
PHYSICAL REVIEW E 86, 051914 (2012)

Doubly stochastic coherence in complex neuronal networks
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A system composed of coupled FitzHugh-Nagumo neurons with various topological structures is investigated
under the co-presence of two independently additive and multiplicative Gaussian white noises, in which particular
attention is paid to the neuronal networks spiking regularity. As the additive noise intensity and the multiplicative
noise intensity are simultaneously adjusted to optimal values, the temporal periodicity of the output of the
system reaches the maximum, indicating the occurrence of doubly stochastic coherence. The network topology
randomness exerts different influences on the temporal coherence of the spiking oscillation for dissimilar coupling
strength regimes. At a small coupling strength, the spiking regularity shows nearly no difference in the regular,
small-world, and completely random networks. At an intermediate coupling strength, the temporal periodicity in
a small-world neuronal network can be improved slightly by adding a small fraction of long-range connections.
At a large coupling strength, the dynamical behavior of the neurons completely loses the resonance property with
regard to the additive noise intensity or the multiplicative noise intensity, and the spiking regularity decreases
considerably with the increase of the network topology randomness. The network topology randomness plays
more of a depressed role than a favorable role in improving the temporal coherence of the spiking oscillation in
the neuronal network research study.
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I. INTRODUCTION

Neurons are the fundamental units of our brain and
various neuronal systems and they engage in complex and
efficient signal-processing operations. A neuronal population
can be modeled as a network or graph, where the nodes
and edges represent specific neurons and interactions between
them, respectively. Previous research analysis has shown that
anatomical and functional brain networks [1–4] as well as
corticocortical connections in the macaque and cat [5,6]
exhibit a small-world topology [7]. So far, a wide variety of
dynamical behaviors in small-world neural networks [8–13]
have been investigated intensively. For instance, it has been
demonstrated that networks of Hodgkin-Huxley neurons with
small-world topologies give rise to a fast system response with
coherent oscillations [9]. Economic small worlds are efficient
in propagating information both on a local and global scale
[10]. A noisy small-world neuronal network with delay and
diversity can induce fruitful synchronization transitions [12]. A
dominant phase-advanced driving method has been proposed
to reveal the self-sustained oscillations of target waves in
excitable small-world networks [13]. All these studies imply
that the dynamics of a neuronal network is closely connected
with its structure.

Noise is present inevitably in real signal transmission
and transduction and constitutes a significant component of
neural activity. It has been documented that sometimes noise
can have constructive effects on the dynamical behaviors of
neuronal systems. A couple of examples include noise-induced
pattern formation [14,15], noise-induced phase transition to
excitability [16], as well as noise-sustained and controlled
synchronization [17]. In particular, the phenomena of stochas-
tic resonance (SR) [18] and coherence resonance (CR) [19]
have been studied extensively in individual neurons, single
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neural networks, and coupled neural networks. The evidence
has shown that noise can help the sensory mechanoreceptors
of crayfish detect a very weak water movement of about 10 nm
[20]. Human sensory perception can be improved considerably
by means of SR [21]. Experimental evidence of CR has been
reported in the cat’s anesthetized system [22]. The spatial
coherence resonance has been studied in neuronal media which
is locally modeled by a two-dimensional iterated map [23].
The occurrence of multiple stochastic resonances [24,25] and
multiple coherence resonances have been demonstrated also
in neuronal networks [26].

Sensory neurons transform signals from the environment
into trains of spike that propagate to other structures in the
neural system. Whether neurons can quickly and efficiently
transmit signals depends on the spiking regularity to a great
extent. Therefore, various excitable neuron models have been
proposed to investigate the spiking activity of a neuron,
among them FitzHugh-Nagumo (FHN) model [27] serving
as a paradigm due to its simplicity and capturing the salient
features of the neuron dynamics. The effect of CR has
been demonstrated in the single FHN neuron [19] and in a
heterogeneous array of coupled FHN neurons [28]. Spiking
behavior combining oscillatory and excitable properties has
also been studied in a noise-driven FHN neuron system [29].
Furthermore, doubly stochastic coherence (DSC), a type of
stochastic resonancelike behavior, has been observed in an
asymmetrically bistable FHN model under the joint action of
multiplicative and additive noises [30]. Actually, many sys-
tems, especially neurobiological systems, are subject to addi-
tive noise and multiplicative noise simultaneously, and thus the
DSC phenomenon could be of importance for understanding
the mechanism of coherence motion in neural and biological
systems.

