
PHYSICAL REVIEW E 86, 052103 (2012)

Thermodynamic geometry, phase transitions, and the Widom line
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A microscopic characterization, based on the thermodynamic curvature R, is proposed for first-order liquid-gas
phase transitions. Near the critical point, where R is proportional to the correlation volume ξ 3, we propose that R

takes the same value in the coexisting phases. This proposal allows a determination of the liquid-gas coexistence
curve with no use of the problematic Maxwell equal area construction. Furthermore, |R| ∼ ξ 3 allows a direct
determination of the Widom line in the supercritical regime. We illustrate with input from the van der Waals
model and the National Institute of Standards and Technology Chemistry WebBook.
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Macroscopic properties of matter undergo discontinuous
changes across a first-order liquid-gas coexistence curve that
culminates in a second-order critical point [1]. This curve
is extendable into the supercritical region as the Widom
line [2–4], which serves as a line of sharp crossover for
dynamical fluid properties and is characterized by the locus
of points with maximum correlation length ξ . Historically,
liquid-gas coexistence curves were modeled by the van der
Waals (vdW) equation augmented by the Maxwell “equal
area” construction. This approach lies at the foundation of
the modern thermodynamic picture characterizing coexisting
phases through equal molar Gibbs free energies. However,
the vdW-Maxwell theory suffers from several unresolved
conceptual drawbacks [5,6]. Here, inspired by the microscopic
approach of Widom, we devise a novel construction to char-
acterize liquid-gas phase transitions based on the continuity
of ξ between the phases, with the Riemannian geometric
thermodynamic scalar curvature |R| ∼ ξ 3 [7]. The idea that
the correlation lengths of the coexisting phases are equal,
and its computational realization through |R|, provides a
method for predicting the phase coexistence curve when used
in conjunction with any equation of state or experimental
data. Further, our method allows an analytic prediction of the
Widom line from the condition that it represents a locus of
maximum correlation length without recourse to any ad hoc
response function. We illustrate this issue here with the vdW
equation. We also determine the location of the Widom line for
several fluids, both with the vdW equation and with data from
the National Institute of Standards and Technology (NIST)
Chemistry WebBook [8].

The key physical idea in our coexistence curve anal-
ysis originates from Widom’s microscopic perspective of
phase transitions [9]. In this framework, spontaneous density
fluctuations cause the local density ρ (�r) in a single phase
fluid to deviate from the overall mean density ρ0 in some
complex, time-dependent manner. Mathematically, ρ (�r) = ρ0

corresponds to an intricate contour surface that separates two
sides with local mean densities ρ > ρ0 and ρ < ρ0. A straight
line through the fluid intersects this surface at points spaced an
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average distance ξ apart. ξ is generally small in a disorganized
system like an ideal gas, but diverges at the critical point for
real fluids. When a single-phase fluid is very near a first-order
phase transition, a small amount of a second, minority phase
will begin to form. A reference point in this single phase
fluid typically has local density close to that of either of the
two incipient coexisting phases. The typical density difference
|�ρ| across the contour surface ρ (�r) = ρ0 thus equals that of
the two phases. Reversing the role of the majority and minority
phases leaves this argument unchanged, with the same |�ρ|.
ξ in the single phase plays a similar role in anticipating the
properties in the two phases since ξ is the thickness of the
interface between the two phases [9]. This anticipated interface
thickness must be the same approaching the phase transition,
with either of the two phases being the majority phase, and
the correlation length ξ should thus be the same in the two
coexisting phases, the condition at the heart of our approach.

Our approach is a means of accommodating phase coex-
istence (and hence density inhomogeneity) into the mean-
field vdW equation of state, which otherwise models fluids
with spatially uniform density. Of course this is only an
approximation. Issues like capillary waves, curvature of the
interface, etc., are not factoring in. Our focus here is to exploit
the geometric invariant R to obtain phase coexistence.

