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Patterns of conductivity in excitable automata with updatable intervals of excitations
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We define a cellular automaton where a resting cell excites if number of its excited neighbors belong to some
specified interval and boundaries of the interval change depending on ratio of excited and refractory neighbors in
the cell’s neighborhood. We calculate excitability of a cell as a number of possible neighborhood configurations
that excite the resting cell. We call cells with maximal values of excitability conductive. In exhaustive search of
functions of excitation interval updates we select functions which lead to formation of connected configurations
of conductive cells. The functions discovered are used to design conductive, wirelike, pathways in initially
nonconductive arrays of cells. We demonstrate that by positioning seeds of growing conductive pathways it is
possible to implement a wide range of routing operations, including reflection of wires, stopping wires, formation
of conductive bridges, and generation of new wires in the result of collision. The findings presented may be applied
in designing conductive circuits in excitable nonlinear media, reaction-diffusion chemical systems, neural tissue,
and assemblies of conductive polymers.
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I. INTRODUCTION

Excitable cellular automata are well-endowed tools for
studying complex phenomena of spatiotemporal physical,
chemical, and biological systems [1,2], prototyping of chem-
ical media [3,4], reaction-diffusion computers [5], studying
calcium wave dynamics [6], and chemical turbulence [7].

In a classical Greenberg-Hasting [8] automaton model of
excitation a cell takes three states: reseting, excited, and
refractory. A resting cell becomes excited if number of
excited neighbors exceeds a certain threshold, an excited
cell becomes refractory, and a refractory cell returns to its
original resting state. In Ref. [9] we introduced a bit more
exotic cellular automaton, where a resting cell is excited if
a number of its excited neighbors belongs to some fixed
interval [θ1,θ2]. The interval [θ1,θ2] is called an excitation
interval. For a two-dimensional cellular automaton with an
eight-cell neighborhood boundaries of the excitation interval
are between 1 and 8: 1 � θ1 � θ2 � 8. By tuning θ1 and θ2 we
control automata dynamics and evoke target and spiral waves,
stationary excitation patterns, and mobile localizations [5].

How does excitation dynamics change if we allow bound-
aries of the excitation interval to change during the au-
tomaton development? We partially answered the question
in Ref. [10] by making the interval [θ t

1(x),θ t
2(x)] of every

cell x dynamically updatable at every step t depending on
state of the cell x and numbers of excited and refractory
neighbors in the cell x’s neighborhood. We found that excitable
cellular automata with dynamical excitation intervals exhibit
a wide range of space-time dynamics based on an interplay
between propagating excitation patterns and excitability of
cells modified by the excitation patterns. Such interactions
lead to formation of standing domains of excitation, stationary
waves, and localized excitations. We analyzed morphological
and generative diversities of the functions studied and charac-
terized the functions with highest values of the diversities.

Excitable cellular automata with dynamical intervals of
excitation can be considered as discrete phenomenological
models, or rather conceptual analogs, of memristive media
and excitable chemical medium computers.

A. Memristive medium

The memristor, a passive resistor with memory, is a device
whose resistance changes depending on the polarity and
magnitude of a voltage applied to the device’s terminals
and the duration of this voltage’s application. Its existence
was theoretically postulated by Leon Chua in 1971 based
on symmetry in integral variations of Ohm’s laws [11–13].
The first experimental prototypes of memristors are reported
in Refs. [14–16]. An importance, and the great pragmatic
value, of memristors is that one can design logically universal,
or functionally complete, circuits composed entirely of the
memristors. Potential unique applications of memristors are
in spintronic devices, ultradense information storage, neu-
romorphic circuits [17], and programmable electronics [18],
designing binary arithmetical circuits with polymer organic
memristors [19].

Despite a phenomenal number of results in memristors
produced literally every week there are insufficient findings
on phenomenology of spatially extended nonlinear media
with hundreds of thousands of locally connected memristive
elements. Three cellular automaton models of a memristive
medium have been suggested so far:

(1) Itoh-Chua memristor cellular automata, where a cellular
automaton lattice is actually designed with memristors [20]

(2) Adamatzky-Chua model of memrisitive cellular au-
tomata based on structurally dynamic cellular automata [21]

(3) Semimemristive automata [22].
Itoh-Chua and Adamatzky-Chua models imitate memris-

tive properties of links, connections between cells of automata
arrays, but not the cells themselves. The semimemristive
automata bring memristivity into cells [22]: Links between
cells are always “conductive,” but cells themselves can take
nonconductive, or refractory, states. The semimemristive
automata are excitable cellular automata with retained refrac-
toriness.

In the present paper, an excitability of a cell is calculated as
a number of possible neighborhood configurations that excite
the resting cell. Cells with maximal values of excitability are
called conductive. We represent conductivity of a cell x via
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boundaries of its excitation interval [θ1(x),θ2(x)]. We excite
the cellular automaton, wait till the perturbation spreads and
boundaries of excitation intervals of cells are updated, and
then select cells with the highest values of excitability. The
configurations of conductive cells form conductive pathways
by analogy with the formation of conductive pathways in
disordered networks of organic memristors [23]. In automata
studied polarity of a direct current applied to a cell x is imitated
by excited and refractory neighbors of x, and current intensity
is represented by a ratio of excited and refractory neighbors.

