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Dynamic modes of quasispherical vesicles: Exact analytical solutions
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In this paper we introduce a simple mathematical analysis to reexamine vesicle dynamics in the quasispherical
limit (small deformation) under a shear flow. In this context, a recent paper [Misbah, Phys. Rev. Lett. 96, 028104
(2006)] revealed a dynamic referred to as the vacillating-breathing (VB) mode where the vesicle main axis
oscillates about the flow direction and the shape undergoes a breathinglike motion, as well as the tank-treading
and tumbling (TB) regimes. Our goal here is to identify these three modes by obtaining explicit analytical
expressions of the vesicle inclination angle and the shape deformation. In particular, the VB regime is put
in evidence and the transition dynamics is discussed. Not surprisingly, our finding confirms the Keller-Skalak
solutions (for rigid particles) and shows that the VB and TB modes coexist, and whether one prevails over the
other depends on the initial conditions. An interesting additional element in the discussion is the prediction of
the TB and VB modes as functions of a control parameter �, which can be identified as a TB-VB parameter.
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I. INTRODUCTION

The aim of this investigation is to solve exactly a highly
nonlinear system of coupled ordinary differential equations
that is derived to model the dynamics of a vesicle subject
to unbounded steady shear flow. Vesicles (also known as
fluid membranes) and red blood cells (RBCs) have been, and
remain, the subject of extensive studies (see [1–39] and the
references therein). Nowadays there is an increasing interest
in this research activity in different disciplines ranging from
biology to applied mathematics. It is found that vesicles and
RBCs display at least two main types of dynamics: (i) the
tank-treading (TT) mode, where the vesicle deforms into a
prolate ellipsoid inclined at a stationary angle 0 < ψ < π/4
with the flow direction, while its membrane undergoes a
tank-treading motion, and (ii) the tumbling (TB) mode, in
which the membrane flips like a rigid body, provided its initial
shape is not spherical. These two types of motion are predicted
by the Keller-Skalak (KS) theory [1] which assumed a fixed
ellipsoidal vesicle shape.

To focus the discussion, the dynamics of vesicles and RBCs
under a shear flow depends on three dimensional parameters
(see, for example, [24,26]): (i) The first is the excess area
relative to a sphere � = (A − 4πr2

0 )/r2
0 , where A is the vesicle

area and r0 is the effective vesicle radius or the radius of
a sphere having the same volume V as the vesicle ([r0 =
(3V/4π )1/3]. The excess area � is non-negative and vanishes
for a sphere. (ii) The second is the ratio λ = ηint/ηext,ηint

and ηext being the viscosities of the internal and the external
fluids, respectively. (iii) The third is the capillary number
Ca = ηextγ̇ r3

0 /κ, where γ̇ and κ are the shear rate and the
membrane bending rigidity, respectively.

In addition to the TT and TB regimes, an intermediate
regime, which has attracted the attention of many researchers,
has been presented by one the authors [12]. In this regime the
main axis of the vesicle oscillates about the flow direction,
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whereas its shape makes a breathing motion. This regime,
which is called the vacillating-breathing (VB) mode (later
also described as trembling or swinging), has undergone
considerable numerical and experimental investigation, which
constitutes the initial motivation of the present work.

The theory for the VB dynamic mode is based on the
small excess area approximation (i.e., almost spherical vesicles
or the quasispherical regime) and on spherical harmonic
expansions of the shape deviation. Neglecting membrane
thermal undulations, at leading order (ε = √

� is the small
expansion parameter) Misbah [12] derived the following
coupled nonlinear ordinary differential equations:

dR
dt

= h

[
1 − 4

R2

�

]
sin (2ψ),

dψ

dt
= −1

2
+ h

2R cos (2ψ),

(1)

where the unknowns ψ and R represent, respectively, the
vesicle inclination angle and its shape deformation. Here,
lengths are reduced by the vesicle radius r0 and time by
γ̇ −1. System (1) gives the temporal evolutions of ψ and R as
functions of � and the parameter h = 60

√
2π/15/(32 + 23λ)

(or the viscosity ratio λ). This is a generalization of the KS
theory which assumed a fixed ellipsoid shape, R ≡ √

�/2.

It is noteworthy that system (1) is free of Ca. As mentioned
in [24], the approach of [12] has truncated the expansion of
the evolution equations about a spherical shape to leading
order (see also [13]). As a consequence, Ca is scaled out
from the evolution equations, and only λ and � remain. The
insensitivity to Ca of the vesicle tilt angle in a shear flow was
also reported numerically even for a large enough deformation
[2,5,6]. In [15] it is indicated that the theory of Misbah
corresponds formally to Ca → ∞. Including higher-order
terms leads to the appearance of Ca in the equations [15,23,24].

In [12] the author showed that system (1) has a critical
viscosity ratio

λc = −32/23 + (120/23)
√

2π/15�, (2)
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which separates the TT and TB regimes. More precisely,
system (1) was integrated numerically for different values
of the parameter h and for different initial conditions ψ(0)
and R(0). It is observed that for λ > λc, or, equivalently,
h < hc = √

�/2, the TB mode occurs and coexists with
the VB mode. Each mode has its own basin of attraction.
Recently, several studies have elucidated this point further
[13,14,16,17,19,22]. For h < hc a linear stability analysis
showed that the frequency ω of oscillation about the fixed point
ψ0 = 0, R0 = h is purely imaginary. This makes it possible,
from the mathematical point of view, to have closed orbits
around (0,h). By including higher-order terms, it is found that
the frequency ω acquires a nonzero real part [16], and the VB
mode becomes a limit cycle. Here, we shall see analytically
that for h < hc all solutions are periodic at the leading order,
in agreement with the numerical solutions presented in [12].