In this paper, we also examine the DSC phenomenon in
systems of coupled FHN neurons with different topologies.
It is discovered that DSC can occur in the regular, small-
world, and completely random neuronal networks at weak and

051914-11539-3755/2012/86(5)/051914(10) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.86.051914


YANG GAO AND JIANJUN WANG PHYSICAL REVIEW E 86, 051914 (2012)

moderate coupling between individual neurons. Moreover, the
temporal coherence of the excitable system can be enhanced
only to a very limited extent by optimizing the additive noise
intensity, the multiplicative noise intensity, and the topological
randomness simultaneously. At a large coupling, the spiking
regularity completely loses the resonance characteristic with
regard to the additive noise intensity or the multiplicative noise
intensity, as well as decreases with an increase of the disorder
of the network topological structure.

II. MODEL AND METHODS

The model employed here consists of an array of FHN neu-
rons in which a small-world network topology is constructed as
follows. First, a regular lattice is considered which comprises
N (N = 100) identical FHN neurons. Each neuron connects
to its k (k = 4) nearest neighbors. Next, each local link is
visited once and, with the rewiring probability p, removed and
reconnected to a randomly chosen neuron. The limit cases of
regularity and complete randomness are for p = 0 and p = 1,
respectively, and the small-world topology lies somewhere in
the intermediate region 0 < p < 1. It should be noted that
many network realizations exist for a given p.

The dynamics of a single FHN neuron can be described by
the following equations:

ε
dx

dt
= x(1 − x)(x − a) − y, (1)

dy

dt
= bx − y − xyξ (t) + ζ (t), (2)

where x(t) is a fast voltage variable representing the mem-
brane voltage of the neuron, and y(t) is a slow recovery
variable relating to the time-dependent conductance of the
potassium channels in the membrane. The time constant ε

determines the speed of the firing process. ξ (t) and ζ (t)
are the mutually uncorrelated multiplicative and additive
Gaussian noises with zero mean and correlations 〈ξ (t)ξ (t ′)〉 =
2Dmδ(t − t ′) and 〈ζ (t)ζ (t ′)〉 = 2Daδ(t − t ′). Dm and Da are
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FIG. 1. Nullcline plot of the FHN model. Dashed line: x nullcline
(ẋ = 0). Solid lines: y nullclines (ẏ = 0) for three different multi-
plicative noise intensities: Dm = 0 (curve 1), Dm = 0.25 (curve 2),
and Dm = 0.5 (curve 3). The additive noise intensity is Da = 0.014;
other parameters are given in the text.
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FIG. 2. (a)–(c) The time series of x for the corresponding
parameters in curves 1, 2, and 3 of Fig. 1.

the strength of ξ (t) and ζ (t), respectively. The parameters are
a = 0.15, b = 0.12, and ε = 0.01. Here all the quantities are
dimensionless.