B. Ensembles of Belousov-Zhabotinsky vesicles

Excitable reaction-diffusion computers, especially those
based on a Belousov-Zhabotinsky (BZ) reaction, employ
principles of a collision-based computing [5]. Wave fragments
collide in a “free” space and change their velocity vectors as

the result of the collision. When input and output waves are
interpreted as logical variables, the site of the waves’ collision
can be seen as a logical gates. Wave fragments, similar to
dissipative solitons [24], are inherently unstable: They either
collapse or explode. A way to overcome the problem of
wave fragments’ instability was suggested in Refs. [25–27]:
a subdivision of the computing substrate into interconnected
compartments, so-called BZ vesicles, and allowing waves to
collide only inside the compartments. Each BZ vesicle has
a membrane that is impassable for excitation. A pore, or a
channel, between two vesicles is formed when two vesicles
come into direct contact. The pore is small such that when a
wave passes through the pore there is insufficient time for the
wave to expand or collapse before interacting with other waves
entering through adjacent pores, or sites of contact.

It has been observed in chemical laboratory experiments
with BZ vesicles [28] that waves of oxidation induced by

(a) Excitation (b) θ1 (c) θ2

(d) Conductivity

FIG. 1. (Color online) Snapshots of (a) excitation pattern, (b) configuration of lower boundary θ1 of excitation interval, (c) configuration of
upper boundary θ2 of excitation interval, (d) configuration of conductivity of cellular automaton governed by function E(−1,1,0,−1). Array
of 880 × 880 cells evolved for 440 steps. Initially cells inside a disk radius 200 are assigned excited states with probability 10−3. Cell states in
(a) are represented by colours and gray levels as follows: excited state + is red (c. 76 gray), resting state is white and refractory state − is blue
(c. 28 gray). Color values of excitation interval boundaries θ1 (b) and θ2 (c) are following: 1 is white, 2 is green or 150 gray, 3 is yellow or 226
gray, 4 is blue or 28 gray, 5 is magenta or 104 gray, 6 is cyan or 178 gray, 7 is red or 76 gray, and 8 is black. Conductive cells in (d) are black,
and nonconductive are white.
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FIG. 2. (Color online) Enlarged part of excitation pattern from
Fig. 1(a).

external stimulation, e.g., with a silver wire, propagating
in the initially resting BZ medium may cause changes in
the excitability of BZ vesicles (not just refractoriness but
excitability in the long run). Excitability of BZ vesicles can
increase after the first round of the oxidation wave propagation.
A cellular automaton model designed in the present paper
gives a phenomenological snapshot of an ensemble of regularly
arranged BZ vesicles (imitated by cells), which change their
long-term excitability after being subjected to propagating
waves of excitation.

The paper is structured as follows. We define an excitable
cellular automata with dynamically updated boundaries of ex-
citation intervals in Sec. II. Configurations of conductivity gen-
erated by the automata are analyzed in Sec. III. The functions
which produce fully conductive configurations are selected in
an exhaustive search. Section IV demonstrates how to design
conductive wirelike pathways by positions’ seeds of excitation.
Potential further developments are outlined in Sec. V.

II. EXCITATION-CONTROLLED
EXCITATION INTERVALS

Let L be a two-dimensional orthogonal array of finite state
machines, or cells, xt and xt+1 states of a cell x at time steps
t and t + 1, and σ t

+(x) a sum of excited neighbors in cell x’s

(a) E(1, 0, 0,−1), N = (0, 4) (b) E(0,−1, 1, 1), N = (2, 5) (c) E(1, 1, 0, 1), N = (2, 6)

(d) E(1, 1, 1, 1), N = (2, 7) (e) E(0,−1, 1,−1), N = (2, 8) (f) E(1,−1, 0, 1), N = (5, 0)

FIG. 3. Examples of conductivity configurations.
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eight-cell neighborhood, u(x) = {y : |x − y|L∞ = 1}. Cell x

updates its state by the rule xt+1 = f (u(x)), where cell-state
update function f is represented as

xt+1 =

⎧⎪⎨
⎪⎩

+, if xt = ◦ and σ t
+(x)+ ∈ [

θ t
1(x),θ t

2(x)
]

−, if xt = +
◦, otherwise

.

(1)

A resting cell is excited if a number of its neighbors belongs to
excitation interval [θ t

1(x),θ t
2(x)], where 1 � θ t

1(x),θ t
2(x) � 8.

The boundaries θ t
1(x) and θ t

2(x) are dynamically updated
depending on cell x’s state and numbers of x’s excited σ t

+(x)
and refractory σ t

−(x) neighbors. A natural way to update
boundaries is by increasing or decreasing their values as
follows:

θ t+1
1 (x) = ξ

{
θ t

1(x) + �1φ[σ t
+(x) − σ t

−(x)]
}
,

(2)
θ t+1

2 (x) = ξ
{
θ t

2(x) + �2φ[σ t
+(x) − σ t

−(x)]
}
,

where

�1 =

⎧⎪⎨
⎪⎩

T1, if x = +
T3, if x = −
0, if x = 0

�2 =

⎧⎪⎨
⎪⎩

T2, if x = +
T4, if x = −
0, if x = 0

(3)

and φ(a − b) = 1 if a > b, 0 if a = b and −1 if a < b, and
ξ (a) = 1 if a < 1 and 8 if a > 8. Boundaries of excitation
interval [θ t

1(x),θ t
2(x)] are updated independently of each

other. Rules of excitation intervals update are determined by
values of T1, . . . ,T4. We therefore address the functions as
tuples E(T1,T2,T3,T4), which range from E(−1,−1,−1,−1)
to E(1,1,1,1).

