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We discuss generalizations of a previously published coarse-grained description [Mergell et al., Phys. Rev. E
68, 021911 (2003)] of double stranded DNA (dsDNA). The model is defined at the base-pair level and includes
the electrostatic repulsion between neighbor helices. We show that the model reproduces mechanical and elastic
properties of several DNA nanostructures (DNA origamis). We also show that electrostatic interactions are
necessary to reproduce atomic force microscopy measurements on planar DNA origamis.
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I. INTRODUCTION

DNA nanostructures are emblematic self-organizing
molecular systems exhibiting a wealth of applications, from
which plain functionalized templates, computing nanoma-
chines, and robots can be designed. Mixing different kinds
of short strands may lead to rather different structures such
as large ribbons [1], polyhedra [2,3] and two-dimensional
lattices [4]. Using the strategy that leads to the so-called
DNA origamis [5] (one very long strand folded with the
help of a family of short strands), a large variety of two- and
three-dimensional [6–8] constructions could also be obtained.
In both cases, the robustness and high yield of the process
relies on the unique selectivity of DNA base pairing.

Here, we want to modelize mechanical properties of DNA
based origamis (oDNA). A detailed, atomic level description of
such structures is clearly beyond the reach of current comput-
ing capabilities. Instead, we want to develop a coarse-grained
description that relies on the vast corpus of experimental data
acquired in the last twenty years to describe the nanomechani-
cal properties of individual DNA molecules [9–13]. Two types
of models are usually invoked to explain these single molecule
experiments. Models that work at the base level [14–17]
describe the energetics of stacking of neighboring base pairs
as a function of geometric parameters such as twist, rise,
slide, or roll. Recently, slightly more detailed models achieved
significant progress in the description of dynamical processes,
such as strand displacement [18].

Continuous models, such as the wormlike chain model
(WLC) [19,20], work at scales larger than the helical pitch.
Variations of the WLC model describe accurately not only the
mechanical properties of single DNA molecules [21] but also
biologically relevant phenomena such as supercoiling [22,23]
or the wrapping around histone proteins [24]. Compared to
these studies, the modeling of DNA based nanostructures,
such as planar or 3D origamis, is still in development. First
studies [25–27] focused on simple mechanical models where
helices are replaced by homogeneous cylinders with the same
bending rigidity as dsDNA. As DNA origamis are made of
helix bundles interconnected with Holliday-like connections,
additional links between the cylinders need to be introduced.
References [25–27] describe how such connections can be
described by continuous models. More recently, Monte Carlo
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simulations of wormlike chains have been shown to accurately
describe the bending and torsional rigidities of helix bundles
as measured by magnetic tweezers [28]. The same authors
also considered finite-element-method simulations of the same
helix bundle and showed almost quantitative agreement with
the experimental data. Reference [29] considers a finite-
element representation of DNA origamis, where each base pair
corresponds to a two-node element with appropriate elastic
characteristics (bending, stretching, and torsion). The authors
successfully compare static and thermal fluctuations to TEM
observations. It should be pointed out that none of these models
of DNA origamis includes electrostatic interactions.

The purpose of the present work is to adapt an existing
coarse-grained model of DNA [30] in order to model DNA
origamis at the level of individual base pairs. We wish to obtain
the mechanical properties (such as the persistence length of the
origami) as a consequence of this modeling, and not as free
parameters to be adjusted in the model. It is also expected
that more accurate experimental characterizations of DNA
origamis will point to the limits of continuous mechanical
models such as [29]. Figure 1 illustrates this point. It shows an
atomic force microscopy (AFM) image of the Rothemund’s
rectangular origami, deposited on mica and imaged in buffer
solution. This image does not show an array of straight
cylinders. Instead, helices in the assembled structures seem to
bend gently to meet at crossovers as [31] suggests for similar
structures. We show in the following that this deformation of
the helices cannot be explained by a purely mechanical model
and that electrostatic repulsion is needed.

The rest of the paper is organized as follows. In Sec. II, we
describe the model and the algorithmic details. In Sec. III, we
test the twist and electrostatic parameters against experimental
data. In Sec. IV, we consider the measurement of the
persistence length for several structures formed by bundles of
DNA helices. In the last section some conclusions are drawn.