The overall objective of the present work is, in addition
to these numerical investigations, to present the discovery of
all exact analytical solutions to system (1), and investigate
in detail the dynamical features of quasispherical vesicles.
This is useful for interpreting experiments and for testing or
developing numerical schemes [27]. In particular, we shall
exhibit exact expressions for the vesicle inclination angle and
its shape deformation, which lead naturally to the physical
properties predicted in [12,14,19]. More importantly, exact
solutions may provide simple means to (more realistically)
describe the vesicle dynamics, to delineate the regions of ex-
istence of the TB and VB modes, and to probe the rheological
properties of vesicles. Moreover, this exact solution can be
used as a starting basis for an analytical analysis (possibly
perturbative) of more complex situations.

This paper is organized as follows. Section II deals with a
brief description of the small deformation theory. Section III
is devoted to the main results. Vesicle dynamics are discussed
in Sec. IV and the basins of attraction of each regime are
investigated in Sec. V. Finally, the conclusions is presented in
Sec. VI.

II. QUASISPHERICAL APPROACH

For convenience of the readers, we give here a brief
description of a vesicle model in the small deformation regime.
The present description is based on the papers [12,19]. The
vesicle, which is supposed as single, is submitted to a linear
shear flow u0 = (γ̇ y,0,0), where γ̇ is the shear rate. γ̇ −1 will
be used as the time unit (t → γ̇ t). The flow outside (and inside)
the vesicle is described by the Stokes equations

η∇2u = ∇p, (3)

where u and p are the velocity and the pressure fields, respec-
tively. The Reynolds number is assumed to be negligible. The
viscosity η = ηint for the fluid encapsulated by the vesicle and
η = ηext for the suspending medium. The fluids are assumed
to be incompressible,

∇ · u = 0. (4)

The vesicle deformation is described by the radial position r

of the vesicle interface, which can be parametrized by

r = r0[1 + f (θ,φ,t)], (5)

where f is the deviation of the vesicle shape from a sphere
depending on the angular coordinates and r0 is the effective
vesicle radius. The shape deviation is a real function and is
assumed to be small; f ∼ O(ε), ε � 1.

One of the most powerful methods in investigating the
vesicle deformations is the spherical harmonic parametriza-
tion. Indeed, within this approach, a complicated physical
phenomenon is replaced by a simpler formulation that is
amenable to mathematical treatment. Technical details will
not be presented in this paper. Here, we only sketch the
principle. In the following the spatial variables are rescaled by
r0. The function f is expanded into series of scalar spherical
harmonics,

f =
∞∑

n=0

m=n∑
m=−n

Fnm(t)Ym
n (θ,φ), (6)

where the functions Ym
n are the usual spherical harmonics and

Fnm are unknown time-dependent amplitudes. The constraint
on the fixed total area serves to relate the amplitude of the
shape perturbation f and the excess area � [3,4,13,23]:

� =
∫

r2

er · n
sin θ dθ dφ − 4π

=
∑

n

m=n∑
m=−n

|Fnm(t)|2 (n + 2)(n − 1)

2
, (7)

where er and n are the unit radial and outward unit normal
vectors, respectively. Third- and higher-order terms in Fnm are
neglected. From (7) we may deduce that the appropriate small
parameter ε is given by ε = √

�.

By the linearity of the Stokes equations, the total velocity
field outside the vesicle, v, can be written as v = u0 + u,

where u is the unknown perturbation of the field due to the
presence of the vesicle. Likewise, we write for the velocity field
within the vesicle v = � × r/2 + u, where � is the vorticity.
Following the Lamb procedure [28], we write an ansatz for the
unknown perturbation of the velocity outside and inside the
vesicle [12,19]:

u =
∞∑

n=0

∇χ−n−1 × r + ∇φ−n−1 − n − 2

2n(2n − 1)
r2∇p−n−1

+ n + 1

n(2n − 1)
rp−n−1 (8)

and

u =
∞∑

n=0

∇χn × r + ∇φn + n + 3

2(n + 1)(2n + 3)
r2∇pn

− n

(n + 1)(2n + 3)
rpn. (9)

The first term expresses vortex motion in a uniform pressure
field. The second term represents an irrotational motion which
can exist in a uniform pressure field. The last two terms are
connected with the pressure distribution (p = ∑∞

n=0 pn). The
functions pn, φn, and χn in the Lamb solution are solid
spherical harmonics of order n and p−n−1, φ−n−1, and χ−n−1
are solid spherical harmonics of order −n − 1 [40]. These
solid spherical harmonics are determined from the boundary
conditions on the membrane: continuity of the velocity field
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and the forces at the membrane, and the projected zero
divergence of the velocity field [12,19].

Under the linear shear flow only the second-order spherical
harmonics functions survive. Hence

f =
m=2∑

m=−2

F2m(t)Ym
2 (θ,φ). (10)

Since the motion is analyzed only in the plane of the shear we
have Y1

2 = 0. Therefore, the vesicle dynamics is determined
by the components F22, F20, and F2−2 = F�

22 (the complex
conjugate of F22):

f = F2−2Y−2
2 + F20Y0

2 + F22Y2
2 . (11)

The area conservation constraint (7) reads

� = 4|F22|2 + 2|F20|2, (12)

and we write the Lamb solution for the total velocity field as

v = ∇φ−3 + 1

2
rp−3 + γ̇ yex, (13)

v = ∇φ2 + 5

42
r2∇p2 − 2

21
rp2 + 1

2
γ̇ (yex − xey). (14)

The shape evolution is determined from the kinematic condi-
tion that the interface moves with the normal component of
the fluid velocity v(r) = v(r) ≡ vr [13],

∂r

∂t
= vr · n. (15)

This equation is obtained, in the usual way, from a transport
equation

∂ϕ

∂t
+ (vr · ∇)ϕ = 0, (16)

where the function ϕ, which varies continuously, is negative
inside the vesicle and positive outside [ϕ(r,t) = r − 1 − f ].
The kinematic relation (15) should involve |∇(r − f )| in the
denominator of the left-hand side term.