Excitability E(θ1(x),θ2(x)) of a cell x with excitation
interval [θ1(x),θ2(x)] is measured as a number of all possible
local configurations, which have a sum of excited cells lying
in the excitation interval [θ1(x),θ2(x)]:

E(θ1,θ2) = |{w ∈ {◦, + ,−}8} : f (w) = +|. (4)

Two highest excitability values are reached by cells with exci-
tation intervals [1,7] and [1,8], E(1,7) = 6304 and E(1,8) =
6305. We assume a cell x is conductive if E(θ1(x),θ2(x)) >

6300. Connectivity of the configurations of cells with maximal
excitability is considered to be an analog of conductivity of
the whole cellular array. The connectivity is estimated using a
standard bucket fill algorithm.

Definition 1. We call conductivity configuration diameter
D fully conductive if there is a path between two sites lying at
distance D from each other, and over 90% of sites are reached
from any given site.

(a) E(1,−1, 0, 0), N = (7, 0) (b) E(1,−1,−1, 1), N = (8, 0)

(c) E(1, 0,−1, 1), N = (8, 1) (d) E(−1,−1, 0, 0), N = (8, 3) (e) E(−1,−1, 0,−1), N = (8, 6)

FIG. 4. Examples of conductivity configurations.
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We study formation of conductive pathways in an initially
nonconductive medium. Therefore, in experiments we consid-
ered initial conditions θ0

1 (x) = 2 and θ0
2 (x) = 8 for any x. The

excitation interval [2,8] gives a cell excitability 5281, which
is below a threshold adopted as an indicator of conductivity.

We excite a disk radius 200 cells with a random con-
figuration of excited states. Let p be a probability for a
cell x to be assigned an excited state at t = 0 and one of
its neighbors, chosen at random, also assigned an excited
state. Two neighboring excited cells are a minimal size of
perturbation due to θ0

1 (x) = 2. We considered p = 10−3 and
p = 0.1. Initially cells inside a disk radius 200 are assigned
excited states with probability p.

In each trial we allowed the cellular automaton to develop
for 440 iterations and then analyzed configurations of conduc-
tivity. Size of cellular arrays was chosen large enough for a
perturbation front to never reach the array’s boundaries in 440
steps, so there are no influences of boundary conditions.

III. CONDUCTIVE CONFIGURATIONS

Sites of initial random excitations generate waves, localiza-
tions, and other traveling patterns of excitation. The patterns
either stay localized or merge and propagate outwards in the
initially perturbed region. The patterns of excitation update
boundaries of excitation intervals of cells they excited. An
example of cellular automaton, function E(−1,1,0,−1), and
its development is shown in Fig. 1. Waves of excitation
propagate from the perturbation sites [Figs. 1(a) and 2],
leaving somewhat fiber-like trails and extended domains of
lower θ1 [Fig. 1(b)] and upper θ2 [Fig. 1(c)] boundaries of
excitation intervals. These are reflected in solid domains of
conductivity partially linked with wirelike conductive paths
[Fig. 1(d)]. Excitation waves originating from different sites of
perturbation merge outside the stimulation disk and propagate
further as almost connected packet of target waves [Fig. 1(a)].
These waves leave triangular solid domains of conductivity
behind [Fig. 1(d)].

A. Classes of connectivity

We characterize local connectivity of conductivity con-
figurations using νmax, a number of conductive neighbors
of a conductive cell that occurred most frequently in the
configuration of conductivity, and νmin, which occurred less
frequently. For initial probability of excitation 10−3 we have 12
classes of local connectivity, and the functions are grouped by
values N = (νmax,νmin) of their conductivity configurations.
Examples of configurations of conductivity generated by
functions from these classes are shown in Figs. 3 and 4:

(1) N = (0,0): E(0,−1,0,−1), E(0,−1,0,0), E(0,−1,

0,1), E(0,0,0,−1), E(0,0,0,0), E(0,0,0,1), E(0,1,0,−1),
E(0,1,0,0), E(0,1,0,1)

(2) N = (0,4): E(1,0,0,−1), E(1,1,0,−1) [Fig. 3(a)]
(3) N = (2,5): E(0,−1,1,1) and E(1,1,0,0) [Fig. (3 b)]
(4) N = (2,6): E(1,1,0,1) [Fig. 3(c)]
(5) N = (2,7): E(0,0,1,1), E(0,1,1,1), E(1,−1,0,−1),

E(1,−1,1,−1), E(1,−1,1,0), E(1,−1,1,1), E(1,0,1,−1),
E(1,0,1,0), E(1,0,1,1), E(1,1,1,−1), E(1,1,1,0), E(1,1,1,1)
[Fig. 3(d)]