II. MODEL OF STACKED PLATES

A. Energy model

This section describes the basic ingredients of the “stack of
plates” (SOP) model of dsDNA, as developed in Ref. [30].
In the SOP model, one dsDNA helix is modelled as a
set of stacked objects with ellipsoidal shape; each ellipsoid
represents a pair of bases. Indeed, as shown by Lavery and
co-workers [32], base pairs effectively behave as rigid objects.
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FIG. 1. (Color online) (a) AFM imaging of a rectangular origami, (b) section of the AFM picture, (c) schematic representation of the
dsDNA strands as measured by AFM.

The sugar-phosphate bonds between bases are modelled as
elastic springs. An illustration of the coarse-graining procedure
is given in Fig. 2. The helical pattern observed in dsDNA can
be understood as a compromise between the contradictory
requirements of minimizing both the spring energy (equi-
librium length 6 Å) and the stacking energy (minimum at
3.3 Å). The resulting average rotation between successive base
pairs is close to 36◦. A fine tuning of this parameter will be
discussed below, as its precise value can be of importance in
the modeling of DNA origamis. This model is a coarse-grained
one: there is no difference between small and large grooves.
Also, the model does not differentiate between left and right
handed helices (this requires left handed configurations to be
rejected in the sampling; see below). The reader is directed
to Ref. [30] for the precise form of the interactions between
plates and the values of the different parameters of the model.
As discussed in Ref. [30], the SOP model is quite accurate in
describing the mechanical properties of dsDNA—in particular
the force-elongation characteristics.

The original SOP model does not include interactions
between different strands. To take them into account, we
add an interaction of excluded volume between strands: any
configuration with negative distance between ellipses that
belongs to different DNA strands is rejected. The function used
to evaluate the distance between ellipses is an approximation
of the exact expression [30]. However, this excluded volume
interaction is not enough to reproduce the AFM measurements
illustrated in Fig. 1.

Because each phosphate group bears a negative charge,
electrostatic interactions between neighbor helices need to
be taken into account (the intrastrand electrostatic interac-
tion is effectively included in the spring contribution). The
electrostatic interaction between dsDNA molecules has been
the subject of an important number of experimental and
theoretical work. A summary and extensive bibliography can
be found in Ref. [33]. These interactions bring into play
counterions. Depending on their charge and size, interactions
between DNA helices can range from repulsive (single charged
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(a)

(d)

(b) (c)

FIG. 2. (Color online) Representation of the different levels of
description for a small origami, made of three single strands of
DNA, noted respectively B1, B2, and B3. (a) Scheme showing the
connectivity of the ensemble: both B1 and B2 bind to B3 (the
scaffold), B1 binds to two noncontiguous subsets of B3. (b) SOP
representation of this construction. Ellipses (in gray) representing
base pairs are connected by springs (corresponding to the sugar-
phosphate backbone, represented by cylinders). (c) Atomistic (ball
and stick) representation. A ribbon has been superimposed to the
sugar-phosphate backbone. (d) Zoom of the crossover region.

ions) to attractive (DNA condensation in the presence of
multivalent ions). The situation is particularly confusing for

magnesium, the counterion usually present in DNA origami
experiments. For instance, molecular dynamics simulations
[34] and small-angle x-ray scattering experiments [35] show
that short DNA fragments (tens of base pairs) attract in a
MgCl2 electrolyte. Under different experimental conditions
but always with Mg, other experiments do not show DNA
condensation. Molecular dynamics simulations [34] show that
parallel neighbor helices orient in such a way that a Mg ion
bridges two opposing phosphates, resulting in an attractive
interaction. Such situations are not likely to happen in DNA
origamis. Contrarily to the usual experiments where DNA
double helices are free to rotate one with respect to the
other, in DNA origamis the crossovers determine the relative
orientation of neighbor helices. Therefore, in the following
we will adopt a simple modeling of electrostatics, placing a
negative charge at each phosphate location (two extremities
of the ellipsoid) and assuming that the effect of counterions
is taken into account by a Debye type screening. This model
rules out any counterion correlation contribution and leads to
the repulsive interaction

ESC(r) = e−r/λD (T ) q2

4πε0εr (T )r
, (1)

where

λD(T ) =
(

ε0εr (T )kBT

c0q2
c

)1/2

is the Debye length at temperature T in the presence of a
concentration c0 of counterions with charge qc in a medium
characterized by a dielectric constant ε0εr (T ). kB denotes the
Boltzmann constant.