For a single deterministic FHN neuron, there are two stable
fixed points with different stabilities (see curve 1 and its
crossing points with the x nullcline in Fig. 1). As the role
of multiplicative noise is to adjust the symmetric response
of the system and additive noise is responsible for causing
jumps between the two stable steady states [30], the stabilities
of the two states are almost the same for an intermediate
multiplicative noise intensity (see curve 2 in Fig. 1), but are
quite different for a large multiplicative noise strength (see
curves 3 in Fig. 1). Figures 2(a)–2(c) show the time series
of x for the corresponding parameters in curves 1, 2, and
3 of Fig. 1, respectively. The time series are obtained from
numerical integration of the stochastic differential equations
(1) and (2) using the Euler scheme with a fixed time step
of 0.002. It can be seen that for both zero and a large value
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FIG. 3. The coherence factor R vs the multiplicative noise
intensity Dm and the additive noise intensity Da (inset plot). Da =
0.02 and Dm = 0.25, respectively. The rewiring probability p = 0.1,
and the coupling strength g = 0.01.
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FIG. 4. The coherence factor R against the additive noise intensity Da at different multiplicative noise strengths Dm with (a) p = 0,
(b) p = 0.05, (c) p = 0.5, and (d) p = 1.0. The coupling strength is g = 0.001.
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FIG. 5. The coherence factor R against the additive noise intensity Da at different multiplicative noise strengths Dm with (a) p = 0,
(b) p = 0.05, (c) p = 0.5, and (d) p = 1.0. The coupling strength is g = 0.01.
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of Dm, the system spends more time in the upper and lower
states, respectively, while for the moderate multiplicative noise
intensity, the system spends almost equal time in the two states,
and the oscillation in the time series seems to be more regular
compared to the two cases above.

The differential equations describing the neurons in a
coupled network are given by

ε
dxi

dt
= xi(1 − xi)(xi − a) − yi + gij

2
(xj − xi), (3)

dyi

dt
= bxi − yi − xyξi(t) + ζi(t). (4)

Here i and j running from 1 to N are the numbers of the
neurons. gij is the coupling parameter between the two neurons
i and j , and its value is determined by the coupling pattern of
the system. If these two neurons are coupled to each other, gij

is a determinate value g; otherwise, gij = 0.
To characterize the temporal coherence of the oscillation

in a neuron quantitatively, the coherence factor Ri [19] of the
variable xi is obtained by the following formula:

Ri =
√

var (Tk)

〈Tk〉 . (5)

The meaning of Tk is illustrated in Fig. 2(a). R can be inter-
preted, in the context of stochastic resonance terminology, as
the signal-to-noise ratio (SNR) [19]. A smaller Ri corresponds
to a better coherence. Here we focus on the collective behavior

of the network and measure the average factor R,

R = [〈Ri〉] , (6)

where 〈·〉stands for the average of all the neurons and [·]
denotes averaging over 30 different network realizations for
each p.

III. RESULTS AND DISCUSSIONS

Figure 3 and its inset show that increasing the multiplicative
noise intensity Dm or the additive noise intensity Da first
increases then suppresses the temporal coherence of the output
(the value of R initially decreases then increases). In other
words, when the intensity of either of the two noises is fixed,
the other one induces a favorable temporal coherence of the
oscillation with a suitable strength. No doubt there could exist
an optimal set of multiplicative noise intensity and additive
noise intensity which corresponds to the best regularity in the
system oscillation, which is the origin of doubly stochastic
coherence.

Figures 4(a)–4(d) plot the coherence factor R against the
additive noise intensity Da achieved at different multiplicative
noise strengths Dm and rewiring probabilities p when the
coupling strength between the units is weak (g = 0.001).
It can be observed that R in all the curves first decreases
and then increases with an increase of Da , implying the
occurrence of CR. The maximal coherence factor of each curve
is signed by Ropt1, and the noise intensity at Ropt1 is called the
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FIG. 6. The coherence factor R against the additive noise intensity Da at different multiplicative noise strengths Dm with (a) p = 0,
(b) p = 0.05, (c) p = 0.5, and (d) p = 1.0. The coupling strength is g = 0.05.
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optimal additive noise intensity Dopt1. Both Ropt1 and Dopt1

are the smallest at Dm = 0.4 in each plot of Fig. 4, indicating
that, regardless of the rewiring probability p, there exists an
identical optimal multiplicative noise level at which the most
ordered oscillation can be induced by the weakest additive
noise. Similar results are obtained for g = 0.005 and the
corresponding figures are omitted. The plots in Fig. 5 illustrate
two different cases of R vs Da when the coupling strength
increases to 0.01. For a regular neuronal network (p = 0), the
phenomenon of CR will occur regardless of the value of Dm.
However, when the rewiring probability p is nonzero, only
for the smaller multiplicative noise strengths (Dm = 0.15, 0.2,
and 0.25), the R-Da curves present a typical CR characteristic;
otherwise, R nearly rises monotonously with increasing Da