(6) N = (2,8): E(0,−1,1,−1), E(0,−1,1,0), E(0,0,

1,−1), E(0,0,1,0), E(0,1,1,−1), E(0,1,1,0) [Fig. 3(e)]
(7) N = (5,0): E(1,−1,0,1), E(1,0,0,1) [Fig. 3(f)]
(8) N = (7,0): E(1,−1,0,0), E(1,0,0,0) [Fig. 4(a)]
(9) N = (8,0): E(−1,−1,−1,−1), E(−1,−1,1,1), E(−1,

0,−1,−1), E(−1,0,0,−1), E(−1,0,0,0), E(−1,1,0,−1),
E(−1,1,0,0), E(−1,1,0,1), E(0,−1,−1,−1), E(0,−1,−1,

0), E(0,−1,−1,1), E(0,0,−1,0), E(0,0,−1,1), E(0,1,−1,1),
E(1,−1,−1,−1), E(1,−1,−1,0), E(1,−1,−1,1), E(1,0,

−1,0), E(1,1,−1,1) [Fig. 4(b)]
(10) N = (8,1): E(−1,−1,−1,0), E(−1,−1,−1,1), E(−1,

0,−1,0), E(−1,0,−1,1), E(−1,1,−1,0), E(−1,1,−1,1),
E(1,0,−1,1) [Fig. 4(c)]
(11) N = (8,3): E(−1,−1,0,0), E(−1,−1,0,1), E(−1,

−1,1,0), E(−1,0,1,1), E(−1,1,−1,−1), E(−1,1,1,1),
E(0,0,−1,−1), E(0,1,−1,−1), E(0,1,−1,0),
E(1,0,−1,−1), E(1,1,−1,−1), E(1,1,−1,0) [Fig. 4(d)]
(12) N = (8,6): E(−1,−1,0,−1), E(−1,−1,1,−1),
E(−1,0,0,1), E(−1,0,1,−1), E(−1,0,1,0), E(−1,1,1,−1),
E(−1,1,1,0) [Fig. 4(e)].

Class N = (8,0) is the largest class, and it has 19 functions.
Configurations of conductivity generated by the functions from
N = (8,0) [Fig. 4(b)] are characterized by large solid conduc-
tive domains formed either by initial source of excitation, see,
e.g., rectangular embedded shapes in Fig. 4(b), or by merging
fronts of excitation (solid polygonal domains at the periphery).

The next largest classes are N = (2,7) and N = (8,3)
[Fig. 4(d)]. Each of them includes 12 functions. Conductivity
configurations generated by functions of class N = (2,7)

(a) (b)

(c)

FIG. 5. Fragments of configurations generated by (a) function
E(0,−1,1,1) from N = (2,5), (b) function E(1,1,0,1) from N =
(2,6), (c) function E(0,1,1,0) from N = (2,8).
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consist mainly of isolated line segments of cells in conductive
states and pairs or singletons. Configurations generated by
functions of N = (8,3) are made up of solid domains of
conductive states and sparsely scattered singletons [Fig. 3(d)].

Classes N = (2,5) [Fig. 3(b)], N = (2,6) [Fig. 3(c)], and
N = (2,7) [Fig. 3(d)] pose particular interest because the
majority of conductive cells have two conductive neighbors
each, and therefore chances of conductive “wires” to be formed
could be high.

Configurations generated by functions from N = (2,5)
[Fig. 3(b)] predominantly consist of singletons and pairs of
cells in conductive states; the pairs are aligned in staircase-like
fashion, but there is no immediate connection between the
pairs [Fig. 5(a)]. There are zigzag-like “wires” of conductive
states [Fig. 5(b)] in configurations [Fig. 3(c)] generated by the
only function E(1,1,0,1) in class N = (2,6). However, they
are present as isolated fragments. Configurations [Fig. 3(e)]

generated by function E(0,1,1,0) of class N = (2,8) consist
of clusters of singletons, single conductive cells surrounded
by nonconductive neighbors, and pairs of cells in conductive
states. The clusters are connected to each other with diagonals
of singletons [Fig. 5(c)]. Neither of the functions with νmax = 2
generate fully conductive configurations but few functions
from classes N = (7,0) and N = (8,0) do. We study these
functions below.

B. Functions generating conductive configurations

Most functions generate only partially conductive config-
urations of conductivity. Examples of connected clusters are
shown in Fig. 6.

Finding 1. For low probability of initial excitation, p =
10−3, functions E(1,0,0,0) and E(1,−1,0,0) generate fully
conductive configurations. For high probability of initial

(a) E(1,−1, 0, 1) (b) E(−1, 1, 0, 0)

(c) E(1, 0, 0, 1)

FIG. 6. (Color online) Examples of configurations with partially connectivity clusters colored. The clusters are bucket flooded with red,
blue, green, magenta, and yellow colors (seen as shades of gray in black and white reproduction).
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(a) E(1, 0, 0, 0) (b) E(1,−1, 0, 0)

(c) E(−1, 0, 0, 0) (d) E(−1, 1, 0, 0)

FIG. 7. (Color online) Examples of conductivity configurations generated by functions (a) E(1,0,0,0), (b) E(1,−1,0,0), (c) E(−1,0,0,0),
and (d) E(−1,1,0,0). Nonconductive cells are white. Instances of connected clusters of conductive cells are bucket flooded with red (c. 76
gray).

excitations, p = 0.1, fully conductive configurations are gen-
erated by functions E(−1,0,0,0) and E(−1,1,0,0).