After lengthy but straightforward algebra, it is found in
[12] that the shape parameters F2m, m = 0,2, obey (at leading
order)

d

dt
F2m = −i

m

2
h + i

m

2
F2m + 2ih�−1(F�

22 − F22)F2m. (17)

Note that the operator d
dt

− i m
2 is the Jaumann derivative.

The algebra leading to the above equations is technically
more involved, and the interested reader can find it in
[13,15,19,22–24,30,31]. The evolution in time of the vesicle
shape configuration in the plane of the shear is given by the
evolution of the F22 mode. The out-of-plane deformation along
the vorticity direction is described by the F20 mode. Condition
(12) shows that the maximal extension along the vorticity axis
corresponds to F max

20 = √
�/2, and the shape mode F22 is

equal to zero.
The role of the F22 mode can also be clarified by setting

F22 = R(t)e−2iψ(t), (18)

where ψ coincides with the orientation angle of the vesicle
and R is the amplitude of deformation of the vesicle. The
parameter R measures the ellipticity of the vesicle contour in
the shear plane. Insertion of (18) into (17), with m = 2, and

extraction of the real and imaginary parts from (17) lead to (1).
This is the line advocated in [12]. Note that the area constraint
(12) reads

� = 4R2 + F 2
20, (19)

or, equivalently,

F20(t) = ±
√

�

2
− 2R2(t). (20)

The area constraint (19) allows us to use a single angle �

to express the F20 mode and the amplitude of the vesicle
deformation R:

F20 =
√

�

2
sin � and R =

√
�

2
cos �. (21)

From (1) and (17) one can easily find
√

� − 2R(t)√
� + 2R(t)

=
√

� − 2R(0)√
� + 2R(0)

exp

(
−4h

∫ t

0
sin [2ψ(s)]ds

)
(22)

and

F20(t) = F20(0) exp

(
−2h

�

∫ t

0
cos �(s) sin [2ψ(s)]ds

)
.

(23)

This indicates in particular that if F20(0) 	= 0 the value
F20(t) 	= 0 for all times andR <

√
�/2. If F20(0) = 0 we have

F20(t) = 0 for all times (i.e., no deformation along the vorticity
direction). In this case the area conservation constraint (12)
implies that R remains constant (shape-preserving regime)
and equal to its maximal value

√
�/2. Similarly, if initially

R(0) = √
�/2, R(t) = √

�/2 for all times and then F20 ≡ 0.

Analogously to F22, the role of F20 can also be investigated
in the spirit of [13]. On average, the vesicle is elliptical.
Instead of R the deformation can also be quantified by means
of the Taylor parameter [3,13,17,19,25] D = Dxy = (rmax −
rmin)/(rmax + rmin), where rmax and rmin are the major and the
minor axes (in the x-y plane) of the vesicle, respectively. See
also [36,37] for capsules. Since

rmax(t) = 1 − 1

4

√
5

π
F20(t) +

√
15

32π

√
� − 2F 2

20(t)

= 1 −
√

5

32π

√
� − 4R2(t) +

√
15

8π
R(t) (24)

and

rmin(t) = 1 − 1

4

√
5

π
F20(t) −

√
15

32π

√
� − 2F 2

20(t)

= 1 −
√

5

32π

√
� − 4R2(t) −

√
15

8π
R(t), (25)

the Taylor vesicle deformation reads

D =
√

15

32π

√
� − 2F 2

20(t)

1 − √
5/16πF20(t)

. (26)

Note that D =
√

15
8π
R + O(R2). The parameter D has been

used for a qualitative comparison between vesicle and drop
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dynamics [19] and a comparison of the Keller and Skalak
theory [1] to the theory of [12] [in which case system (1)
is solved numerically]. The Taylor deformation has also
been used to infer an evaluation of the membrane shear
elastic modulus of artificial capsules with different membranes
[32–34] (see also [35]). Recently, the parameter D was used in
the study of the dynamics of oblate-shaped capsules [38]. The
time-dependent behavior is related to the rate of elongation
(dD/dt > 0) or compression (dD/dt < 0). In [3] the authors
developed a simple model that describes the Taylor parameter
for giant vesicles as a function of the shear rate (see also [4]).

Using the relation between the Taylor vesicle deformation
and the effective excess area �eff,

D =
√

15�eff

32π
, (27)

reported by Seifert [4] (see also [3] for giant vesicles), we
obtain [13]

�eff = � − 2F20(t)2

[1 − √
5/16πF20(t)]2

. (28)

Note that the parameter �eff is time dependent, in contrast to
the excess area �. This is due to the fluctuations in the F20

mode. The effective excess area can be rewritten as

�eff = � cos2 �

(1 − √
5�/32π sin �)2

, (29)

where � is given by (21). � is referred to as the shape
parameter [21]. This parameter is a measure of how much
of the excess area is stored. In Sec. IV, we shall see that
the TB-VB transition can be deduced from an analysis of the
Taylor parameter D or the effective excess area �eff .

As evident from the above discussion, the F22 mode
provides a convenient basis for describing the vesicle shape
configuration under a shear flow in the leading-order theory.
Beyond the zero-order approximation [12], the problem is
highly nonlinear and difficult to solve analytically. The
nonlinear character of (17) is triggered by local membrane
incompressibility. Note that this markedly differs from droplet
[40,41] and capsule [42] theories where the leading-order
equations are linear.