B. Monte-Carlo sampling

Once an energy model has been defined, the sampling
method of the space configuration needs to be defined. We
used Monte Carlo sampling [36] with the usual Metropolis
criterion to sample the configuration space defined by the

FIG. 3. (Color online) Illustration of the global Monte Carlo moves used in this paper. The structure before the move is made of two parallel
straight helices linked by nine crossovers. (a) The structure after a pivot move. Panels (b) and (c) illustrate the structure after application of a crank-
shaft move to the structure in (a). For this move, two randomly selected bases (noted α and α′) define an axis of rotation. (b) Side view, (c) top view.
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FIG. 4. (Color online) Structure of the (a) 2-oDNA(298) and (c) 3-oDNA(298) structures. Panels (b) and (d) are alternative schematic
representations of respectively the 2-oDNA(298) and 3-oDNA(298) structures that highlight the topology of the crossovers. Each color
corresponds to a different staple.

SOP model. Besides the local moves (translation and rotation
of individual ellipsoids), we also considered “global” moves,
namely pivot and crank-shaft moves. In the SOP model, the
orientation of each base pair (ellipsoid) α is characterized
by three unit vectors (t(α),b(α),n(α)), t(α) being the normal
vector to the plane containing each base pair. Let us denote
r(α) as the center of mass of base pair α. In a pivot move, a
base pair α is chosen randomly, as well as an angle and axis
of rotation, the latter being in the plane spanned by b(α) and
n(α). The base pairs of the structure are then either located on
one or the other side of this plane [considered to be centered
at r(α)]. The same rotation is then applied to all the bases
located on one side of this plane. An example of such a move
is illustrated in Fig. 3(a).

In a crank-shaft move [Figs. 3(b) and 3(c)], two bases α

and α′ are chosen randomly. A rotation of random amplitude
around the axis defined by (r(α),r(α′)) is applied to all the base
pairs located between α and α′. The parameters of the Monte
Carlo sampling (for instance, the maximum amplitude of the
translations or the rotations) are chosen so that an average 40%
acceptance ratio is obtained.

C. Umbrella sampling

In order to check the reliability of the model, we also
considered equilibrium simulations under constraint. These are
intended to mimic experimental situations (magnetic tweezers)
where characteristics such as the distance between the opposite
sides of the oDNA are constrained to a fixed value. To this end,
we used umbrella sampling simulations [37,38].

The umbrella sampling allows the exploration of a re-
strained part of the phase space by rejecting moves that lead
to configurations outside this region. This amounts to adding
an “umbrella potential” that biases the Monte Carlo trajectory
to sample only the configurations of interest. In this paper, we
will consider the behavior of origami structures as a function

FIG. 5. (Color online) Structure of a 4-oDNA(298) after 106 MC
steps (Sim 1).

of their end to end distance (Ree). A standard Metropolis
algorithm would typically explore configurations with an end
to end distance Ree ∼ R

eq
ee close to the equilibrium value. To

explore the structure behavior for other values of Ree, let us
say Ree ∈ [l,l + dl], the umbrella sampling (i) generates initial
configurations in this interval and (ii) runs the usual Metropolis
algorithm rejecting configurations outside the interval. We
obtain in this way the probability distribution of having a
given end to end distance Ree in a specific interval [37].
The free energy can be computed as βA (Ree ∈ [l; l + dl]) =
−ln[p(Ree)] + cst(l), with β = 1/kBT . The additive constant
cst(l) copes with the fact that the probabilities p(Ree)
are normalized with respect to the interval [l; l + dl]: the
free energy is known up to an additive constant. If the same
algorithm is applied for a set of overlapping intervals, the
constant cst(l) can be determined by continuity and the total
free energy can be computed. In order to have a good sampling
in each interval, its size dl has to be chosen carefully. If the
energy in the interval [l; l + dl] presents large variations, a
limited sampling will explore only a small part of the interval.
This is due to the Monte Carlo (MC) method of sampling that
will spend most of the simulation with configurations having
∼NdkBT of energy higher than the lowest energy, where Nd

is the number of degrees of freedom of the system. Thus, the
size of the interval needs to be chosen such as the maximum
variation in energy of the interval is not superior to NdkBT .