at a fixed Dm. The dynamical behavior of the neurons at
g = 0.05 completely loses the CR property, instead showing
the “anticoherence resonance” feature whether the neurons are
in one of the networks with regular, small-world, or completely
random topologies. As depicted in the plots of Fig. 6, each
curve of R against Da has a maximum which represents the
worst temporal coherence.

Figures 7–9 show how the coherence factor R changes
with the multiplicative noise intensity Dm at different additive
noise strengths Da and rewiring probabilities p for the
corresponding coupling strengths in Figs. 4–6, respectively.
When g = 0.001, except at Da = 0.04 and 0.05 where the
value of R has a low dependence on Dm, there is a smallest R

value in each R-Dm curve at other additive noise intensities.
Here the minimum of R is marked as Ropt2, and the noise

intensity at Ropt2 is termed the optimal multiplicative noise
intensity Dopt2. It can be clearly observed from the plots of
Fig. 7 that the optimal level of the additive noise is Da = 0.015.
When g increases to 0.01, the collective behaviors of the
neuronal networks are basically the same as g = 0.001, with
just the value of the optimal additive noise intensity being
slightly smaller (Da = 0.0125). In the case of g = 0.05, the
coherence factor R as a function of Dm differs from those
at the other coupling intensities. Only a few curves in Fig. 9
can display an observable CR characteristic, such as that for
p = 1.0 and Da = 0.175, and the phenomenon of coherence
resonance nearly disappears in most cases.

As discussed above, the temporal periodicity of the col-
lective oscillation can present a typical CR characteristic
with regard to the additive or multiplicative noise intensity
in the cases with smaller coupling strength. Therefore, the
phenomenon of doubly stochastic coherence can appear only
at weak or moderate coupling between individual neurons.
The counter plots of R for various Da and Dm in Fig. 10
distinctly show the DSC behavior in the regular, small-world,
and completely random neuronal networks, respectively. Here
the coupling strength g = 0.01 is taken as an example. The
DSC region seems to decrease alongside the increase of the
disorder degree of the network.

The research focused extensively on the effects of the
network topological structure on the dynamical property
of the system. Figures 11 and 12 display separately the
dependence of R on Da and Dm achieved at various network
randomnesses. The selected fixed multiplicative or additive
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FIG. 7. The coherence factor R against the multiplicative noise intensity Dm at different additive noise strengths Da with (a) p = 0,
(b) p = 0.05, (c) p = 0.5, and (d) p = 1.0. The coupling strength is g = 0.001.
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(b) p = 0.05, (c) p = 0.5, and (d) p = 1.0. The coupling strength is g = 0.01.

noise intensities are Dm = 0.2, 0.4, 0.8 and Da = 0.015,
0.025, 0.05, respectively. The solid, dashed, and dotted lines
in each plot denote the cases of different coupling strengths.
When g = 0.001, the curves at different rewiring probabilities
in Fig. 11 almost overlap regardless of the value of Dm,
indicating that the influence of the network topology on
the system’s dynamical behavior is meager at such a weak
coupling. In these cases, each neuron is almost independent
and behaves as if it is isolated, so the topological structure
has little influence on the temporal coherence of the system’s
oscillation. When g increases to 0.01, although the change of
Ropt1 with the increase of p is not very obvious at Dm = 0.2,
one can still discern that the smallest value of Ropt1 appears
at p = 0.1 from Fig. 11(a) [see the inset in Fig. 11(a) for a
clearer view], implying that the increment of the disorder of
the network topological structure plays some positive role in
enhancing CR and there is an optimal rewiring probability
around p = 0.1. As for the cases of Dm = 0.4 and Dm = 0.8,
the dependence of R on p is a bit strong when Da is small,
while this dependency weakens at large Da . Furthermore, no
coherence resonance phenomenon happens in these two cases
except in the regular network at Dm = 0.4. When the coupling
strength increases further to g = 0.05, the phenomenon of
“anticoherence resonance” instead of coherence resonance
appears in the networks. Moreover, increasing the randomness
of the network suppresses the spiking regularity of the neurons,
and the coherent factor R rises as the rewiring probability
p increases on the whole when all the other parameters are