III. MATHEMATICAL FORMULATION AND
EXACT SOLUTIONS

As mentioned in the Introduction, we are mainly interested
in finding exact expressions of solutions to system (1). One
key challenge is that this problem is highly nonlinear. It
has been pointed out [12,19] that, unlike the KS equation
(see below), it is difficult to obtain all solutions analytically.
Therefore, the analytical solution of system (1) presents an
open question from the mathematical and physical point of
view. In particular, we shall present elementary methods
which have been successful in solving system (1) exactly. Our
strategy is to have a full understanding of system (1) before
including further physical complexity.

In the case of the shape-preserving regime (i.e., R ≡√
�/2), system (1) is reduced to the Jeffery equation

dψ

dt
= −1

2
+ h√

�
cos (2ψ), (30)

which simplifies the dynamics. Equation (30) was extensively
studied by Keller and Skalak [1]. The vesicle dynamic
is described only by the variation of the angle ψ. Two
mathematical properties have been noted. If

√
�

2h
< 1 (h > hc)

Eq. (30) has the following fixed inclination angles (the pure
TT regime):

ψ±
0 = ± 1

2 arcos (
√

�/2h). (31)

The “ + ” solution is stable and the “−” solution is unstable.
The asymptotic solution is a TT regime. At the critical value
h = hc both fixed inclination angles merge at ψ = 0 (saddle-
node bifurcation). For h < hc no fixed inclination angle exists
and all solutions to (30) oscillate (TB regime). More precisely,
KS showed that the general solution to (30) satisfies

ψ(t) = arctan

[−√
� + 2h√

� − 4h2
tan

(
1

2

√
1 − 4h2/�(t − t0)

)]
,

(32)

where t0 is a constant (a time at which ψ = 0).
It may be understood from the Jeffery equation that we

need, for system (1), to distinguish at least two cases for the
parameter h: namely, 4h2 > � and 4h2 < �. Our approach
is not an attempt to introduce another speculative physical
scenario, but rather an effort is made to exhibit analytically all
physical solutions and to study their dependence (for fixed �)
on the control parameter h. At first sight system (1) appears to
be complicated. The main idea for determining exact analytical
solutions is to introduce new coordinates in terms of which
system (1) takes a simpler form. Instead of ψ and R the
vesicle dynamics can also be described in terms of the real and
imaginary parts of F22 (=ξ − iζ ). Accordingly, it is found that
system (1) reads

dξ

dt
= ζ

(
1 − 4h

�
ξ

)
,

dζ

dt
= h − ξ − 4h

�
ζ 2.

(33)

Note that ξ and ζ are connected to ψ and R via the relations

ξ (t) = R(t) cos [2ψ(t)], ζ (t) = R(t) sin [2ψ(t)], (34)

so that

ψ = 1

2
arctan

(
ζ

ξ

)
, (35)

and, obviously [in view of (12)],

4R2 + 2|F20|2 = �. (36)

Very recently a system similar to (33) was derived by
Veerapaneni et al. [22] when studying the effect of an inclusion
on vesicle behavior in shear flow. In this case the leading-order
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system for nearly circular vesicle shape is given by

dξ

dt
= ζ

(
1 − 3β

�l

ξ

)
,

dζ

dt
= β − ξ − 3β

�l

ζ 2,

(37)

where β is a function of the inclusion radius and �l is the
excess length.

Let us return to our problem. Analogously to system (1),
system (33) admits solutions such that ξ ≡ �

4h
. In this case

(33) reduces to the Riccati equation (RE)

dζ

dt
= h − �

4h
− 4h

�
ζ 2. (38)

This equation has the solution

ζ (t) = �

4h

√
4h2

�
− 1

a exp
(
2
√

4h2

�
− 1

)
t − 1

a exp
(
2
√

4h2

�
− 1

)
t + 1

(39)

if h >
√

�
2 , and in the opposite case

ζ (t) = b tan

(√
1 − 4h2

�
(t − t0)

)
, (40)

where a, b, and t0 are real parameters. Having in mind the area
conservation constraint (12), the mathematical solution (40)
cannot be used to describe the physical problem and has to be
ignored; ζ (t) blows up at a finite time if b 	= 0, and if b = 0
we have F22 = �

4h
, since ζ = 0. Therfore, 4|F22|2 = �2

4h2 . This

contradicts (36), since h <
√

�
2 .

The aim of the present section is to obtain all physical
solutions. By “physical solution” we mean a solution (ξ,ζ )
such that (36) holds. We will proceed by introducing the
function

ρ = ξ − h

ζ
(41)

which is equivalent to the following ansatz:

ξ = ζρ + h. (42)

In passing, we note that if we assume ρ ≡ a, where a is an
arbitrary constant, we find from system (33) that a has to be

a = ±
√

4h2

�
− 1, provided h > hc. Qualitatively speaking, a

similar condition will appear when considering the general
case in which ρ is an arbitrary time-dependent function. From
(33) and (41) one deduces

dρ

dt
= ρ2 + 1 − 4h2

�
. (43)

Equation (43) plays a central role. It shares some analogy
with the Jeffery equation (30), in the sense that when h > hc

Eq. (43) has two fixed points ρ0 = ±
√

4h2

�
− 1. The “−” fixed

point is stable and the “ + ” is an unstable one. If h < hc

there is absence of the fixed point and ρ oscillates. Particularly
interesting are the explicit expressions of the general solution
as follows:

ρ(t) = −ω
eωt + C1e

−ωt

eωt − C1e−ωt
(44)

for h > hc and for h < hc

ρ(t) = ω tan (ωt + C3), (45)

where

ω =
√∣∣∣∣1 − 4h2

�

∣∣∣∣ (46)

and C1 and C3 are constants depending on the initial
conditions.

