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Microorganisms like bacteria can sense concentrations of chemoattractants in their medium very accurately.
They achieve this through interaction between the receptors on their cell surfaces and chemoattractant molecules
(like sugar). Physical processes like diffusion set some limits on the accuracy of detection, which was discussed
by Berg and Purcell in the late seventies. We re-examine their work in order to assess what insight it may offer
for making efficient, practical biosensors. We model the functioning of a typical biosensor as a reaction-diffusion
process in a confined geometry. Using available data first we characterize the system by estimating the kinetic
constants for the binding and unbinding reactions between the chemoattractants and the receptors. Then we
compute the binding flux for this system, which Berg and Purcell had discussed. Unlike in microorganisms where
the interval between successive measurements determines the efficiency of the nutrient searching process, it turns
out that biosensors depend on long time properties like signal saturation time, which we study in detail. We also
develop a mean field description of the kinetics of the system.
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I. INTRODUCTION

Berg and Purcell (BP), in their pioneering article [1]
on “physics of chemoreception,” had considered how a
microorganism could sense concentration of a chemoattractant
molecule (say, X) in its surrounding media. They assumed the
organism to be a sphere of radius a, immersed in an unbounded
liquid medium, and ρ0 be the far field concentration of X.
A simple example could be a bacterium in a dilute sugar (X)
solution of local density ρ. The X molecules diffuse and bind
to the surface of the sphere, which is assumed to be a perfect
sink for X. They solved the diffusion equation, ∂tρ = D∇2ρ,
in the steady state, using spherical coordinates centered at
the sphere. Using the boundary conditions ρ(r = a) = 0 (i.e.,
fully absorbing surface) and ρ(r = ∞) = ρ0 (at far field), they
found the steady state influx of X molecules (J ) integrated over
the spherical surface to be J = 4πaDρ0.

We now briefly introduce a typical biosensor and discuss the
applicability of these ideas. A biosensor is designed to detect
traces of specific biochemicals present in a carrier medium.
It can detect, for example, E. coli in drinking water [2],
hepatitis B surface antigen present in human serum [3], or
pollutants in air [4]. The past decade has seen proliferation
of such biosensors [5–7] in day-to-day use, mainly due to
their (a) quick response time [8] and (b) sensitivity to minute
amounts of biomolecules [2]. The particular type of biosensors
we discuss here are optics-based chemical sensors, which
convert chemical reactions between GaHIgG (X) and HIgG
(receptor) molecules into an optical signal, which is then
detected using fiber-optics technology. In this sensor, an optical
fiber of radius Ri runs along the axis of a cylindrical chamber
of radius Ro. The fluid containing the antigen (X) is injected
into the annular space between the fiber and the chamber. The
surface of the fiber is functionalized by putting on it a certain
surface density (σ0) of antibodies (receptors), which serve as
the binding targets for the antigen molecules. Antigens bind to
the receptors on the surface of the fiber and absorb evanescent
waves generated by the light-carrying fiber. This results in
loss of intensity carried by the fiber. For our purpose here, the
absorbance (A) of the evanescent waves [9] is proportional to

the total bound antigen
∫

σdA on the fiber surface, where σ

is the surface density of bound antigens.

II. MODEL

Such a system can be described, at the continuum level,
by reaction diffusion equations [10]. The X molecules bind
to the receptors on the fiber surface with a rate ωb and
surface-bound X molecules can also unbind at a rate ωu,
typically much smaller than the binding rate. The values of the
kinetic coefficients ωb and ωu are unknown a priori, which we
determine from experimental data. The bulk concentration of X
is ρ, the surface concentration of receptor-bound X molecules
is σ , and the surface concentration of receptors is σ0. Dynamics
of ρ follows

∂ρ

∂t
= D∇2ρ − δ(r − Ri)[ρ(σo − σ )ωb − ωuσ ]. (1)

We use a cylindrical polar coordinate frame where ρ =
ρ(r,φ,z,t) and σ = σ (φ,z,t) with Ro > r > Ri . The second
term on the right-hand side represents surface reactions at
r = Ri . The first term in the square brackets describes binding
and the second term represents unbinding. Dynamics of σ

follows

∂σ

∂t
= ρ(σo − σ )ωb − ωuσ. (2)

