1

[n(j,s) + 1]
N−s+3∑

k=n(j,s)+2

1

k
, (12)

which is called the balanced estimator of diffusion entropy.

C. Materials

We consider long-term electroencephalogram (EEG) sig-
nals for a total of 16 male subjects aged from 32 to 56 (mean age
43), with weights from 89 to 152 kg (mean weight 119 kg) [18].
Each EEG record persists on average for 7.5 h annotated with
sleep staging and apnea information. Each annotation applies
to the 30 s following it. Sleep stages are divided into four
stages, namely, deep sleep, light sleep, REM sleep, and waking
phase, which are determined by using visual evaluation of
electrophysiological recordings of brain activity.

We consider also the stride series for a total of ten
young healthy volunteers, denoted by si01,si02,. . .,si10 [19].
“Healthy” here indicates that the participants have no history of
any neuromusucular, respiratory, or cardiovascular disorders
and are taking no medication. The age distribution is 18 to
29 yr. The average age is 21.7 yr. The height and weight are
centered at 177 cm and 71.8 kg, with standard deviations
of 8 cm and 10.7 kg, respectively. All the subjects walk
continuously on level ground around an obstacle-free, long
(either 225 or 400 m), approximately oval path. The stride
interval is measured by using an ultrathin, force-sensitive
switch taped inside one shoe. Each subject walks for four
trials, including slow, normal, fast, and metronome-regulated.
For the slow, normal, and fast trials the mean stride intervals are
1.3 ± 0.2, 1.1 ± 0.1, and 1.0 ± 0.1 m, and the mean walking
rates are 1.0 ± 0.2, 1.4 ± 0.1, and 1.7 ± 0.1 m/s, respectively.

The scale invariance embedded in heartbeat and stride
interval series, denoted by {yO

1 ,yO
2 , . . . ,yO

N }, is evaluated.
The key step in using the BEDE method is to guarantee the
considered series being stationary [20]. The centered moving
average method [21] is employed to obtain the trend of a time
series; namely, from the original series we calculate its trend
yT , where the elements read

yT
i = 1

s

[s/2]∑
j=−[(s+1)/2]+1

yO
i+j ,

(13)
i = [(s + 1)/2],[(s + 1)/2] + 1, . . . ,N − [s/2].

Herein, the size of the moving window is identical
with s in ŜDE(s). The consequent de-trended series yD

FIG. 1. (Color online) Performance of the centered moving
average. The series are fractional Brownian motions with length
300. (a)–(c) Results for three series with H = 0.9, 0.7, and 0.3,
respectively. The BEDE method can accurately estimate δ from the
original and detrended series. The DE curve for the original series
bends down. The DE can detect scale invariance in the detrended
series. Confidence intervals for the estimated values are all less than
0.02. (d) Bias and deviation of the DE and BEDE estimations for
the detrended series. The BEDE can estimate the scaling exponent
without bias and with higher precision, while the DE underestimates
the scaling exponent by up to 10% with lower precision.

reads

yD
i = yO

i − yT
i ,

(14)
i = [(s + 1)/2],[(s + 1)/2] + 1, . . . ,N − [s/2].

Fractional Brownian motions are generated to investigate
the performance of the centered moving average. Figures 1(a)–
1(c) present results for three series with Hurst exponents H =
0.9, 0.7, and 0.3, as typical examples. The DE and BEDE
methods are used to estimate δ values for the original signals
and the corresponding detrended series. The curves show that
from the detrended series the BEDE method can obtain almost
the same values of δ as those from the original series, namely,
in the BEDE method the centered moving average does not
introduce artificial characteristics. From the original series,
the BEDE method can obtain correctly the values of δ, while
the DE method cannot find scaling invariance in signals with
larger values of H (the curves bend down, especially for signals
with large H ). Figure 1(d) shows the variance and bias (mean)
of the exponents for the detrended series estimated by using
the DE and BEDE, respectively. The average is taken over
1000 series with length 300 for each H . One can see that
the BEDE method can estimate δ for signals with 0 < δ < 1
without bias and with higher precision, while the DE method
underestimates δ by up to 10% and has lower precision.