For experimental predictability, we need an estimate of ξ ,
allowing a thermodynamic expression for the equality of the
correlation lengths at the interface. This can be realized using
the Riemannian geometry of the equilibrium thermodynamic
state space of the system with metric elements:

gαβ = − 1

kB

∂2s

∂aα∂aβ
. (1)

Here (α, β = 1, 2), kB is Boltzmann’s constant, and
s = s(a1,a2), a1, and a2 denote the entropy, energy, and
particle number, respectively, each per unit volume [7]. Let
(a1,a2) specify the state of an open subsystem of an infinite
environment. The probability of fluctuations �aα of this state
away from the equilibrium state corresponding to maximum
entropy is given by Einstein’s famous formula: probability
∝ exp[−V (��)2/2]. Here, (��)2 = gαβ�aα�aβ denotes the
invariant, positive-definite thermodynamic entropy metric [7],
where the gαβ’s are evaluated in the equilibrium state. The
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thermodynamic Riemannian curvature scalar R = R(a1,a2)
of this metric is an invariant scalar quantity independent of
what coordinates we calculate in. For a diagonal metric, R is
given by the simple expression [g ≡ det(gαβ)]

R = 1√
g

[
∂

∂a1

(
1√
g

∂g22

∂a1

)
+ ∂

∂a2

(
1√
g

∂g11

∂a2

)]
, (2)

with a more complicated but standard expression for nondi-
agonal metrics, which we omit here for brevity. For the ideal
gas R = 0, and near the critical point |R| ∼ ξ 3, the desired
connection between R and ξ [7]. Experimental predictions for
the coexistence curves of first-order phase transitions can thus
be obtained from the equality of |R| calculated in the two
coexisting phases. We call this the R-crossing method. In the
supercritical region beyond the critical point, the locus of the
maximum of |R|, via |R| ∼ ξ 3, provides a direct theoretical
prediction for the Widom line. As mentioned, R is a scalar, i.e,
a geometric invariant, and hence our method is independent
of transformations of the coordinates (a1,a2) that characterize
the manifold of equilibrium thermodynamic states.

As a direct test of our proposal, we calculate R for
hydrogen in both phases using the NIST Chemistry WebBook
[8,10] and its program REFPROP. These provide data based
on phenomenological equations of state, with fit parameters
determined by matching to experimental fluid data. Results are
shown in Fig. 1, where agreement between the R’s in the two
phases is better than 1% in the range 0.96 < T/Tc < 1. Here,
Tc is the critical temperature. By contrast, at T/Tc = 0.96,
the molar densities of the coexisting liquid and gas phases
differ from each other by a factor of ∼3. To be sure, it would
be premature to ascribe undue significance to this finding,
since the fitting formulas in the NIST Chemistry WebBook
do not contain the scaled equations of state appropriate to
critical phenomena. However, the NIST Chemistry WebBook
certainly offers a necessary first place to look, and results are
encouraging.

FIG. 1. (Color online) −R for the coexisting liquid and gas
phases vs (Tc − T ) /Tc for normal hydrogen calculated with the NIST
Chemistry WebBook. We see strong agreement between the values of
R in the liquid and gas phases. The arrow indicates the temperature
where |R| ∼ vg , with vg the molecular volume in the gas phase.
Below this value of |R|, its interpretation as the correlation length
loses significance.

Figure 1 shows superior agreement between the coexisting
liquid and gas R’s in the asymptotic critical region than
Widom’s qualitative argument might lead one to suspect.
This very close agreement originates from a commensurate
R theorem, with proof based on the Rehr-Mermin asymptotic
scaling description of fluid criticality [11], which specifically
incorporates asymmetry between the phases. Here, the pres-
sure is written as

P (T ,μ) = P0(T ,μ) + |τ |2−α Y±

(
ζ

|τ |βδ

)
, (3)

where μ is the chemical potential, with critical point value
μc, τ ≡ T − Tc + c1(μ − μc), ζ ≡ μ − μc + c2(T − Tc), c1

and c2 are two constants, P0(T ,μ) is the regular part of the
pressure, the term containing the function Y± is the singular
part of the pressure, and α, β, and δ are critical exponents.
Y± is assumed to be symmetric in its argument, and has
two branches (±) depending on the sign of τ [11]. These
branches join smoothly along the curve τ = 0, except at the
critical point {τ,ζ } = {0,0}. We take Y ′

+(0) = 0, but Y ′
−(0+) =

−Y ′
−(0−) �= 0, modeling a first-order phase transition at ζ = 0,

and distinct phases depending on whether ζ goes to zero from a
positive value or a negative value. If α > 0 and c1c2 < 1, which
translates into the coexistence curve not being too asymmetric,
a straightforward calculation shows that the value of R is the
same in the coexisting phases, R−(τ,0−) = R−(τ,0+). For a
detailed proof, see Ref. [12].