For low probability p = 10−3 of initial excitation-only
functions E(1,−1,0,0) [Figs. 7(a)] and E(1,0,0,0) generate
fully conductive configurations. For initial configurations with
high probability of excited cells (p = 0.1) only two functions
generate conductive configurations: E(−1,0,0,0) [Fig. 7(c)]
and E(−1,1,0,0) [Fig. 7(d)]. In all four functions selected
values T3 and T4 are nil. The values correspond to update of
excitation intervals of refractory cells. This is in line with the
commonly accepted assumption that in an excitable medium
elements in a refractory state are insensitive to states of their
neighbors. Mechanics of excitation interval updates of excited
cells is illustrated in Fig. 8.

Function E(1,0,0,0) increases lower boundary θ1(x) of
excitability interval of a cell x when a number of excited neigh-

bors of the cell exceeds a number of refractory neighbors. If a
cell has fewer excited neighbors than refractory ones, then the
lower boundary of the excitability interval decreases. Function
E(1,−1,0,0) increases lower boundary θ1 and decreases upper
boundary θ2 of the excitability interval of a cell when excited
neighbors of the cells are in the majority. If refractory cells
dominate in a cell’s neighborhood, then θ1 decreases and θ2

increases (Fig. 8). Both functions decrease the excitability of a
cell when the cell’s neighborhood is “overexcited” (prevalence
of excited neighbors) and increase the cell’s excitability
when the cell’s neighborhood is “overrefractory” (prevalence
of refractory neighbors). Thus they stabilize the excitation
dynamics.

Function E(−1,0,0,0) decreases θ1 when a cell has major-
ity of excited neighbors and increases θ1 if refractory neighbors
dominate. Function E(−1,1,0,0) expands excitation interval
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p T1 T2 σ+ > σ− σ+ < σ−

10−3 1 0

-1 1

10−1 -1 0

-1 1

FIG. 8. Mechanics of excitation interval update in functions
E(1,0,0,0), E(1,−1,0,0), E(−1,0,0,0) and E(−1,1,0,0). σ+ is a
number of excited neighbors in a cell’s neighborhood and σ− is a
number of refractory neighbors.

(θ1 decreases and θ2 increases) when there are more excited
than refractory neighbors and contracts the excitation interval
(θ1 increases and θ2 decreases) when refractory neighbors
prevail (Fig. 8). The functions increase excitability of cells with
“overexcited” neighborhoods and decrease excitability of cells
with “overrefractory” neighborhoods. Thus they destabilize
the excitation dynamics.

Finding 2. For low probabilities of initial perturbations
functions stabilizing excitation dynamics generate conductive
configurations, while for high probabilities of initial pertur-
bations functions destabilizing excitation dynamics generate
conductive configurations.

Let E(e1,e2,e3,e4) be a function generating conductive
configurations for low probability of excitation in initial
configurations and E′(e′

1,e
′
2,e

′
3,e

′
4) the function generating

conductive configurations for high probability of excitation
in initial configuration. Then

E(e1,e2,e3,e4)

= E′(−1 × e′
1,−1 × e′

2,−1 × e′
3,−1 × e′

4).

IV. GROWING CONDUCTIVE PATHWAYS WITH
FUNCTIONS E(1−100) and E(1000)

Let us consider how to route conductive pathways using
minimal resources. The pathways can be initiated by exciting
the medium. A minimal seed is a pair of cells in excited
state ++ or +

+ . The seed generates a growing pattern of
excitation (Fig. 9). The excitation pattern starts as a target
wave [Figs. 9(c)–9(f)]. At a sixth step of development
excitation ruptures inside the wave front on its easternmost
and westernmost sites [Fig. 9(g)], and propagates along the
wave-front boundary inside the target wave [Figs. 9(h)–9(j)].
At a tenth step of the seed’s development the excitation reaches
the original seed’s position [Fig. 9(k)]. Thus the propagating
pattern becomes “filled” with persistent excitation activity.

The associated development of configurations of cells in a
conductive state is shown in Fig. 10. The seed initiates two
types of growing pathways: single chains and double chains of
conductive states. For example, a configuration evoked by seed
++ [Fig. 9(a)] exhibits two single chains, growing west and
east, and two double chains, growing north and south (Fig. 10).
The chains growing north and south increase their lengths by
one one cell each, speed 1. The chains growing west and east
increase by one cell every other step of development, speed
1/2.

The mechanics of formation of conductive pathways is
illustrated in Fig. 11. Excited cells having configurations
◦ ◦ −◦ + ◦◦ − ◦ and

− ◦ ◦◦ + ◦◦ − ◦ (north and south proximities of the excitation

pattern), and configurations
◦ ◦ −◦ + ◦◦ ◦ − and

− ◦ ◦◦ + ◦− ◦ ◦ (west and east

proximities of the excitation patterns) decrease their values of
θ1(x) from 2 to 1, thus increasing the cells’ excitability.