Having found explicit expressions for ρ, one can solve
system (33) and analyze analytically the different regimes
previously discussed numerically in [12]. Insertion of (44) and
(45) into system (33) again results in the ordinary differential
equation (nonautonomous RE)

dζ

dt
= −ρζ − 4h

�
ζ 2, (47)

which can be solved exactly. For h > hc the functions ζ and ξ

have the forms

ζ (t) = �ω

4h

eωt − C1e
−ωt

C2 + eωt + C1e−ωt
,

(48)

ξ (t) = �

4h
+ ω2�

4h

C2

C2 + eωt + C1e−ωt
,

for some constant C2. Therefore, upon using (34) and (35) the
inclination angle and the shape deformation are given by

ψ(t) = 1

2
arctan

(
ω

�[eωt − C1e
−ωt ]

4h2C2 + �[eωt + C1e−ωt ]

)
(49)

and

R2(t) = �2

16h2

ω2(eωt − C1e
−ωt )2 + (C ′

2 + eωt + C1e
−ωt )2

(C2 + eωt + C1e−ωt )2
,

(50)

C ′
2 = 4h2

�
C2.

For h < hc we have

ζ (t) = �ω

4h

cos (ωt + C3)

C4 + sin (ωt + C3)
,

ξ (t) = �

4h

� + sin (ωt + C3)

C4 + sin (ωt + C3)
, (51)

� = 4h2

�
C4,

where C4 is a constant depending on the initial conditions;

C4 = ±
�
4h

− ξ (0)√
ω2ζ 2(0) + [ξ (0) − h]2

. (52)

The above expression is obtained from a simple algebraic
manipulation of (51) at t = 0.

Using (12) and (51) one sees that |C4| �
√

�
2h

, and then
|C4| > 1 since h < hc. Therefore, the coordinates ξ and ζ are
finite for all times and the parameter � satisfies

|�| � 2h√
�

. (53)
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The inclination angle and the shape deformation are given,
respectively, by

ψ(t) = 1

2
arctan

(
ω

cos (ωt + C3)

� + sin (ωt + C3)

)
(54)

and

R2(t) = �2

16h2

1

[C4 + sin (ωt + C3)]2
{ω2 cos2 (ωt + C3)

+ [� + sin (ωt + C3)]2}. (55)

These may be regarded as the main results of this paper.
Without loss of generality we may assume that C3 = 0. Note
that the inclination angle and the shape deformation oscillate
with the period T = 2π (1 − 4h2

�
)−1/2, which decreases with

h. We shall see that the present result is an extension of the
Keller-Skalak solutions (for rigid particles). Note thatR =

√
�

2
(shape-preserving regime) if and only if

� = ±�c, (56)

where

�c = 2h√
�

< 1. (57)

Note that if |�| < �c the mathematical solutions (49) and (50)
have to be ignored.

IV. VESICLE DYNAMICS

In this section we discuss in more detail the different
regimes described by the above exact solutions. In particular,
we analyze the effect of the parameter � on the TB and VB
behaviors and derive a basin of attraction for each regime.

A. Tank-treading solutions (h >
√

�
2 )

Since the argument of the arctangent function in (49) goes
to ω as t tends to infinity, where ω is given by (46), expression
(49) shows that ψ tends to

ψ(∞) = 1

2
arctan

[
4h2 − �

�

]1/2

= ψ+
0 (58)

as t approaches infinity, where ψ+
0 is given by (31) (see

expression (28) of [19]). In addition, we note that R(t) goes to√
�

2 as t tends to infinity. That is to say the asymptotic solution
corresponds to a TT solution.

As noted in [19] if � = 0 (sphere) the orientation angle
is π/4 (the orientation of maximum straining); otherwise the
orientation angle is always smaller than π/4. A nonzero value
of the excess area allows vesicle deformation.

For completeness, we note that ψ(t) tends to a finite limit
as t tends to −∞,

ψ(−∞) = −1

2
arctan

[
4h2 − �

�

]1/2

= ψ−
0 , (59)

where ψ−
0 is given by (31). In addition, if C1 and C2 are positive

the inclination angle ψ is monotonically increasing and thus
satisfies

ψ−
0 < ψ < ψ+

0 (60)

for all times. It is worth noticing that, in the TT regime,
any solution to system (33) is in fact, a kink solution which
connects the unstable fixed point at −∞ to the stable one at
∞. Expression (48) provides a simple explicit expression for
a kink (vertical) solution satisfying (60):

ξ (t) = �

4h
, ζ (t) = �ω

4h

eωt − e−ωt

eωt + e−ωt
. (61)

The inclination angle and the shape deformation read

ψ(t) = 1

2
arctan

(
ω

eωt − e−ωt

eωt + e−ωt

)
,

(62)

R2(t) =
(

�

4h

)2 [
1 + ω2 (eωt − e−ωt )2

(eωt + e−ωt )2

]
.

As the viscosity ratio λ approaches the critical value λc given
by (2), or equivalently 4h2 = �, both inclination angles ψ±

0
vanish and all solutions of system (33) merge at (ξ,ζ ) =
(
√

�/2,0). Above λc we shall see that our results describe
two types of periodic solution.

Finally, we note that the constants C1 and C2, which depend
on the initial conditions, have to be selected such that the area
conservation constraint (12) is satisfied for all times. In fact,
system (33) admits solutions which blow up at a finite time
or which connect the unstable fixed point to (h,0), which
is the third fixed point. However, those solutions have to be
ignored. The fixed point (h,0) violates the area conservation
constraint (12) for h > hc. We are implicitly assuming that our
explicit exact solutions satisfy (12) for both cases h > hc and
h < hc. In fact, the constraint (12) demands that the quantity
ξ 2(0) + ζ 2(0) is not larger than �/4 [see (36)]. In Fig. 1 we
present some trajectories in the phase plane (ξ,ζ ) subject to
the initial conditions

−
√

�/2 � ξ (0) �
√

�/2, ζ (0) = 0. (63)

The initial inclination angle is fixed to take the value ψ(0) = 0.