III. RESULTS

A. Scaling behaviors for sleep stages

Figure 2(a) shows the heartbeat interval series for subject
number 59 as part of a typical record. One can see that
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FIG. 2. (Color online) EEG records. (a) Part of the heartbeat
interval series for subject 59 shown as an example. (b) Sleep stages
annotated by visual evaluation of electrophysiological recordings of
brain activity. (c) Trend extracted from the original series in (a). The
trend for s = 21 is shown as an example. (d) Detrended series for
s = 21 as an example. (e) Lengths for waking, light sleep, REM sleep,
and deep sleep stages distributed in the interval 101–103 (without
characteristic lengths).

transitions between different sleep stages occur frequently,
as annotated in Fig. 2(c). There exists a complicated and
significant trend [see Fig. 2(c), in which the trend for s = 21
is shown as an example]. The corresponding detrended series
is depicted in Fig. 2(d). From all the records one can see that
most of the durations for the waking, light sleep, REM sleep,
and deep sleep stages are distributed in the interval 101–103

(without characteristic lengths), as presented in Fig. 2(e).
As a typical example, we show in Figs. 3(a)–3(d) results

for the segments 7290–8520 s (waking), 8520–9270 s (light
sleep), 9270–10 110 s (REM sleep), and 6450–7290 s (deep

FIG. 3. (Color online) Scaling behaviors in a sleep cycle of
subject 59. (a)–(d) Scaling behaviors of the segments 7290–8520
s (waking), 8520–9270 s (light sleep), 9270–10 110 s (REM sleep),
and 6450–7290 s (deep sleep), respectively. Confidence intervals for
estimated values are all less than 0.02.

FIG. 4. Distribution of scaling exponents for different sleep
stages. From all the subjects the segments corresponding to waking,
light sleep, REM sleep, and deep sleep are extracted. Segments whose
lengths are less than 500 are discarded. (a)–(d) Scaling exponent
distributions for waking, light sleep, REM sleep, and deep sleep. The
average values for REM sleep and waking are significantly larger
(∼0.8) those for light sleep (∼0.7).

sleep), which forms a sleep cycle of subject 59. One can
see that the curves for the DE results bend down with the
increase of scale, while this trend is corrected by use of
the BEDE method to straight lines in a considerable range
of scale. What is more, although the BEDE can detect
successfully scaling behaviors in the original series, the
estimated values of the scaling exponents are significantly
larger than those for the corresponding detrended series. From
the original series the estimations for waking, light sleep,

FIG. 5. (Color online) Scale invariance of stride series. (a) Stride
interval series from normal walk record of the volunteer si01, and the
corresponding trend and detrended series. The trend and detrended
series for s = 21 are shown as an example. (b)–(d) Scaling behaviors
in slow, normal, and fast walk series. For the detrended series, the
values estimated by using the DE are very close to (generally smaller
than) those obtained by using the BEDE. Confidence intervals for the
estimated values are all less than 0.02.
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FIG. 6. (Color online) The BEDE results of detrended series
for all ten volunteers. (a)–(c) Scaling behaviors embedded in slow,
normal, and fast series (detrended). Confidence intervals for the
estimated values are all less than 0.02.

REM sleep, and deep sleep are 1.00, 0.91, 1.07, and 0.92,
while those from the corresponding de-trended series are
0.82, 0.70, 0.92, and 0.93. For the detrended series, the
DE underestimates the exponents by up to 10%. Hence, to
obtain reliable scaling behaviors for the different sleep stages
we must conduct a detrending procedure and use the BEDE
instead of the DE. Results for shuffled detrended series tell us
that the scaling behaviors come from nontrivial patterns in the
series rather than distribution of the elements in the series.

From all the subjects we extract the segments corresponding
to waking, light sleep, REM sleep, and deep sleep, whose
lengths are larger than 500 (about a duration of 450 s),
the numbers of which are 41, 105, 18, and 17, respectively.
The distribution behaviors of the values for scaling exponent
are presented in Figs. 4(a)–4(c). One can see that the average
value and standard deviation of the scaling exponent for
REM sleep are almost the same as those for waking, but the
distribution for the former is much more sharply peaked than
that for the latter. The average value and standard deviation
for light sleep are almost identical with those for deep sleep,
while the detailed shapes for the distributions are completely
different. Obviously, to confirm whether the differences in
distributions originate from intrinsic behaviors or just from
statistical errors requires collection of a large number of cases.

FIG. 7. Evolution of scaling behaviors in the stride records. (a)–
(c) Scaling behaviors embedded in slow, normal, and fast walk records
of the volunteer si01. The scaling exponents oscillate abruptly over
wide ranges. �τ = 700.

What is more, the average values for REM sleep and waking
are significantly larger (∼0.8) than those for light sleep (∼0.7).