III. TEST OF THE TWIST AND ELECTROSTATIC
PARAMETERS

A. Twist parameter

In natural B-DNA, the twist between successive pairs of
basis is slightly dependent on the sequence of bases [39]. The
mean value obtained from crystallographic data of B-DNA
structures is 35.45◦. In the SOP model, the original parameters
[30] give a mean value of the twist (Tw) 35.35◦, very close to
the experimental value. This value results from an equilibrium
between the equilibrium length of the bond representing the
phosphate backbone (6 Å) and the distance of minimal energy
between ellipses which imposes a center to center distance of
3.3 Å. An accurate modeling of the natural twist is particularly
important when dealing with oDNA. The design of these
structures is based on the idea that origamis are stable if,
locally, they preserve as much as possible the structure of
the B-DNA double helix. This constrains the locations where
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FIG. 6. (Color online) (a) Vectors T1 and T5 used to define the global twist of the structure, made here with n = 3 strands. (b) Evolution
of the global twist Twg for a 2-oDNA (298) structure in the three simulations Sim 1, Sim 2, and Sim 3. (c) Same data for a 3-oDNA(298)
structure. The sampling ratio is 2107 MC steps.

crossovers can take place. Let us denote TwD as the value of
the twist used to design the origami, and TwN as the natural
twist adopted by weakly interacting helices in solution. In
the Rothemund’s seminal work [5], structures were designed
with a twist TwD = 33.75◦. This allows 1.5 turns for 16 base
pairs, which simplifies the placement of the crossovers. But
this also imposes a constraint to the real structure: origamis
with TwD �= TwN are expected to be twisted in solution.
In Ref. [40], the authors made TEM measurements on 3D
compact oDNA structures, formed by stacked helices in
a cubic lattice. The observed structures only led to a flat
structure when assuming TwD = 34.48◦ or TwD = 34.65◦.
Other combinations, including the one with TwD = TwN , led
to twisted structures. This is surprising because nontwisted
structures formed by helices packed in a honeycomb lattice
have been observed with TwD = 10.5 bp/turn [7]. This could
be due to differences in the solvent characteristics (Mg
concentration, ionic strength).

In order to illustrate these considerations, we realized three
simulations on planar arrangements, noted n-oDNA(l), of n =
2,3,4, . . . helices with l base pairs each (cf. Figs. 4 and 5).
These simulations are characterized by different values for
the couples (TwN,TwD): Sim 1: TwN = 35.45◦ and TwD =
33.7◦; Sim 2: TwN = 34.48◦ and TwD = 33.7◦; Sim 3: TwN =
34.48◦ and TwD = 34.48◦.

TwN = 35.45◦ is the value obtained with the parameters of
Ref. [30]. TwN = 34.48◦ can be obtained in the SOP model
by changing the value of the bond’s equilibrium distance
from 6 Å(original value [30]) to 5.9 Å. The total length l

of the n-oDNA(l) structures cannot be varied freely because

the difference in orientations between the first and last base
pairs needs to be close to 180◦. Therefore, the total length
minimizes |lTwD − 180◦|mod(360◦). For Sim 1 and Sim 2,
this yields l = 315 and for Sim 3, l = 298.

Given a value of TwD , the positions of crossovers are
determined as follows. In n-oDNA(l) structures, a crossover
takes place every three helical turns. If the first base pair is
chosen as a reference, a base pair taking part in a crossover
must have the same orientation as the first base pair in order
to be able to connect to the neighbor helix. As a consequence,
the first crossover corresponds to the i1th base pair where
i1 minimizes |Tw0 + i1TwD − 1080◦|. In this expression, the
twist of the first base pair Tw0 is chosen equal to 10◦ for
convenience. More generally, the index in of the base pair that
forms the nth crossover minimizes δTc(n) = |Tw0 + inTwD −
n1080◦|.

In Sim 1 and Sim 2, as TwD = 33.7◦, the choice in = 32n

yields δTc(n) � 1◦. In Sim 3, the distances between crossovers
linking the first and second strand that minimize δTc(n) are 31,
31, 32, 31, 31, 32, 31, 31, 32. The location of the crossovers
between the second and third strands were computed in a
similar way.