Our proof assumes that along the coexistence curve μ =
μ(T ) is analytic as we approach the critical point. However,
this assumption has been questioned in the context of the Yang-
Yang anomaly where the second derivative μ′′(T ) diverges at
the critical point. There is some experimental basis for this pos-
sibility [13], which, if correct, would require a revision of our
proof, and possibly our theorem. We add that Evans et al. [14]
showed with density functional theory and a short range inter-
molecular fluid potential that the character of the density decay
(including the correlation length) at the interface matches that
in the bulk, lending further support to the Widom argument.

Our R-crossing method complements the canonical macro-
scopic rule for first-order phase transitions, namely, the
equality of the molar Gibb’s free energies G of the coexisting
phases [1]. Applied to the vdW equation, however, there are
unresolved conceptual issues in the realization of this macro-
scopic rule. Finding states with equal G’s involves contentious
issues of integration along a reversible path through a ther-
modynamically unstable region in the Maxwell construction,
or through the critical point in Kahl’s approach [15]. Such
conceptual difficulties are bypassed in our construction.

As a simple theoretical example, we apply the R-crossing
method to the universal vdW equation in its reduced form,

pr = 8tr

3vr − 1
− 3

v2
r

, (4)

where pr = P/Pc, tr = T/Tc, vr = v/vc, and P and v are
the pressure and molar volume, with the subscript c denoting
their critical values. The critical quantities are known to be
related to the vdW constants a and b by Pc = a/(27b2),
Tc = 8a/(27kBb), and vc = 3b. The Maxwell equal-area
construction yields the limiting slope of the coexistence curve
dpr/dtr = 4, independent of the fluid and its heat capacity.
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FIG. 2. (Color online) R/b vs pr along an isotherm of Helium
with tr = 0.86 in the lower half, and vr vs pr along the same tr in the
upper half. The blue curve marked with crosses, and the solid green
curve represents the two stable branches, while the red curve marked
with open circles is the unstable branch. The black vertical line to the
right, labeled “R-crossing” denotes the pr where the R’s of the liquid
and gas phases become equal. The orange vertical line to the left,
labeled “Maxwell,” represents the corresponding pr from Maxwell’s
construction.

Our R-crossing method inherits the same limiting slope here.
This number is closely followed only by helium and hydrogen,
for which this example is expected to be maximally effective.
R can be calculated here as a function of the variables (pr,vr )

via the thermodynamic metric using standard formulas, and
gives [7] R = A · B, where

A = −b

3

3vr − 1

cv

(
prv3

r − 3vr + 2
)2 (5)

and
B = cv

(
p2

r v
5
r − 9prv

4
r + 12prv

3
r − 27v2

r − prv
2
r + 27vr −3

)
+ 18vr

(
prv

3
r + 1

)
, (6)

where cv is the dimensionless molecular specific heat at
constant volume (assumed constant, though possibly different
in the liquid and gas phases) and b plays no role in our
subsequent analysis.

For vdW isotherms with given pr and given tr < 1,
substituting pr from Eq. (4) into Eqs. (5) and (6) results
in two physical branches for R, corresponding to the liquid
and gas phases, with R diverging at the end points; see the
color-coded Fig. 2. The value of pr where the R values are
equal (i.e., they cross) is interpreted as the reduced saturation
pressure corresponding to tr . For the cases we consider here,
cv on the gas side is taken as 1.5, the ideal gas value. On
the liquid side, we have chosen the average value cv = 1.2
determined from NIST Chemistry WebBook [8] over the range
of temperatures that we are interested in. Equivalently, for
vdW isobars, the R-crossing method can be used to predict the
saturation temperature.

In the supercritical region, isobaric |R| exhibits a local
maximum with respect to tr , whose locus is naturally inter-
preted as the Widom line, signifying a crossover for certain
dynamical fluid properties from gaslike on the low pressure
side to liquidlike on the high pressure side [2–4]. We can
calculate the Widom line as per its definition through |R| ∼ ξ 3,
free from the theoretical difficulty of characterizing it via the
maximum of the specific heat cp as is conventional in the
literature [3].