Finding 3. By positioning an additional cell in excited or
refractory state nearby the original seed of two excited cells
it is possible to generate a wide range of single-thread wires
growing into predetermined directions.

Let us consider several examples.
If we excite a cell above the east site of the seed ◦ ◦+ + ,

the modified seed + ◦+ + will develop into a growing excitation
pattern which generates two chains of cells in conductive
states. One chain grows east and another chain grows south.
Space-time configurations of excited and refractory cells and
conductive cells are shown in Fig. 12. A seed of three excited
cells [Fig. 12(a)] develops into an excitation wave fragment
propagating southeast [Figs. 12(e), 12(g), and 12(i)]. The wave
fragment expands east and south [Figs. 12(k), 12(m), and
12(o)] and resembles an oxidation wave fragment in subex-
citable BZ medium [5]. Conductive wires are produced at the
sites of excited cells, which have neighborhood configurations
◦ ◦ ◦◦ + −− ◦ ◦ (north corner of the expanding wave fragment) and
◦ − ◦◦ + ◦− ◦ ◦ (south corner) [Figs. 12(k), 12(m), and 12(o)].

To produce three wires growing north, south and east we
excite a neighboring cell northwest of the seed ++ (Fig. 13).
The configuration ◦ ◦ ++ + ◦ of initial excitation generates a wave
fragment of excited and refractory states which travels west
and expands north and south [Fig. 13(i), 13(k), 13(m), and
13(o)]. A wire growing west is produced by decreasing θ1

of excited cell with neighborhood
+ ◦ −− + ◦+ ◦ − because it has more

refractory neighbors (three cells) than excited neighbors (two
cells). Wires growing north and south are produced by excited

cells having neighborhood configurations
◦ ◦ −◦ + ◦◦ − ◦ and

◦ − ◦◦ + ◦◦ ◦ − .

By making the north neighbor of an eastern excited cell
of the seed ++ refractory we produce a single chain of
conductive cells growing south (Fig. 14). The pattern − ◦+ +
[Fig. 14(a)] is transformed into a particle of three excited and

three refractory states:
◦ ◦ −◦ ◦ +− − ◦+ + ◦ [Figs. 14(a), 14(i), 14(k), 14(m),

14(o), 14(q), and 14(s)]. The particle travels south. Its tail
leaves a trace of conductive cells [Figs. 14(a) and 14(i)–14(t)]

due to excited cell having two refractory neighbors,
◦ − ◦◦ + ◦− ◦ ◦ ,

and therefore decreasing its θ1 to 1.
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(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3

(e) t = 4 (f) t = 5 (g) t = 6 (h) t = 7

(i) t = 8 (j) t = 9 (k) t = 10 (l) t = 11

(m) t = 12 (n) t = 13 (o) t = 14 (p) t = 15

(q) t = 16 (r) t = 17

FIG. 9. Snapshots of a growing pattern of excitation developed from a seed of two neighboring cells in excited state. Excited cells are
shown by black disks, refractory cells by circles, and resting cells by gray dots.

We have undertaken an exhaustive search of head-on
collisions between wires growing north and south (Fig. 15).
A wire growing south was generated by seed − ◦+ + and a wire

growing north by seed + +− ◦ . At the beginning of each run seeds
were placed at distance C = (h,v) from each other, where h is
a number of cells along rows and v along columns of cellular
array [Fig. 15(a)]. Types of collision outcomes discovered are

also illustrated by schemes [Figs. 16(k)–16(r)]. The following
basic types are found.

For distance C = (80,0) the wires collide, reflect, and then
retract back to their origin sites. After retraction the continuing
growing directions opposite to their original velocity vectors.
Wire originally growing north grows south, and wire growing
south grows north [Fig. 15(b)]. In the same time an additional
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(a) t = 3 (b) t = 4 (c) t = 5 (d) t = 6

(e) t = 7 (f) t = 8 (g) t = 9 (h) t = 10

(i) t = 11 (j) t = 12 (k) t = 13 (l) t = 14

(m) t = 15 (n) t = 16 (o) t = 17

FIG. 10. Snapshot of configuration of conductive cells developed from seed ++.

FIG. 11. Configuration of excited (•) and refractory cells (◦) with
highlighted cells responsible for formation of conductive pathways.
Cells where double wire is formed are marked with arrows and a
single wire with arrows with disk tops. This configuration develops
at the seventh step of the seed’s evolution [Fig. 9(h)].

growth seed is formed at the site of the collision between
wires, it gives rise to two more wires growing north and south
[Figs. 15(b) and 16(k)].

In the situation of a one-cell horizontal shift between seeds’
positions, distance C = (80,1), both wires reflect but only the
north growing wire (reflected south) continues growing beyond
the position of its original seed [Figs. 15(c) and 16(l)]. If there
is a two-cell horizontal space between the seeds [Fig. 15(d)],
then both wires reflect and continue their growth into reflected
directions [Figs. 15(d) and 16(m)].