Because we intend to compare our simulations to experi-
mental data involving this type of compact structures, we will
in the following adopt the value TwN = 34.48◦. Let us now
introduce a measure of the global twist. Let Ti be the vector
that links the ith base pair in the first row to the ith base pair
in the nth row (cf. Fig. 6 for an example representing T1 and
T5 with n = 3) and let α(Ti ,Ti+1) be the angle formed by
two successive Ti vectors. We define the global twist Twg of

FIG. 7. (Color online) In the absence of additional bonds, the combined effect of electrostatic repulsion and stacking attraction leads to
unstacking of base pairs (a). The zoom in (b) represents the electrostatic interactions as red (dashed) arrows, the stacking interactions as green
(continuous) arrows. (c) Extra liaisons added at the crossover are in green and red and framed by two circles.
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FIG. 8. (Color online) Distance between two neighbor strands as
a function of the position along the strand. A typical origami structure
is displayed below.

a n-oDNA(l) structure as the sum of the α(Ti ,Ti+1) angles
along the strand:

Twg =
l−1∑
i=1

α(Ti ,Ti+1). (2)

Notice that this definition of the global twist is only meaningful
if the twist fluctuations are more important in the direction
along the helix axis than in the perpendicular direction.
Figures 6(b) and 6(c) illustrate the results of the three
simulations Sim 1, Sim 2, and Sim 3. In Sim 1, it is expected
that Twg = 315(33.7 − 35.35)/360 = −1.37 turns. In Sim 2,
the expected value is −0.65 turns. Sim 3 has been designed
in purpose to obtain Twg = 0. The data in Fig. 6 confirm
these expectations. In the following, we will continue to
use TwD = TwN = 34.48◦ and denote the resulting planar
structures as n-oDNAp(l).

B. Electrostatic parameter

The distribution of charges along the DNA helix and the
resulting effective charge parameters have been studied by
many groups. In particular, several authors [35] suggest that
an attenuated effective charge should be used in simulations
of DNA. For DNA origamis, the situation is different. For
instance, if one refers to the simulations in Ref. [34], it is clear
that the presence of Mg can induce attraction between DNA
helices provided those are free to reorient one with respect
to the other. This is forbidden by the particular topology of
DNA origamis. This is the main reason to keep the modeling
of electrostatics as simple as possible: in the sequel, we
only consider purely repulsive interactions Eq. (1), with no
rescaling of the charges, the effect of the counterions being
taken into account only through the existence of a finite Debye
length that will be set to 10.5 Å.

With the introduction of the electrostatic interaction, a new
problem appears. We find that in a typical MC trajectory,
base pairs that participate in a crossover eventually become
unstacked, as illustrated in Fig. 7(a). The stacking as defined
in the original SOP model [30] is not attractive enough

FIG. 9. (Color online) Distance between two neighbor strands as
a function of the position along the strand. Comparison for three
values of the Debye length.

to overcome the electrostatic repulsion. This situation is
not found in more realistic, atom-based molecular dynamics
simulations [41]. Calorimetry experiments [42] also suggest
that such unstacking does not exist. To avoid the unstacking, we
added two extra bonds between the base pairs that participate in
a crossover, as illustrated in Fig. 7(c). These extra bonds have
the same strength as those of the sugar-phosphate backbone.

The distance between two neighbor strands, as a function
of the position along the strand, for several n-oDNAp(l)
structures, is given in Fig. 8. These values are obtained
as averages over eight independent simulations, each with
2 × 1010 MC steps. The maximum of this distance is reached
for the base pairs located halfway between the two crossovers
in the middle of the structure. This maximum decreases as
the number of strands increases, as the result of the combined
repulsions between different strands. It is remarkable that the
maximum distance found experimentally (3.9 nm) compares
so accurately with the maximum distance found in the Monte
Carlo simulations [4.1 nm for the 4-oDNAp(141) and 3.9 nm
for the 5-oDNAp(141)]. The influence of electrostatics is
clearly shown in Fig. 9, where the distance along the strands
is compared for two values of the Debye length, and in the
absence of electrostatics.