This is a simple strategy for obtaining a physically acceptable

FIG. 1. (Color online) Trajectories of (33) in phase space (ξ,ζ ).
Here the parameters are h = 2 and � = 4 for simplicity. All
trajectories tend to 1

2 (1,
√

3) as t approaches infinity.
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solution. We then vary the initial condition ξ (0) to generate a
family of distinct solutions.

B. Tumbling and vacillating-breathing solutions: Dependence
on the TB-VB parameter

We turn now to the most interesting and rich case h < hc. As
mentioned before, Misbah [12] presented numerical solutions
to system (1) showing that the VB mode coexists with the
TB mode, and the mode selection is determined by the initial
conditions.

Below, we shall analyze the different closed orbits that
emerge from (54). We shall attempt to identify exactly the
initial conditions and the parameter � that lead to the TB or
VB regime. We recall, using (51) and (52), that � is given by

� = ±4h2

�

�
4h

− ξ (0)√
ω2ζ 2(0) + [ξ (0) − h]2

. (64)

Naively, we may suggest that the inclination angle is written
as (C3 = 0)

ψ(t) = 1

2
arctan

(
ω

cos ωt

� + sin ωt

)
(65)

for all times. In this case ψ oscillates in the interval
[−π/4,π/4] and then cannot describe any TB solution.
Expression (65) has to be refined. In passing, we note that
(−R,ψ ± π/2) are solutions of system (1) as well as (R,ψ).
For a rigorous mathematical and physical proof the inclination
angle will be defined by

ψ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2 arctan

(
ω cos ωt

�+sin ωt)

)
if ξ > 0,

−π
2 + 1

2 arctan
(
ω cos ωt

�+sin ωt)

)
if ξ < 0, ζ < 0,

+π
2 + 1

2 arctan
(
ω cos ωt

�+sin ωt)

)
if ξ < 0, ζ > 0.

(66)

In the above expression the inclination angle is defined as the
principal value of the real arctangent function which is the
unique solution to

cos [2ψ(t)] = ξ (t)√
ξ 2(t) + ζ 2(t)

,

(67)

sin [2ψ(t)] = ζ (t)√
ξ 2(t) + ζ 2(t)

,

satisfying −π � 2ψ(t) � +π. The inclination angle jumps
discontinuously from −π/2 to +π/2 at ξ < 0 and ζ = 0. The
inclination angle can be written, for convenience, in the form

ψ(t) = π

4

�

|�|
cos ωt

|cos ωt |
[

1 − �

|�|
� + sin ωt

|� + sin ωt |
]

+ 1

2
arctan

(
ω

cos ωt

� + sin ωt

)
. (68)

Three cases are clearly identified.
For |�| > 1 the function t → χ (t) = � + sin ωt never

vanishes and then ξ (t) is positive for all times. Therefore, the
orientation angle satisfies (65) for all times. Consequently, the
vesicle exhibits the VB mode to which its inclination angle os-
cillates between the minimal angle ψvb− = − 1

2 arctan ( ω√
�2−1

)

FIG. 2. (Color online) Dynamics of the inclination angle ψ for
vacillating-breathing modes. Parameters are � = 4 and h = 0.8
(�c = 0.8). � = 1.2 for the square blue line and 1 for the solid red
line (separatrix mode).

and the maximal angle ψvb+ = + 1
2 arctan ( ω√

�2−1
). Both min-

imal and maximal angles satisfy 0 < |ψvb±| < π/4. Recall
that the vesicle undergoes periodic shape deformation. This is
a signature of the a VB regime (see the solid red line of Fig. 2).

For |�| = 1 the function χ is non-negative and vanishes
at finite times. Therefore, the inclination angle ψ spans the
whole range [−π/4,π/4] [see Fig. 2 (square blue line)]. In
particular, ψ reaches ±π/4.

For �c � |�| < 1 the function ξ changes sign and then
ψ oscillates between ±π/2. This is a TB regime, and the
solution is given by (68). An example of this motion can be
seen in Fig. 3. Clearly, the parameter � can be identified as the
tumbling- or vacillating-breathing parameter. The variation of
the inclination angle is reported in Figs. 2 and 3 in agreement
with numerical solutions reported in the literature.

From the above discussion one deduces that the border
separating the VB and TB modes is obtained analytically from

FIG. 3. (Color online) Dynamics of the inclination angle ψ/π

depending on the parameter �, for h = 0.8 and � = 4 (�c = 0.8).
Tumbling mode (solid red line) for � = 0.9 and vacillating-breathing
mode for � = 2 (square blue line) and � = 1.05 (dashed black line).
The period is T = 10

3 π.
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FIG. 4. (Color online) The amplitudeR(t) for h = 0.8 and � = 4
(�c = 0.8), in the tumbling regime for � = 0.9. In the VB regime the
behavior is similar. The shape-preserving regime (�c = 0.8) is plotted
as the square black line for comparison.

the equation �2 = 1, which is equivalent to

ξ (0)

[
2h −

(
1 + 4h2

�

)
ξ (0)

]
= ζ 2(0). (69)

In passing, we point out that if initially the vesicle configura-
tion satisfies (69) then the relation

ξ (t)

[
2h −

(
1 + 4h2

�

)
ξ (t)

]
= ζ 2(t) (70)

holds for all times. The orientation angle of the border mode
can be expressed as

ψ(t) = 1

2
arctan

(
ω

cos (ωt + 3π/2)

1 + sin (ωt + 3π/2)

)
(71)

or, equivalently,

ψ(t) = −1

2
arctan

[
ω tan

(
1

2
ω(t − t1)

)]
, (72)

where t1 is a constant. It is interesting to note that the TB motion
has a strong similarity with the border-separating motion.
Figures 2 and 3 show solutions (angle as a function of time)
for the same parameters h and �, but with a parameter � = 1
for the separatrix mode and �c � |�| < 1 for the TB mode. In
Fig. 4 we show a typical behavior for the amplitude R(t) for
|�| > �c. Recall that the critical case |�| = �c corresponds to
the shape-preserving regime.

