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Random walk in chemical space of Cantor dust as a paradigm of superdiffusion
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We point out that the chemical space of a totally disconnected Cantor dust Kn ⊂ En is a compact metric space
Cn with the spectral dimension ds = d� = n > D, where D and d� = n are the fractal and chemical dimensions
of Kn, respectively. Hence, we can define a random walk in the chemical space as a Markovian Gaussian
process. The mapping of a random walk in Cn into Kn ⊂ En defines the quenched Lévy flight on the Cantor
dust with a single step duration independent of the step length. The equations, describing the superdiffusion and
diffusion-reaction front propagation ruled by the local quenched Lévy flight on Kn ⊂ En, are derived. The use
of these equations to model superdiffusive phenomena, observed in some physical systems in which propagators
decay faster than algebraically, is discussed.

DOI: 10.1103/PhysRevE.86.052101 PACS number(s): 05.40.−a, 05.45.Df, 05.60.−k, 89.75.Da

Diffusion is one of the basic nonequilibrium transport
phenomena [1–3]. It is, therefore, of fundamental relevancy
in physics, chemistry, biology, and the social sciences [1–5].
Diffusive processes are closely tied with a random walk [6,7].
A random walk is a stochastic process in which particles
move in a sequence of randomly directed steps of length ε

and duration tε drawn from a specific probability distribution
p(ε,tε). The usual characterization of a random walker uses
its mean-squared displacement, which for long enough times,
asymptotically behaves as

〈r2〉 = �γ tγ , (1)

where �γ is the generalized diffusion constant and γ is the
diffusion exponent [2,3]. Accordingly, diffusion processes are
classified by analyzing the spread of the distance traveled
by a random walker. In this way, a normal diffusion is well
described in the theory of Brownian motion as a Gaussian
process that is both local in space En and local in time t such
that the propagator is P (r,t) = (4π�1t)−n/2 exp(−r2/4�1t),
and the mean-squared displacement (1) grows linearly in time
(γ = 1).

The law of Brownian motion crucially relies on assumptions
that the steps for the diffusing particle are small (with finite
variance) and uncorrelated (Markovian nature of the under-
lying stochastic process). However, these assumptions do not
hold for many complex systems in which diffusion also obeys
the scaling relation (1) but with γ �= 1. Diffusion processes
with γ �= 1 are termed as an anomalous diffusion and are called
the subdiffusion if γ < 1 or the superdiffusion if γ > 1 [2–7].
Subdiffusion, for instance, appears in confined nanofilms [8],
in charge carrier transport in amorphous semiconductors [9],
and in the motion of a bead in a polymer network [10]. A
classic example of superdiffusive phenomena is Richardson’s
observation that two particles moving in a turbulent fluid,
which at time t = 0 are originally placed very close to each
other, have a relative separation r at time t that follows relation
(1) with γ = 3 [11]. Superdiffusion was also encountered in
the light transport in disordered media [12,13], in diffusion
of adsorbed molecules at liquid surfaces [14], in arrays of
vortices in a rotating flow [15], in layered velocity fields [16],

in the atmosphere [17], in geologic formations [18], and in the
evolution of the stock markets [19] to name a few examples
(see also Ref. [20]).

Although anomalous diffusion can be attributed to diverse
reasons (see Refs. [2,21–28]), it is widely accepted that
any subdiffusive process can be mapped into a random
walk on a path-connected fractal, which serves as a general
paradigm of anomalous subdiffusion [2–7]. Consequently,
most approaches to anomalous diffusion on fractals exclude
(explicitly or implicitly) the superdiffusive cases [27–39]. The
random walk on a fractal embedded in En is governed by
its topological dimension d, the fractal (metric) dimension
d < D � n, the fractal dimension of shortest (minimum) pass
dmin, and the random walk dimension DW [2–5]. The fractal
dimension determines the number of sites M ∝ rD within
Euclidean distance r , whereas, the shortest path between two
sites on the fractal (chemical distance) scales as � ∝ rdmin ,
and the average number of random steps (s) needed to reach
distance r scales as s ∝ rDW [3]. Accordingly, in the chemical
space, M ∝ �d� , where d� = D/dmin is the chemical dimension
of the fractal while s ∝ �dW , where dW = DW/dmin [3–5]. For
a regular random walk, the number of steps s ∝ t , and so, the
walk on a fractal obeys the scaling relation (1) with