A natural estimate for the validity of our analysis for vdW
is offered by the dimensionless quantity |R|/vg , where vg is

FIG. 3. (Color online) Phase coexistence and the Widom line for (a) helium (Tc = 5.19K, Pc = 2.26 bars), and (b) hydrogen (Tc =
33.19 K, Pc = 13.30 bars). The coexistence curve is calculated from vdW with the Maxwell equal-area construction and with R crossing, and
compared with experimental data from NIST Chemistry WebBook [8]. The Widom line is calculated by finding the locus of maximum values
along isobars of |R| both with vdW and from NIST Chemistry WebBook. We compare with the maximum values along isobars of cp from
experimental data (NIST). The liquid and gas heat capacities cvl and cvg are indicated for vdW. In the supercritical region, we use cvg .
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the coexistence molecular volume in the gas phase. |R| � vg

implies that ξ 3 is greater than a molecular volume, and we are
in a regime where our analysis is reasonable. We find that for
vdW, this restricts us to tr � 0.8 along the coexistence curve,
and to pr � 10, in the supercritical region. May and Mausbach
have found similar lower volume limits on implementing this
method in the Lennard Jones fluid [16].

Figure 3 summarizes our results for helium and hydrogen.
Table I supplements these for neon and argon. From Fig. 3, it
can be seen that the R-crossing method, in conjunction with
vdW, predicts excellent results within its range of applicability.
Away from criticality, deviation from data is also due to the
mean-field nature of the vdW equation of state. Direct applica-
tion of the R-maximization method using the NIST Chemistry
WebBook for the Widom line in the supercritical regime shows
striking agreement with experimental cp maximum values in
the scaling region, and as expected, deviates marginally outside
this region.

In conclusion, we have constructed a novel geometrical
technique to characterize liquid-gas phase transitions from a
microscopic perspective, through the thermodynamic scalar
curvature R. Our method, which is independent of coordinate
transformations in the manifold of equilibrium thermodynamic
states, is distinct from (local) metric-component based ap-
proaches [17]. When applied in conjunction with the vdW
equation, our procedure bypasses theoretical issues with the
Maxwell equal area construction and its variants. Our tech-
nique generalizes to any phenomenological equation of state,
including those obtained as multiparameter fits to experimental
data. This analysis further provides the first direct theoretical
construction for the Widom line, without using any ad hoc
thermodynamic response function.

Our method unifies concepts in Riemannian geometry,
thermodynamics, phase transitions, and critical and super-
critical phenomena. Although we have primarily applied our
technique to liquid-gas phase transitions, the method should
be universally applicable to any first-order phase transition
terminating in a critical point. This makes it of crucial
significance to a diverse range of disciplines in physical,
chemical and biological sciences, and engineering. It further
generalizes even to gravitational systems like anti–de Sitter
black holes, which also appear to exhibit liquid-gas–like
first-order phase transitions [18].

TABLE I. Saturation temperatures on the left and Widom line
temperatures on the right (in Kelvins) for neon (Tc = 44.49 K,
Pc = 26.79 bars) on the upper part and argon (Tc = 150.69 K,
Pc = 48.63 bars) on the lower part. T sat

R (vdW) is the prediction of
the saturation temperature from the R-crossing method, using the
vdW equation, and is compared with experimental values from the
NIST Chemistry WebBook. Corresponding values of |R|/vg are also
shown to indicate the validity of our method. Widom line predictions
from the R-maximization method are obtained both from vdW with
cv = 1.5 [T W

R (vdW)] and from NIST [T W
R (NIST)]. We have also

shown the prediction of the Widom line obtained from maximizing
cp as T W

ex .

P/Pc T sat
R (vdW) T sat

ex |R|/vg

0.4 36.04 37.97 0.60
0.5 37.68 39.41 1.16
0.6 39.24 40.66 2.36
0.8 42.09 42.76 15.35
0.9 43.33 43.66 76.48

0.4 122.89 129.16 0.57
0.5 128.19 133.93 1.11
0.6 133.34 138.07 2.23
0.8 142.70 145.00 14.29
0.9 146.85 147.98 72.49

P/Pc T W
R (vdW) T W

R (NIST) T W
ex

1.1 45.56 45.25 45.26
1.2 46.57 45.95 46.01
1.4 48.43 47.26 47.39
1.6 50.15 48.50 48.64
2.0 53.26 50.83 50.79

1.1 154.32 153.15 153.21
1.2 157.74 155.47 155.60
1.4 164.04 159.72 160.00
1.6 169.84 163.69 163.89
2.0 180.41 170.96 170.49
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