Note that system (1) admits TB solutions with |�| <

�c; however, these mathematical solutions are physically
unacceptable. The area conservation constraint (12) is violated.

Now, we present interesting results confirming the role of
the TB-VB parameter. First, we can deduce from (12) and (55)
the expression for the F20 mode:

F20(t) = ±ω
�

2
√

2h

√
�

4h2
�2 − 1

1
�

4h2 � + sin ωt
. (73)

In passing we note that if |�| = �c we have F20(t) = 0 for all
times; a fixed ellipsoid shape. This is the situation we are going
to deal with in the next section. Recall that F20 never vanishes
if F20(0) 	= 0 (see Sec. II). Therefore, we may assume without
loss of generality that F20 is positive, and then � > 0.

Equation (73) shows that the maximum deformation of
F20 is

F m
20 = ω

�

2
√

2h

√
�

4h2
�2 − 1

1
�

4h2 � − 1
�

√
�

2
. (74)

Interestingly, the maximum extension along the vorticity axis,√
�
2 , is attained if and only if � = 1 (the separatrix mode).

From this we observe that the Taylor parameter D attains zero
at its minimum [see (26)]. That is to say, if |�| = 1 the vesicle
attains a circular shape in the plane shear. A detailed analysis
of this case will be reported elsewhere.

One of the results that emerges from this analysis is that for
h < hc our approach introduces the TB-VB parameter � which
may play the role of a control parameter. � = �c corresponds
to a KS tumbling solution (rigid particle), the range �c < � <

1 leads to tumbling motions with deformable shape, and the
range � > 1 corresponds to vacillating-breathing modes. The
TB-VB transition occurs if � = 1, leading to a circular shape
in the shear plane (over one period).

C. Keller-Skalak theory

The task of the present section is to compare our results
with the TB prediction obtained by KS. In fact, a natural wish
would be to understand how a KS tumbling solution can be
derived from (68) if the ellipsoid shape is fixed. In this case
we have � = ±�c [see (56)] and then C4 = �−1

c .

We assume without loss of generality that � = �c. First, we
easily check, for ξ < 0 and ζ > 0, that the inclination angle
ψ reads

ψ(t)

= π

2
+ arctan

(
ω cos (ωt)

�c+ sin ωt−
√

(�c+ sin ωt)2+ω2 cos2 ωt

)
,

(75)

by using the identity 1
2 arctan x = arctan x

1+√
1+x2 . Next, using

(55) the quantity (�c + sin ωt)2 + ω2 cos2 ωt is replaced by
4h2

�
(�−1

c + sin ωt)2. It follows from this that the inclination
angle can be written as

ψ(t) = π

2
+ arctan

(
ω cos ωt(

2h√
�

− 1
)
(1 − sin ωt)

)
. (76)

Therefore, there exists a real t0 (sin ωt0 = 1) such that

ψ(t) = π

2
+ arctan

(
ω

2h√
�

− 1

/
tan

ω

2
(t − t0)

)
, (77)

and this coincides with the KS solution (32). Similar results
are obtained for the case ξ > 0 and the case ξ < 0 and ζ < 0.

Note that our solution in the TB regime coincides with the
KS one only if R is constant (shape-preserving solution);
otherwise the general solution is given by (68), due to the

051915-8



DYNAMIC MODES OF QUASISPHERICAL VESICLES: . . . PHYSICAL REVIEW E 86, 051915 (2012)

FIG. 5. (Color online) Phase portrait of system (33) for h <√
�/2 = 1, showing vacillating-breathing vesicle (dashed green

lines) and tumbling vesicle (solid blue lines). The square red orbit
which goes through the origin is the separatrix mode.

fact that the shape evolves in times (the short and long axes
oscillate in time).

V. BASIN OF EACH REGIME

In the course of the investigation we mentioned that a
physical solution has to satisfy the area conservation constraint
(7). Thus the physical region or the physical basin of attraction

of �
4h

(1,
√

4h2

�
− 1) (for the TT regime) is naturally Bt t = D,

where D is the disk defined by

D =
{

(ξ (0),ζ (0)); ξ 2(0) + ζ 2(0) � �

4

}
. (78)

For � > 4h2, as shown above, the TB and VB modes coexist
and are distinguished according to the values of the parameter
� which depends on the initial condition (ξ (0),ζ (0)), as well
as the fixed excess area and the ratio viscosity (see Fig. 5).

Let P be the closed orbit [see (70)]

P =
{

(ξ,ζ ) ∈ R2 : ξ

[
2h −

(
1 + 4h2

�

)
ξ

]
= ζ 2

}
, (79)

which goes through the origin. Recall that P defines a
“separatrix mode,” or a boundary delimiting the TB and VB
regimes (see the square red line of Fig. 5). The exact basin
of the VB mode, Bvb,h, is the bounded open domain with the
boundary P:

Bvb,h =
{

(ξ,ζ ) ∈ R2 : |ζ | <

√
ξ

[
2h −

(
1 + 4h2

�

)
ξ

]}
,

(80)

while the exact basin of the TB mode is given by Btb,λ =
D \ Bvb,h (D excluding Bvb,h); see Fig. 6.