B. Scaling behaviors for stride series

From the stride records, one can calculate the corresponding
stride interval series, trends, and detrended series. As an
example, see in Fig. 5(a) the results from the normal walking
record of the volunteer si01. For slow, normal, and fast
walks the lengths of the series are 3304, 3371, and 3395,
respectively, which are significantly larger than those of the
sleep stages. For the original series, with an increase of scale
the DE curves bend down, i.e., scaling behavior cannot be
detected successfully, while the BEDE curves are almost
perfect straight lines over considerably wide scales, as shown
in Figs. 5(b)–5(d). However, the estimated values of the scaling
exponents from the original series may be unacceptably large
compared with those from the corresponding detrended series
(e.g., the difference for the slow record is 0.10). Consequently,
the detrending procedure is the key step to obtaining reliable
estimations of the scaling exponent. What is more, the values
estimated by using the DE are very close to (generally smaller
than) those obtained by using the BEDE, and this conclusion
stands for all the ten volunteers (not presented).

The BEDE results for the detrended series yD for all ten
volunteers are shown in Fig. 6. The BEDE curves are almost
perfect straight lines over a considerable width of scale; the
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FIG. 8. (Color online) Distribution details of the evolutionary
scaling exponents for slow, normal, and fast walking series of all
ten volunteers. Details of the distributions are completely different
from each other. �τ = 700.

estimations of the scaling exponents, namely, the slopes of the
curves, are also presented.

An interesting question is whether the physiological states
of the volunteers remain unchanged in the walking experi-
ments. Sliding a window along a detrended series, at the τ th
step the window covers segment yD

τ ,yD
τ+1, . . . ,y

D
τ+�τ−1, where

�τ is the size of the window. Representing the local scaling
behavior at step τ by the scaling exponent for the segment
covered by the window, denoted by δBEDE

D (τ ), the successive
values of δBEDE

D (τ ), τ = 1,2, . . . ,N − �τ + 1, present the
evolution of the scaling behavior of the considered series. As
a typical result, Figs. 7(a)–7(c) provide the evolutions of the
scaling behaviors embedded in the slow, normal, and fast walk
records of volunteer si01. Figure 8 provides the distribution
details and the mean and standard values of the evolutionary
scaling exponents for slow, normal, and fast walking series
of all the volunteers. Unexpectedly, the scaling exponents
oscillate abruptly over wide ranges and the details of the local
scaling exponent distributions are completely different from
each other. �τ is chosen to be 700 in the calculations.

IV. CONCLUSIONS

Scale invariance in physiological signal records attracts
special attention for its importance in understanding and

consequent modeling of physiological phenomena and its
potential usage in diagnoses and therapy. But evaluation of the
scale invariance in physiological signals is a nontrivial task.
Theoretically, variance-based methods may lead to a failure in
evaluation of the scaling behavior. In practice, a physiological
signal generally is itself very short (∼102), or separated by
frequent occurrences of phase transitions into short segments.
In the literature, persistent efforts have been made to find
reliable methods to evaluate scale invariance in short time
series [22].

In the present paper, we extract waking, light sleep, REM
sleep, and deep sleep segments (length greater than 500 for
reliable estimation of scaling exponents) from long-term EEG
signals. By means of the concept of balanced estimation
of diffusion entropy, we estimate the scaling exponents of
detrended series constructed from the segments. It is found
that for each stage the scaling value is distributed over a
considerably wide range, i.e., the scaling behavior is subject
and sleep cycle dependent. Statistically, the average of the
scaling exponent values for waking segments is almost
the same as that for REM sleep segments (∼0.8), while the
average of the scaling exponent values for light sleep segments
is ∼0.7.

For the stride series, because the series are long enough
(3000–4000), the original diffusion entropy and balanced
estimation of diffusion entropy give almost the same results for
detrended series. But from the evolutions of the local scaling
invariance one can see that the physiological states change
abruptly, although in the experiments great efforts were made
to keep conditions unchanged. Hence, the global behavior of
a single physiological signal may lose rich information about
physiological states.

In comparing the results from the DE and BEDE methods,
one can see that the BEDE can evaluate with considerable
precision scale invariance in very short time series (∼102). The
original DE method sometimes underestimates the value of the
scaling exponent, or even cannot detect the scaling behavior
due to the bias of bending down as the scale increases. The
two methods (BEDE and DE) are both sensitive to trends
in time series. In the BEDE concept, the existence of a
trend may lead to an unreasonably high value of the scaling
exponent, which may lead to mistaken conclusions. Hence,
the balanced estimation of diffusion entropy is a preferential
candidate for correct and precise evaluation of scale invariance
in short time series, provided that the time series is detrended
properly.
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