IV. PERSISTENCE LENGTH OF DNA ORIGAMIS

The previous section showed that the SOP model [30], with
additional electrostatic interactions and a slight modification of

FIG. 10. (Color online) The correlation between the tangent
vectors of a same strand as a function of the distance along the strand.
For each structure, the symbols represent the measured correlation,
the continuous lines represent the fitted data.
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FIG. 11. (Color online) Four structures with 141 base pairs each and different distribution of the junctions, respectively (a) 4 crossovers,
(b) 6, (c) 8, (d) 14. Notice that here we extend somewhat the notion of crossover to include the junctions at the ends.

the equilibrium length of the sugar-phosphate backbone, is able
to reproduce static properties, such as the characteristic sep-
aration between strands as observed in AFM measurements,
Fig. 1, and the absence of global twist for specific crossover
distributions. In this section, we want to push the comparison
further and compute the persistence length of DNA origamis.

A. Planar oDNA

For linear structures, the persistence length lp is usually
defined by the relation

〈t(j ) · t(k)〉 ∼ e−|j−k|/lp , (3)

where t(j ) is the tangent vector at the position j along
the thread. Implicitly, Eq. (3) assumes that the structure is
homogeneous along the strand. This is not the case for oDNA,
where the distances between crossovers constitute another
characteristic length. In order to compute lp, we coarse grain
the oDNA structure with reference to the ideal situation where
the base pairs Bij are located on a regular grid where lines
(index i corresponding to the dsDNA strands) and columns
(index j , in the direction perpendicular to the lines) can be
defined. The coarse graining is done in two steps. First, we
average the position of the center of the ellipses belonging to a
same column: B1

i = ∑
j Bi,j . In this way, a family of tangent

vectors τ 1
i = B1

i+1 − B1
i is obtained. Second, we average these

tangent vectors along the i coordinate: τ a
i = ∑l=i+δi

l=i−δi τ 1
l . This

averaged tangent vector field is used to compute the persistence
length for structures containing more than one dsDNA strand.

Let us first consider the variation of lp (Fig. 10) of
several n-oDNAp(141) structures as a function of the density
of crossovers (cf. Fig. 11 and Table I). As expected, the

TABLE I. Variation of the persistence length as a function of the
number of crossovers for several types of 2-oDNA(141) structures.
The 6c structure is identical to 2-oDNAp(141).

No. crossovers 4c 6c 8c 14c

lp/ l0
p 0.6 ± 0.3 3.2 ± 0.3 3.9 ± 0.3 3.9 ± 0.1

Twg (turn) 0.0 ± 0.1 0.1 ± 0.1 0.1 ± 0.0 0.1 ± 0.0

structure with two parallel strands is generally stiffer than the
double helix, with lp/ l0

p ∼ 3.2 (here, l0
p = 150 bp denotes the

persistence length of dsDNA). When only four crossovers are
present [cf. Figs. 11(a) and 12(a)], we find that the persistence
length of 2-oDNAp(141) is lower than that of one single helix.
This result can be understood by noticing that the crossovers
are separated by 90 base pairs. Instead of being parallel, the
dsDNA strands are almost free to fluctuate and the electrostatic
repulsion between strands increases these fluctuations, leading
to contorted structures with a persistence length inferior to that
of a single dsDNA strand. It should also be noticed that these
structures are difficult to describe by a single coordinate, the
coarse-graining procedure reaching here its limit of validity.

Let us now consider the variation of lp as a function of
the number of rows, when the distance between crossovers is

FIG. 12. (Color online) Four different structures with 141 base
pairs each and different distribution of the junctions, respectively,
(a) 4 crossovers, (b) 6, (c) 8, (d) 14. Typical configurations observed
at the end of the MC simulations.
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TABLE II. Variation of the persistence length as a function of the
number of rows (helices). The length of each row is 298 base pairs,
as in the original Rothemund rectangle.

2-DNAp(298) 3-DNAp(298) 4-DNAp(298)

lp/ l0
p 3.5 ± 0.3 5.7 ± 0.7 7.4 ± 1.7

Twg (turn) 0.1 ± 0.0 0.2 ± 0.1 0.1 ± 0.0

fixed to 31 (cf. Tables II and III, and see Fig. 13). For the
structures with 298 base pairs per row (analog to the original
Rothemund’s rectangular origami), increasing the number of
rows increases monotonously lp, by roughly 1.8l0

p added per
row. For shorter structures (Table III), the situation is very
similar, as should be expected for a local measure of elasticity.