fixed. In our previous studies on CR of coupled neuronal
systems it has been found that at a strong coupling the
coherence motion is depressed with the increment of long-
range connections [31,32], and a similar result is obtained
here.

The effect law of the network topology on the dynamical
behavior of the neuronal system in Fig. 12 is similar to the
findings shown in Fig. 11. Increasing the network topology
randomness has a little, limitedly positive, or considerably
adverse impact on the enhancement of the spiking regularity
of the neuronal network at weak, intermediate, or strong
couplings, respectively. Furthermore, when comparing the
curves of R-Da or R-Dm in different line styles in each plot
of Figs. 11 and 12, it can be obvious to find that g = 0.01
is a favorable coupling strength. R vs Da and R vs Dm at
different g are plotted in Figs. 13(a) and 13(b), respectively,
where p = 0.05 is taken as an example. It can be seen that
both Ropt1 and Ropt2 have the smallest values at g = 0.01,
which further assures that g = 0.01 is the optimal coupling
strength.

In prior work it has been established that long-range connec-
tions are favorable for the emergence of temporal coherence.
For example, the random connectivity of the networks may
induce improvement in both temporal stochastic resonance
and spatial synchronization of the bistable oscillators [33].
In the coupled Hodgkin-Huxley neurons, there are optimal
random shortcuts where the collective spike coherence and the
individual one conduct the best temporal coherence [34]. Only
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FIG. 9. The coherence factor R against the multiplicative noise intensity Dm at different additive noise strengths Da with (a) p = 0,
(b) p = 0.05, (c) p = 0.5, and (d) p = 1.0. The coupling strength is g = 0.05.

for intermediate coupling strengths is the small-world property
able to improve the stochastic resonance [35] and the coher-
ence resonance [36] in the excitable small-world networks. The
stochastic resonance on a Newman-watts network of Hodgkin-
Huxley neurons with local periodic driving can be further
amplified via fine tuning of the small-world network structure
[37]. Here it is also found that doubly stochastic coherence
of the neuronal network can be enhanced by introducing
long-range connections into the system. Usually a small-world
network is characterized by two main properties: That is, it has
a large clustering coefficient as a regular network, while at the
same time having a short characteristic path length similar to
a completely random network. The clustering coefficient is
defined as the extent to which nodes connected to any node
in a network are connected to each other. The characteristic
path length represents the number of edges in the shortest path
between two nodes of a network, averaged over all node pairs.
So in a small-world neuronal network, each neuron may have
more “close neighbors,” and its signals will propagate more
quickly to a larger number, leading to an increase of the spiking
coherence.

However, it should be noted that compared with the
previous results, the advantage of small-world topology on
the improvement of the temporal coherence has been reduced
greatly in this study. Especially in the case of strong coupling,
the spiking regularity in the neurons is destroyed as the
randomness of the network topology increases, and the res-
onance property in the system no longer exists. Interestingly,