γ = 2

DW

= ds

D
, (2)

where ds is the spectral dimension of the fractal, whereas, the
last equality is due to the Alexander and Orbach law ds =
2D/DW = 2d�/dW (see, for review, Refs. [2–7]). For path-
connected fractals, 1 � dmin � D, and so, d � d� � D � n.
For instance, for loopless Koch curves, d� = ds = d = 1 < n,
and so, DW = 2D = 2dmin > 2, whereas, for fractals with
dmin = 1, such as Sierpinski gaskets and carpets, d < d� =
D < n, whereas, DW > 2 and ds < D [40]. Diffusion on
fractal trees with ds = D is normal, that is, DW = 2 and
γ = 1 [41].

Much effort has been expended in order to derive the
function P (r,t), giving the probability that a random walker
stays at time t at a distance r from the origin. It is easy to
understand that the exact propagator on a fractal with D < n
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is a highly nonanalytic discontinuous function of r ∈ En (see
Ref. [30]). However, as shown in Ref. [30], we can define
an analytic envelope of this propagator. Although there is no
consensus about the explicit form of the propagator envelope,
it is widely accepted that it can be expressed in the general
form as P (r,t) ∝ t−ds/2�(r2/γ /t), where r ∈ En and �(ξ ) is
a decreasing function of ξ = r2/γ /t [2–7]. Furthermore, the
renormalization group arguments, Monte Carlo simulations,
and some analytical models suggest that the propagator
envelope on path-connected fractals has the following form:

P (r,t) ∝ t−ds/2

(
r2/γ

t

)α

exp

[
−c

(
r2/γ

t

)ν]
, (3)

while the scaling exponents defined by different authors are
given in Table I (notice that the analytic envelope can be
defined for r > tγ/2only). Somewhat different forms of �(ξ )
for subdiffusion on path-connected fractals were suggested in
Refs. [37–39]. Nonetheless, it should be pointed out that all
propagators of subdiffusion on path-connected fractals decay
at long distances faster than algebraically.

In contrast to the subdiffusion, the superdiffusion is
more commonly associated with non-Gaussian jump-type
processes, which violate the central limit theorem, such as the
Lévy flights or walks (see Refs. [3–5]). Unlike ordinary ran-
dom walks, which consist of independent random increments
with a typical scale, single steps of the Lévy motion occur on
all scales due to divergent moments of step length distributed
according to a probability density function with the power-law
asymptotic p(ε) ∝ |ε|−(μ+1), where 0 < μ < 2 is the Lévy
index. For a Lévy flight, each step takes a unit time, whereas,
for a Lévy walk, the time duration of a step is proportional to
the length of the step, i.e., tε ∝ ε. The step size statistic can be
either imposed by an uncorrelated Lévy noise if the lengths of
jumps are chosen randomly at each time step (annealed Lévy
motion) or attributed to the medium topology (quenched Lévy
motion). In the last case, the steps are strongly correlated due to
a topological constraint (see, for review, Refs. [12,13,21,22]).
Notice that the annealed and quenched Lévy motions lead to
different classes of superdiffusion [21,22].

In this Brief Report, we suggest that superdiffusion can
also be ruled by a Markovian random walk in the chemical

space of totally disconnected Cantor dust embedded in the
Euclidean space En such that the analytic envelope of the
local propagator, averaged over all starting points on Kn ⊂ En,
decays faster than algebraically.

Cantor dusts represent a class of self-similar totally discon-
tinuous fractals with zero Lebesgue measure. Classic middle-
third Cantor set K1 is constructed by repeatedly removing
the open middle third of a set of line segments starting from
[0,1]. The points left over form a nowhere-dense subset of
the real line K1 ⊂ [0,1], the fractal dimension of which is
D = ln 2/ ln 3 [40]. Furthermore, by dividing the line into
k segments and removing, in each iteration, m < k segments
with probability p(m), one can construct either a statistically
self-similar Cantor set with 0 < D = ln(k − m)/ ln k < 1
if p = 1 or a multifractal Cantor set characterized by a
continuum spectrum of the Rényi dimensions [42].