To the best of our knowledge, there are no direct mea-
surements of the elastic properties of planar origamis, but
only indirect estimates of the persistence length. In Ref. [43],
structures containing two antiparallel double helices, linked by
two crossovers DAE structures separated by an even number of
half turns were studied experimentally. A statistical analysis
of the products of cyclization of DAE monomers led to the
conclusion that the persistence length of these structures is
around 2.7 times that of the double helix. We have simulated
DAE structures of various lengths (cf. Fig. 14) and reached
qualitatively similar results (Table IV): lp/ l0

p ∼ 3.3.

B. Umbrella sampling of planar DNA origamis

Umbrella sampling simulations of planar n-oDNAp(141)
origamis were also performed in order to obtain an independent
measurement of the persistence length of these structures. In
these simulations, the end to end distance is constrained to
be in overlapping intervals of length ∼1 nm. The variation of
the averaged energy and force as a function of the end to end
distance are represented in Fig. 15. These averaged quantities
can be compared to the predictions of the WLC model. It has
been shown [44] that for segment lengths longer than 10–15 nm
the link between the persistence length lp and the energy of
bending of a dsDNA strand predicted by the WLC model is
accurate:

E(θ ) = kBT
1

2

lp

l
θ2. (4)

Here, θ is the angle formed by two segments of length l. If Ree

denotes the end to end distance, cos(θ/2) = Ree/Lc, where
Lc = 2l denotes the contour length. Therefore, the energy of
a dsDNA with end to end distance Ree is

E(Ree) = kBT
1

2

lp

Lc/2

[
2 arccos

(
Ree

Lc

)]2

, (5)

TABLE III. Variation of the persistence length as a function of the
number of rows (helices). The length of each row is 141 base pairs.

2-DNAp 3-DNAp 4-DNAp 5-DNAp

(141) (141) (141) (141)

lp/ l0
p 3.2 ± 0.3 5.1 ± 0.4 5.8 ± 1.4 6.6 ± 3.3

Twg (turn) 0.1 ± 0.0 0.1 ± 0.1 0.2 ± 0.0 0.2 ± 0.0

FIG. 13. (Color online) Typical configurations obtained after MC
equilibration for three different structures with 298 base pairs each,
with, respectively (a) 2 rows, (b) 3 rows, and (c) 4 rows.

and the corresponding force is

F (Ree) = 8kBT
lp

L2
c

arccos(Ree/Lc)√
1 − (x/Lc)2

. (6)

This force is almost constant ∼8kBT lp/L2
C for the range of Ree

values considered here. The data in Fig. 15 yield lp = 2.4l0
p for

2-DNAp(141) and lp = 5.8l0
p for 5-DNAp(141), compatible

with the values obtained in the Monte Carlo simulations
without constraints (Table III).

C. Persistence length of a 3D DNA origami

The work of Kauert et al. [28] reports direct magnetic
tweezers measurements made on 3D o-DNA. These are
bundles of four or six DNA helices with enlarged ends
that allow tight binding to either a surface or a magnetic
bead. Values for the bending and torsional rigidities were
obtained by optically monitoring the position of the bead. The
bead fluctuations were compared to Monte Carlo simulations
of the wormlike chain model. Very good agreement was

FIG. 14. (Color online) Structure of the simulated DAE struc-
tures. For each structure, the total number of bases is indicated at the
bottom.
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TABLE IV. Normalized persistence length as a function of
the number of DAE monomers. The corresponding structures are
illustrated in Fig. 14.

DAE 2-mer 3-mer 5-mer 11-mer 21-mer

lp/ l0
p 3.1 ± 0.1 3.4 ± 0.2 3.6 ± 0.2 3.7 ± 0.2 3.8 ± 0.1 3.5 ± 0.2

obtained between the simulated and observed fluctuations,
with corresponding bending rigidities 16 (four helix bundle)
and 40 (six helix bundle) times that of the dsDNA.