For distance C = (80,3) both wires reflect as in previous sit-
uations; however, only one wire continues growing north (after
passing initial position of a seed), but the second wire makes a
90◦ turn when entering initial position of the its seed and then
grows east [Figs. 15(e) and 16(n)]. In situations C = (80,4)
both wires just reflect without forming any conductive bridges
or patterns growing from the site of their collision [Figs. 15(f)
and 16(o)]. In situations C = (80,5) and C = (81,5) wires
pass near each other without interacting [Figs. 15 fm].
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(a) t = 0 (b) t = 0 (c) t = 1 (d) t = 1

(e) t = 2 (f) t = 2 (g) t = 3 (h) t = 3

(i) t = 4 (j) t = 4 (k) t = 5 (l) t = 5

(m) t = 6 (n) t = 6 (o) t = 7 (p) t = 7

FIG. 12. Production of two wires growing east and south. For each time step t we show excitation (left pattern) and conductivity (right
pattern) configurations. In the excitation configurations excited cells are solid black disks, refractory cells are circles. In the conductivity
configurations conductive cells are black disks and nonconductive are gray dots.

When the distance between seeds is C = (81,0) the growing
wires reflect and detract back to their points of origination.
However, when they reach the positions of their seeds a new
pattern is formed there [Fig. 15(h)]. It exhibits multithread
wires growing northwest, south, and east from the position
of the northern seed, and southwest, north, and east from the
position of the southern seed [Fig. 16(p)].

An E-shaped configuration of three wires growing east is
formed when C = (81,1); the seeds’ sites are also connected
by a conductive wire [Figs. 15(i) and 16(q)].

Finding 4. By positioning seeds + +− ◦ and − ◦+ + with shift
C = (odd,2) it is possible to make a stationary conductive
wire between the seeds’ locations.

For example, in situation C = (81,2) [Fig. 15(j)] the
growing wires collide, make a conductive bridge, and stop their
propagation. Thus a stationary wire is formed connecting sites

of southern and northern seeds [Fig. 16(r)]. The seeds’ sites are
connected by a wire in C = (81,3) [Fig. 15(k)] and C = (81,4)
[Fig. 15(l)]; however, the wire continues expanding north and
south.

To study outcomes of side collisions between wires we posi-
tion two seeds + +− ◦ and − +◦ + at distance C = (h,v) [Fig. 17(a)],
where h is a number of cells between northernmost excited
cells of seeds, and v is a number of cells between northernmost
excited cells of seeds. The seed + +− ◦ leads to formation of a

single-thread wire growing north. The seed − +◦ + generates
a wire east. Configurations of cells in conductive states
developed on 300th step after excitation of automaton with
the seeds are shown in Fig. 17.

Colliding wires stop short of touching each other and do
not propagate anymore for C = (60,40) and C = (61,43)
[Figs. 17(b), 17(k), and 16(a)]. Growth of wire propagating
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(a) t = 0 (b) t = 0 (c) t = 1 (d) t = 1

(e) t = 2 (f) t = 2 (g) t = 3 (h) t = 3

(i) t = 4 (j) t = 4 (k) t = 5 (l) t = 5

(m) t = 6 (n) t = 6 (o) t = 7 (p) t = 7

(q) t = 8 (r) t = 8 (s) t = 9 (t) t = 9

FIG. 13. Three wires growing north, south, and east. For each time step t we show excitation (left pattern) and conductivity (right pattern)
configurations. In the excitation configurations excited cells are solid black disks, refractory cells are circles. In the conductivity configurations
conductive cells are black disks, and nonconductive are gray dots.

north is canceled by a wire propagating east in C = (60,42)
[Fig. 16(b)], and the wires do contact each other [Fig. 17(c)].

In condition C = (60,43) [Fig. 17(d)] two new growing
wires are formed as the result of collision of a wire traveling
north to a wire traveling east. One new wire propagates west,
and another wire propagates east [Fig. 16(c)].

Three new growing wires are formed in the collision
of north and east propagating wires when the distance
between their seeds is C = (60,44) [Figs. 17(e) and
16(d)] and C = (61,40) [Figs. 17(g) and 16(d)]. One new wire
propagates north, and two new wires propagate east. The south
wire propagating east is formed when the originally north
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(a) t = 0 (b) t = 0 (c) t = 1 (d) t = 1

(e) t = 2 (f) t = 2 (g) t = 3 (h) t = 3

(i) t = 4 (j) t = 4 (k) t = 5 (l) t = 5

(m) t = 6 (n) t = 6 (o) t = 7 (p) t = 7

(q) t = 8 (r) t = 8 (s) t = 9 (t) t = 9

FIG. 14. Single wire grows south. For each time step t we show excitation (left pattern) and coductivity (right pattern) configurations. In
the excitation configurations excited cells are solid black disks, refractory cells are circles. In the conductivity configurations conductive cells
are black disks, and nonconductive are gray dots.

propagating wire retracts as the result of collision with an orig-
inally east propagating wire and is reflected by configurations
of excitation interval boundaries imposed by itself.

Almost elastic-like reflection of a wire is observed in case
C = (60,45) [Figs. 17(f) and 16(e)]. A wire growing north
collides and is canceled by a wire growing east. As the result

of impact the east growing wire is reflected and starts growing
northeast [Fig. 16(e)].