To explore the VB-TB boundary we assume that ξ (0) > 0
and 0 < ξ 2(0) + ζ 2(0) < �/4. By varying h from hc to 0 (by
increasing the viscosity contrast λ from λc to ∞), one sees
that there exists, as expected [19], a second critical value of
h′

c (<hc) where the VB solution disappears at h = h′
c and

where only the TB is the attracting solution (the coexistence
between the VB and TB modes disappears). The second
critical value h′

c can be determined as the root of Eq. (69);
that is,

h′
c = �

4ξ (0)

[
1 −

√
1 − 4

�
[ξ 2(0) + ζ 2(0)]

]
. (81)

Equation (69) has two roots. Only the root (81) is physically
acceptable (h′

c <
√

�/2). The VB regime disappears in favor
of tumbling (marginal stability of the separatrix VB mode).
The VB mode is an intermediate regime between the TT and
TB modes (it coexists with TB in the range h′

c < h < hc,
while for h < h′

c, only the TB regime survives). However,
if ξ 2(0) + ζ 2(0) = �/4, or if ξ (0) is negative, there is no
intermediate regime. The transition from the TT to the TB

FIG. 6. (Color online) Basin of each regime for given h and � parameters (left) and a typical localization of the TT-TB and TT-VB transition
regions (right).
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FIG. 7. (Color online) A phase diagram representing the three
regimes TT, VB, and TB in the [ξ (0) = ξ0,h] plane for � = 4. We
see that the VB width decreases with increasing ξ0 and vanishes at
ξ0 = √

�/2 (KS solution). The dashed black line (TB-VB transition)
shows the evolution of the second critical value h′

c as a function of
ξ0 = ξ (0).

regime is direct. Actually, the the transition region from the
TT to the VB regime is given by (see Fig. 6)

Dc =
{

(ξ,ζ ) ∈ R2 : |ζ | <

√
ξ [

√
� − 2ξ ]

}
. (82)

The phase diagram of Fig. 7 represents the TB and VB regimes
as a function of the parameters h and ξ (0) > 0 for ζ (0) = 0
and a given �. Figure 7 also shows that for 0 < ξ (0) <

√
�

2
the TB and VB regimes are always present. Each has its own
basin of attraction. As expected, the VB mode occurs in the
vicinity of the transition from the TT to the TB regime, for 0 <

ξ <
√

�/2. The VB width, defined as the difference between
the critical value and the second critical value of h, is given
by, for 0 < ξ (0) <

√
�

2 and ζ (0) = 0,

�h =
√

�

2

[
1 −

√
�

2ξ (0)

(
1 −

√
1 − 4

�
ξ 2(0)

)]
, (83)

which goes to 0 as ξ (0) tends to
√

�
2 (KS solution).

Finally, we note that our explicit solutions allow us to
evaluate the limit of the amplitude of the VB mode as h tends to
hc. The VB angular amplitude �ψvb [defined as the difference
between the maximum and the minimum of ψ(t)], is given
by

�ψvb = arctan

√
ω2ζ 2(0) + [ξ (0) − h]2√

ξ (0)
[
2h − (

1 + 4h2

�

)
ξ (0)

]− ζ 2(0)
(84)

for h′
c < h < hc, where h′

c is given by (81) (the threshold
of the TB-VB transition). When the parameter h tends
to the threshold value of the TB-VB transition we have
limh↑hc

�ψvb = 0. This result shows analytically that the

amplitude �ψvb approaches zero at the TT-VB boundary in
a continuous manner [24]. More precisely, we have �ψvb ∼√

hc − h as h → hc, a prototypical result for a supercritical
(or pitchfork) bifurcation.

VI. CONCLUSION

We have investigated system (1) derived in Ref. [12] to
describe the dynamics of vesicles under a shear flow in
the small deformation regime. Our approach, which has a
remarkable degree of simplicity, leads to exact solutions for
the vesicle orientation in the flow and its shape evolution.
As a result, three different types of motion have been
explicitly identified (TT, TB, and VB) depending on the
viscosity contrast and the excess area. In particular, for
h < hc, the coexistence of the TB and VB regimes is most
clearly observed in the following exact orientation angle
[see (68)]:

ψ(t) = π

4

cos ωt

| cos ωt |
[

1 − � + sin ωt

|� + sin ωt |
]

+ 1

2
arctan

(
ω

cos ωt

� + sin ωt

)
, (85)

where the TB-VB parameter �, which is assumed to be
positive, ranges from 2h√

�
to ∞ (for a physical meaning). The

TB and VB modes and the TB-VB transition are predicted
as functions of the control parameter �. If 2h√

�
� � < 1 we

have the TB regime, whereas if � � 1 the VB regime occurs.
Our results allow us to locate the border separating the TB
and VB regimes, or the TB-VB transition. This occurs if
� = 1. In this case the vesicle momentarily attains a circular
shape in the shear plane. In addition, the present results are
used to evaluate the VB angular amplitude and to recover the
KS solutions in the shape-preserving limit, or equivalently
� = 2h√

�
. The exact closed solutions may provide a more

elegant and simple way of analyzing the apparent viscosity
of a dilute suspension of vesicles as well as the normal stress
effects. These questions are currently under investigation.
Finally, the present results can be used in order to reexamine
the incompressible capsule model considered recently [21,23],
where the evolution equations reduce exactly to system (1)
when the shear elasticity is set equal to zero. Thus, our
present solutions can be used as a starting basic solution, in
order to treat the elasticity effect perturbatively. Similarly, the
present solutions can be used in order to study systems of
vesicle evolution equations that take into account higher-order
terms [15,16].
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