From a topological point of view, a fractal Cantor set
is a zero-dimensional, bounded, perfect (every point is a
limit point), uncountable, measurable compactum (without
isolated points), which is unique up to a homeomorphism [43].
Furthermore, there is a one-to-one correspondence between
the Cantor set and all points in the unit interval, although
the Lebesgue measure of the Cantor set is zero and the
measure of the unit interval is 1 [43]. Multidimensional Cantor
dust Kn ⊂ En is a generalization of the classical Cantor set
K1 ⊂ [0,1] [40,44]. It can be either constructed in the same
way as the Cantor set but starting from the n-dimensional
unit cube [0,1]n or formed in En as the Cartesian product
of n orthogonal Cantor sets with equal or different fractal
dimensions Di . The fractal dimension of Cantor dust Kn ⊂ En

is equal to D = ∑n
i Di [40].

A noteworthy feature of any Cantor dust is that its
chemical dimension coincides with the dimension of the
embedding Euclidean space En, that is, d� = n > D, whereas,
the topological dimension of totally disconnected dusts is
zero and dmin = D/n < 1. Hence, we can define a Markovian
random walk in the chemical space Cn with the Euclidean
metric �2(X,Y ) = ∑n

1 �2
i , where �i = (

�

xi − �

yi) and, asymp-

totically, �i ∝ (xi − yi)d
(i)
min , whereas,

�

xi ,
�

yi and xi ,yi denote
the Cartesian coordinates of points X,Y ∈ Cn in Cn and En,
respectively. Furthermore, it was proved that every compact

TABLE I. Scaling exponents of the analytic envelope (3) of a propagator in different models of anomalous diffusion and their applicability
to diffusion on different types of fractals. The symbol “?” means unknown.

Koch curves dmin = D, Sierpinski gasket Cantor dust
Model ν α d� = ds = 1,n = 2 dmin = 1,d� = D d� = n,ds = n

Normal diffusion 1 (DW = 2) 0 Not applicable
A [29,30] 1 (DW = 2 + θ ) 0 Best fit [36] Poor fit [4] Coincide with Eq. (5)
B [31] 1/(DW − 1) 0 Not applicable Better fit for long times Not applicable
C [32] 1/(DW − 1) (2D − DW )/2(DW − 1) Coincide with Better fit for Not applicable

model B short times
D [33] 1/(DW − 1) (ds − D)/2(DW − 1) Not applicable ? Not applicable
E [34] 1/(DW − 1) (1 − 2D + ds)/2(DW − 1) Not applicable ? Not applicable
F [34] dmin/(DW − dmin) 0 Coincide with Coincide with Coincide with

model A model B Eq. (5)
Equation (5) ν = 1, ds = n, 0 Not applicable Superdiffusion

DW = 2D/n
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metric space is a continuous image of the Cantor set, that is, for
each compact metric space C, there is a continuous map from
the Cantor set onto C [45]. This permits the homeomorphic
mapping of the random walk in Cn into the random walk on
Kn ⊂ En such that the Euclidean distance between two points
X,Y ∈ Kn ⊂ En is r(X,Y ) ∝ �n/D where D = ∑n

i d (i)
min.

Another remarkable feature of Cantor dusts is that their
spectral dimensions are determined by the degree of freedom
of a point in the embedding space En, that is, ds = n = d�.
Therefore, a Markovian random walk in the chemical space
Cn is a Gaussian process characterized by the universal
walk dimension dW = 2d�/ds = 2. Hence, the random walk
propagator in the chemical space of Cantor dust has the
Gaussian form P (r,t) = (4π��t)−n/2 exp(−�2/4��t), and so,
the Brownian motion in Cn is expected to obey the diffusion
equation,

∂P

∂t
= ���

1−n ∂

∂�

(
�n−1 ∂

∂�
P

)
, (4)

similar to the classic diffusion equation in En. The home-
omorphic mapping from the chemical space of Cantor dust
Cn into KD

n ⊂ En implies that the analytic envelope of the
random walk propagator in En becomes non-Gaussian. Notice
that the local propagator Pj (r,t) on KD

n ⊂ En depends on
the starting point j on the small distances rj from j but
obeys the universal asymptotic behavior for large distances
rj ∝ �1/dmin ∝ r � tγ /2. Accordingly, the asymptotic behavior
of the analytic envelope is independent of the starting point of
the process on Kn ⊂ Enand has the form