We modelled structures similar to the four helix bundle
(Fig. 16). A shattered version of the structure is also presented
in Fig. 16. Our design links together two 2-oDNAp structures.
The junctions between the two 2-oDNAp are located at the base
pairs where the crossover distances are minimum (red circles
in Fig. 16). The persistence length of two such structures are
reported in Table V. Again, we find good agreement between
the Monte Carlo simulations and the experimental results
obtained with magnetic tweezers.

V. DISCUSSION

In this paper, we have used Monte Carlo sampling to
describe in a coarse-grained way the fluctuations of nanos-
tructures made of DNA. We have modified the original force
field [30] in two ways. First, the equilibrium length of the
sugar-phosphate bonds has been slightly reduced. Second,
we added screened electrostatic interactions between sites in
different strands to account for the characteristic bending of
double helices in planar origamis [5], as observed by AFM.

We have first considered planar structures. As long as the
transverse dimension (given by the number of helices) is small
compared to the length of the helices, the structures can still
be characterized as linear structures with a persistence length.
For bundles of two helices, lp/ l0

p ∼ 3, in qualitative agreement
with experimental data from the Seeman’s laboratory [43].
When increasing the number of helices Nh, our data are

TABLE V. Normalized persistence length for the four helix
bundles (Fig. 16) as a function of the number of monomers.

4-helix bundle 2-mer 4-mer
lp/ l0

p 16.6 ± 2.5 17.5 ± 6.3

consistent with lp/ l0
p ∼ 1.7Nh. The situation can be compared

to that of a polymer trapped in two dimensions. In this
case, the persistence length increases by 2 [45]. In oDNA
structures the helices are similarly trapped because the fluc-
tuations in the width of the structures are limited by steric
hindrance and electrostatic repulsion.

All these data can be consistently obtained both from
equilibrium Monte Carlo simulations and umbrella sampling
simulations. Finally, we have also modelized four-helix bun-
dles similar to the structures considered in Ref. [28]. The
bending rigidity of this structure is ∼17 times that of a dsDNA,
in good agreement with the experimental data obtained with
magnetic tweezers in Ref. [28].

An important point in the modeling of DNA origamis is the
treatment of the crossover regions. The point of view adopted
in this work is that the stacking between bases is preserved
in the crossover. We have mentioned both experimental [42]
and numerical [41] data that support this point of view. One
could also argue that base unpairing at crossovers would be
incompatible with the observed sensitivity of the global twist
versus the twist of design. However, other high temperature
simulations [46] suggest that base unstacking at crossovers is
possible. Further experimental characterization of crossover
regions is clearly needed.

The approach advocated here seeks to obtain a convenient
coarse-grained modeling of DNA origami structures starting
from an existing model for single dsDNA molecules. As
explained in the Introduction, mostly continuum mechanics
approaches [29] have been used in the past to address this
problem. Two basic differences with the finite-element meth-
ods should be pointed out. First, the absence of electrostatics

FIG. 15. (Color online) Umbrella sampling simulations of 2-DNAp(141) and 5-DNAp(141) structures. The end-to-end distance is varied
from 7 to 45 nm, with overlapping intervals of length 1 nm. The data from the umbrella sampling are fitted by an analytic WLC model
(continuous lines). Left panel: energy. Right panel: force.
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FIG. 16. (Color online) Structure of an oDNA similar to the four-helix bundle of Ref. [28]. Top: side view of the structure. Bottom: shattered
view of the same structure. The circles in the bottom panel show how the links between the two 2-oDNAp structures are determined.

leads to equilibrium structures that deviate from the AFM
observations shown in Fig. 1. In our opinion, this could
be a particularly limiting factor to describe structures that
are loosely tightened (when the distance between crossovers
increases). Second, the finite-element method relies on the
equipartition theorem to describe thermal fluctuations, and
the use of normal modes to describe these fluctuations. In
this respect, Monte Carlo simulations have a broader range of
applicability. On the other hand, finite-element computations

are much faster than the MC simulations presented here. In
this sense, a combined use of both methods could constitute a
powerful approach to the modeling of DNA nanostructures.
Further extensions or improvements of the model should
also include the possibility of base-pair opening. As pointed
out recently [47], short double DNA strands show extreme
bendability. This could be explained by the existence of
frequent kink or bubble formations, even though anharmonic
elasticity cannot be ruled out.
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