In situation C = (61,42) both wires retract as the result
of collision. However, when they reach the sites of their
origination (where cells have already updated boundaries
of excitation interval) they are transformed into extended
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(a) C =(80,0) (b) C =(80,0) (c) C =(80,2) (d) C =(80,3) (e) C =(80,4)

(f) C =(80,5) (g) C =(81,0) (h) C =(81,1) (i) C =(81,2)

(j) C =(81,3) (k) C =(81,4) (l) C =(81,5)

FIG. 15. Head-on collision between wires growing north and south for various distances C = (h,v) between their seeds. h is a number
of cells between westernmost excited cells of seeds, and v is a number of cells between northernmost excited cells of seeds. Snapshots of
configurations of conductive states are taken at 270th step of iterations. The outcomes of collisions are the same for automata governed by
functions E(1,0,0,0) and E(1,−1,0,0).

patterns which give rise to two new wires, both growing south
[Figs. 17(g) and 16(j)].

In situation C = (61,44) and C = (61,45) a wire growing
north is retracted back to its seed’s position as the result of
collision with a wire growing east [Figs. 17(h) and 16(h)]. At
the same time the wire growing east is reflected and turns north.

Finding 5. It is possible to implement universal routing of
conductive wires by positioning seeds of growing wires, and
the following operations with wires are implementable:

(1) Formation of stationary wires [Fig. 16(r)]
(2) Stopping of both growing wires [Fig. 16(a)]
(3) Stopping of one wire by another wire without formation

of a conductive bridge [Fig. 16(b)]
(4) Formation of conductive circuit with one growing wire

[Fig. 16(l)]
(5) Formation of conductive circuit with two growing wires

[Figs. 16(c), 16(f), 16(i), 16(k), and 16(m)]
(6) Formation of conductive circuit with three growing

wires [Figs. 16(d) and 16(q)]

(7) Reflection of wires without conductive bridging
[Figs. 16(h), 16(n), and 16(o)]

(8) Stopping of one wire and reflection of another
[Fig. 16(e)]

(9) Co-orientation of both growing wires without formation
of a conductive bridge [Fig. 16(g)]
(10) Symmetric reflection and multiplication without forma-

tion of conductive bridging [Fig. 16(p)].

V. SUMMARY

We introduced a two-dimensional excitable cellular au-
tomaton where resting cells excite depending on whether
numbers of their excited neighbors belong to excitation
intervals and boundaries of the excitation intervals are updated
depending on ratio of excited and refractory cells in each cell’s
neighborhood. We defined conductivity of a cell via size of its
excitation interval and selected the excitation interval update
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n) (o) (p) (q)

(r)

FIG. 16. Schemes of interactions between wires. Initial positions of seeds are shown by black disks. Nongrowing wires are shown by line
segments and growing wires by arrows. (a)–(j) Side collision, (k)–(r) head-on collision.

(a) C =(40,0) (b) C =(60,40) (c) C =(60,42) (d) C =(60,43)

(e) C =(60,44) (f) C =(60,45) (g) C =(61,40) (h) C =(61,41)

(i) C =(61,42) (j) C =(61,43) (k) C =(61,44) (l) C =(61,45)

FIG. 17. Side collision between wires growing north and east for various distances C = (h,v) between their seeds. h is a number of cells
between northernmost excited cells of seeds, and v is a number of cells between northernmost excited cells of seeds. Snapshots of configurations
of conductive states are taken at 300th step of iterations. The outcomes of collisions are the same for automata governed by functions E(1,0,0,0)
and E(1,−1,0,0).
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functions that lead to formation of connected configurations
of conductive cells.

We demonstrated that by positioning elementary seeds
of excitation we grow conductive wires (chains of cells
in conductive states) and implement routing of the wires
via collisions between the wires. Results presented might
shed light onto development of information pathways in
excitable spatially extended media and contribute towards
manufacturing self-growing and self-organizing circuits in
ensembles of organic memristive polymers.

Principal findings of the paper are following:
(1) We demonstrated that it is possible to fine tune

conductivity of an excitable medium by controlling local
dynamics of excitation.

(2) Functions which stabilize excitation dynamics (where
size of excitation interval increase with decrease of excitation
and decreases when excitation dominates) generate fully
conductive when a small number of initially resting cells are
stimulated.

(3) A pointwise initial excitation can play the seed of a
growing wire or a chain of cells in conductive states; directions
of the wire grow in preprogrammed ways in the configuration
of the initial excitation

(4) The growing wires can be routed in an almost arbitrary
manner, dependent on positions of their seeds

(5) Several wires can interact with each other by changing
directions of their growth, merging in a single wire and
coaligning.

We show how to design and grow potential information
pathways; however. we did not study how the information can
be processed in the conductive configurations and circuits.
In many cases, extended patterns are formed at the sites of
collision between growing wires. Chances are high that these
patterns can implement a range of sensible transformations
of input excitation to output excitation, which could be
interpreted in terms of computation. Computational abilities
of the conductive circuits grown in excitable cellular automata
will be a major topic of further studies.
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