P (r,t) ∝ t−n/2 exp

[
−c

(
r2D/n

t

)]
, (5)

which resembles the asymptotic behavior of the propagator
envelope on path-connected fractals [see Eq. (3)] rather than
the propagator of the annealed Lévy motion because the step
length distribution decays faster than algebraically. Notice that
the local propagators of the quenched Lévy walk on Cantor
graphs also do not display long tails [21,22]. However, if
we first average the local propagators, which are explicitly
dependent on the starting point, the asymptotic behavior of
the averaged function obeys the algebraic decay such that the
thermodynamic limit and the limit of long space and time
do not commute [21,22]. This is typical of inhomogeneous
systems (see, for review, Ref. [46]). So, one may expect that
the asymptotic behavior of the average and of the local quantity
can be different, even if the asymptotic behavior of Pj (r,t) does
not depend on j . This point requires special attention in further
studies.

In the local case (5), the average of the walker’s square dis-
placement over the Cantor dust with the fractal measure dDr =
rD−1dr yields to the relation 〈r2〉 = ∫

r2P (r,t)rD−ndnr =
�γ tγ with the scaling exponent γ = n/D = 1/dmin > 1.
Furthermore, substituting � ∝ rdmin into Eq. (4), we get the
diffusion equation,

∂P

∂t
= n2�C

D2
r1−D ∂

∂r

(
rD(1−2/n)+1 ∂

∂r
P

)
, (6)

describing the superdiffusion on an isotropic Cantor dust
embedded in En. Notice that, generally, Eqs. (5) and (6) do

not hold for diffusion on the path-connected fractals, except
for special cases, such as the loopless Koch curves with
dmin = D, which are homeomorphic to the closed interval
[0,1]. Furthermore, taking into account that isotropic Cantor
dusts are characterized by ds = d� = n, dmin = D/n, and
DW = 2dmin, one can see that Eq. (5) is consistent with
the propagators of models A and F (see Table I) suggested
in Refs. [29,30,35] from quite different physical arguments,
but it differs from the propagators of models B–E (see
Table I) suggested in Refs. [31–34] for random walks on
the path-connected fractals. In fact, it is easy to understand
that model A, developed in Ref. [30], implicitly states that
d� = d, whereas, to construct models B–E, it was explicitly
or implicitly assumed that dmin = 1, and so d� = D, whereas,
ds � D. Consequently, models B–E provide better fits to the
results of numerical simulations on the Sierpinski-type fractals
(see Refs. [31–34]). Alternative models [37–39] are associated
with non-Markovian random walks with a long-time memory.

It is pertinent to note that the Lagrangian approach,
suggested in Ref. [35] (model F in Table I), implies that
De = D − DW , where De governs the scaling behavior of
energy e ∝ rDe . Physically, one expects that the energy is a
nondecreasing function of r , and therefore, De � 0. Hence,
the Lagrangian approach [35] is applicable for the random
walk on the fractals with D � DW only. However, surprisingly,
for some types of fractals with DW > D, the propagator of
model F coincides with propagators providing the best fits
to numerical simulations of random walks on these fractals
(see Table I), but the predicted values of De < 0 appear to be
unphysical. Therefore, the coincidences of propagators derived
in model F and models A and B for specific types of fractals
with DW > D seem to be fortunate, rather than physically
justified. On the other hand, for Cantor dust in En, the chemical
and Lagrangian metrics coincide, that is, �L ∝ rDW /2 ∝ rdmin ∝
�. Consequently, in this case, the propagator, derived within
the Lagrangian approach, coincides with Eq. (5) for the
superdiffusion on the Cantor dust obeying the scaling behavior
(1) with the scaling exponent γ = n/D > 1. Accordingly, the
Lévy flight, ruled by the random walk in the chemical space
of Cantor dust, is characterized by the energy scaling with
De = D − DW = (n − 2)dmin � 0 in the Euclidean space of
n � 2, but De < 0 in the case of n = 1. Notice, in this context,
that a Lévy flight on K1 ⊂ [0,1] is recurrent (returns to the
origin infinitely many times), whereas, if n � 3, a Lévy flight
on a Cantor dust is transient (some parts of the dust remain
unvisited).