it has been demonstrated that small-world network topology
suppresses spatial coherence [38–40]. Here, combining the
viewpoints of Zaikin et al. [30] and Perc [40], the phenomenon
above might be understood in this way: The additive noise can
be more effective in producing temporal coherence if only
an optimal level of multiplicative noise induces a symmetric
bistable state in a neuron. In a regular network, each neuron
connects to its nearest four neighbors by undirected edges,
and the coupling strength between two coupled neurons is
identical. The symmetric response in a neuron is mainly
influenced by the multiplicative noise injected into it and
the coupling strength. Therefore, the DSC phenomenon can
usually occur in a regular coupled network provided that the
multiplicative noise level is suitable and the coupling strength
is not too large. At a strong coupling, all neurons tend to
behave as a single one, and it is difficult to induce resonance
phenomenon for “a single neuron” subjected to no less than
100 additive or multiplicative noise sources, just as it is shown
in Figs. 6(a) and 9(a). In a small-world network, although the
total number of connections remains constant regardless of
the rewiring probability, the number of connections of each
neuron could be very different from one another as if the
coupling between neurons varies from unit to unit; this to some
extent disrupts the spatial bistable state of the excitable system.
Thus, in general, the regularity of the spiking oscillation in a
small-world network does not show any advantage over that
in a regular network, or even if there is some advantage, it is
rather limited.
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FIG. 10. The counter plots of the coherence factor R vs the
additive noise intensity Da and the multiplicative noise intensity Dm

(lighter gray corresponds to a smaller value of R) with (a) p = 0,
(b) p = 0.1, and (c) p = 1.0. The coupling strength is g = 0.01.

IV. SUMMARY

In this paper, numerical simulations are presented for
the collective dynamical behavior of an array of coupled
FitzHugh-Nagumo neurons with various topological struc-
tures. Each neuron is subjected to two independently additive
and multiplicative sources of noise. The results show that
the spiking regularity of the network can be maximized by
simultaneously optimizing the additive noise intensity Da and
the multiplicative noise intensity Dm, indicating the occurrence
of doubly stochastic coherence. The temporal coherence of the
spiking oscillation in the system has a strong dependence on
the coupling between neurons. The phenomenon of doubly
stochastic coherence can fully surface only when the coupling
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FIG. 11. The coherence factor R vs the additive noise intensity Da

at different rewiring probabilities p with (a) Dm = 0.2, (b) Dm = 0.4,
and (c) Dm = 0.8. The solid, dashed, and dotted lines denote the cases
of coupling strength g = 0.001, 0.01, and 0.05, respectively.

remains at a smaller strength level. As the coupling strength
is large, there is the threat of totally losing the coherence
resonance property with regard to Da or Dm. The network
topological structure exerts dissimilar influences on the spiking
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FIG. 12. The coherence factor R vs the multiplicative noise
intensity Dm at different rewiring probabilities p with (a) Da = 0.015,
(b) Da = 0.025, and (c) Da = 0.05. The dotted, dashed, and solid
lines denote the cases of coupling strength g = 0.001, 0.01, and 0.05,
respectively.

regularity for various coupling strength regimes. At a low
coupling strength, the temporal coherence shows almost no
difference in the regular, small-world, and completely random
networks. At an intermediate coupling strength, the temporal
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FIG. 13. (a) The coherence factor R vs the additive noise intensity
Da and (b) the coherence factor R vs the multiplicative noise intensity
Dm at different coupling strengths g. The rewiring probability is
p = 0.5.

coherence in a small-world neuronal network can be improved
by adding a small fraction of long-range connections; however,
the enhancement degree is very limited even if all the control
parameters are adjusted to optimum performance. At a large
coupling strength, the regularity of the collective oscillation
is considerably decreased with an increase of the network
topology randomness. In general, the small-world network
topology plays more of a negative rather than a positive role in
improving the temporal coherence of the spiking oscillation in
our neuronal network. The basic reason for this situation could
be that the long-range connections have a favorable effect on
the temporal noise-induced coherence but a destructive impact
on the spatial symmetry of the bistable state. Good symmetry
of the two stable steady states is just the precondition for
producing favorable temporal coherence.

Furthermore, the dynamics of the coupled neuronal en-
sembles are synchronous in the research. In fact, there exist
time delays as neurons communicate and transmit information
to each other. Recent studies have shown that temporal delays
have negative effects on the coherence of noise-induced spatial
dynamics on small-world neuronal networks [41,42]. The
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question to ask is how this will affect the dynamics of the used
model in terms of time delays by the small-world topology
and what the degree of the effect is. Further research will be
made along such a direction and some different phenomena
are expected to be uncovered.
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