Accordingly, a superdiffusive phenomenon in a physical
system can be associated with annealed or quenched Lévy
motion (walk or flight) such that the propagator displays
either algebraic or faster decay at longer distances. Although
in both cases, the mean-squared displacement behaves as (1)
with γ > 1, the difference in propagator asymptotics permits
distinguishing between two kinds of superdiffusion for a
specific system. In this context, we note that the authors of
Ref. [47] have emphasized that the tail of the Richardson
propagator is not algebraic and, thus, question the relevance of
the Lévy motion for the superdiffusion observed in Ref. [11].
The model suggested in this Brief Report permits avoiding the
contradiction pointed out in Ref. [47]. In fact, Eqs. (5) and
(6) are converted into the equations originally used to describe
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the Richardson superdiffusion (see Ref. [11]) if we set n = 3
and D = n/3, that, in E3, corresponds to the random walk
in the chemical space of Cantor dust with D = 1, whereas,
d = 0, dmin = 1/3, and DW = 2/3 such that γ = 3, but the
propagator has the form of Eq. (5).

The superdiffusion equation (6) can be generalized for a
random walk on an anisotropic Cantor dust treated as the
Cartesian product of n orthogonal Cantor sets of different
dimensions 0 < Di < 1 (i = 1,2, . . . ,n) such that the shortest
paths along the Cartesian axes are characterized by d (i)

min = Di ,
whereas, D = ∑n

i Di and DW = (2/n)
∑n

1 d (i)
min = 2D/n. It

is a straightforward matter to see that, in the Cartesian
coordinates (xi), the equation of superdiffusion has the form

∂P

∂t
=

n∑
i

�i(
d

(i)
min

)2 x
1−d

(1)
min

i

∂

∂xi

(
x

1−d
(i)
min

i

∂

∂xi

P

)
, (7)

where �i is the diagonal tensor of the diffusion coefficients.
It is interesting to note that, if �i/(d (i)

min) = � for all Cartesian
directions, then Eq. (8) can be rewritten in the form ∂P/∂t =
�i�HP , where �H is the Hausdorff Laplacian introduced in
Ref. [48] in the context of fractal continuum flow.

Equation (6) describes how the analytic envelope of prob-
ability density varies in time according to the spatial behavior
of individuals on an isotropic Cantor dust. To account for
individuals appearing and disappearing at any occupied point
of the dust, in Eq. (6), we can include logistic term ∝ (1 − P )P
for production, commonly employed in biological applications
(see Refs. [49]). The solution of Eq. (6) with the additional
term on the right hand side describes the propagation of the
diffusion-reaction front in the Cantor dust. This solution should
obey the general form of traveling fronts (see Ref. [50]). In
particular, the Hamilton-Jacobi method (see Ref. [51]) yields
that the speed of the traveling front in an isotropic Cantor dust
increases in time as V ∝ t1/dmin−1, that is, the superdiffusion

produces the acceleration of reaction-diffusion fronts in Cantor
dusts with dmin < 1. Accordingly, we noted that acceleration of
chemical waves observed in a Belousov-Zhabotinsky reaction
in a quasi-two-dimensional chaotic flow [52] can be described
within the framework of our model, rather than using a model
with a heavy tailed propagator. In fact, in the experiments of
Ref. [52], it was found that the superdiffusion exponent γ =
1.3 ± 0.1 is independent of the Lévy index 0.7 � μ � 1.6 as
is expected in the case of the random walk in the chemical
space of Cantor dust in contrast to the strong dependence of
the front acceleration rate on the Lévy index expected (see
Ref. [52]) in models with the propagator having a power-law
asymptotic behavior.

Summarizing, we have introduced a model of a random
walk in the chemical space of Cantor dust. The mapping
of the random walk in Cn into Kn ⊂ En defines the local
quenched Lévy flight on the Cantor dust with a constant step
duration independent of the Euclidean length of single steps.
The asymptotic of an analytic envelope of the local propagator,
averaged over all admissible starting points on Kn ⊂ En,
displays a stretched exponential decay at longer distances.
This permits explaining the superdiffusion with the propagator
decaying at longer distances faster than algebraically as
observed in some physical systems. Hence, a random walk
in the chemical space of Cantor dust can be considered as a
paradigm of superdiffusion without a long-tailed asymptotic
of propagator. The equations, describing superdiffusion with
the stretched exponential decay of the propagator envelope,
are derived. The acceleration of reaction-diffusion fronts in
Cantor dusts is predicted.
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