Here ρ is the bulk density in the immediate vicinity of the
surface. These equations can be nondimensionalized. We
rescale the bulk and the surface densities as ρ̃ = ρ

ρ0
and

σ̃ = σ
σ0

; and the space and time variables as r̃ = r/Ri,z̃ =
z/L, and τ = tD

R2
i

. In terms of dimensionless parameters ω̃b =
ωbβ, ω̃u = ωu

ρ0
β, and γ = σ0

ρ0Ri
, where β = R2

i

D
ρ0, the equations

are

∂ρ̃

∂τ
= ∇̃2ρ̃ − δ(r̃ − 1)γ [ρ̃(1 − σ̃ )ω̃b − ω̃uσ̃ ,] (3)

∂σ̃

∂τ
= ρ̃(1 − σ̃ )ω̃b − ω̃uσ̃ . (4)
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FIG. 1. (Color online) Semilog plot of binding (Jin) and unbind-
ing (Jout) fluxes (both scaled with the steady state value J∗) as a
function of time, at fixed D and ρ0(= 0.001 mg/ml). Values of ωb

and ωu are same as those found through Fig. 3 (discussed later). Jin

and Jout are plotted separately because their scales of variations are
very different, unlike that in Fig. 2.

Superficially the spherical surface of BP is replaced in our
biosensor by a cylindrical surface but the big difference is
that our system is confined and the total number of antigens
is fixed. Thus the steady state here corresponds to a state of
dynamic equilibrium when the binding and unbinding at the
fiber surface balance each other, making both the bulk and
surface concentrations constant is time. Note that although the
surface concentration becomes static, the steady state binding
(Jin) and unbinding (Jout) fluxes individually are not zero at the
surface (see Figs. 1 and 2, obtained at different values of ωb)
and at large time Jin = Jout = J∗. In BP’s case, with perfectly
absorbing surface, Jin is given by the surface integral of the
diffusional current −D

∫ �∇ρdA onto the absorbing surface
(of area A). But for our sensor with finite binding constant, the
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FIG. 2. (Color online) Semilog plot of binding (Jin) and unbind-
ing (Jout) fluxes (both scaled with the steady state value J

′
∗) as a

function of time. Here we used the same ρ0, D, and ωu as in Fig. 1
while ωb was increased 100 times to reach a steady state value J

′
∗

comparable to JBP . We explain later why this comparison is not
very useful due to difference in the boundary conditions in the two
problems.

influx Jin = ∫
dAρ(σo − σ )ωb is computed by integrating the

binding term [on the right-hand side of Eq. (2)] over the area A

of the fiber surface, and similarly the outflux Jout = ∫
dAωuσ

is computed from the unbinding term. We consider the initial
condition where at t = 0 the system is filled up with a fluid
carrying an uniform concentration of X. At t = 0 the influx is
nonzero as the concentration of X molecules in the vicinity of
the fiber surface (ρs) is nonzero. On the other hand the outflux
is zero at t = 0 because there are no bound X molecules at the
beginning. BP has considered a perfectly absorbing surface,
which can theoretically be attained in the limit σ0 → ∞ and
ωu → 0. Note that, in Eqs. (1) and (2), when σ0 � σ , the
binding term reduces to ρsσ0ωb and it appears that we do not
need ωb to be infinity in addition. But practically σ0 is bounded
due to the finite size of the receptors. BP had approximated the
receptors to occupy a small area with radius s ∼ 10 Å. For our
sensor it amounts to about 1013 receptors covering the whole
fiber surface. We used this value as the maximum coverage
σ max

0 for Figs. 1 and 2. To compare with BP’s case we focus
on the binding flux of X only.

First we adapt BP’s general expression [1] for the steady
flux J = 4πaDρ0 to our cylindrical geometry. BP had shown
that this flux can be calculated for any shape by mapping the
steady diffusion equation ∇2ρ = 0 to the Poisson equation
for potential ∇2φ = 0, in charge-free space. It can be shown
that generally J = 4πCDρ0, where C is the capacitance of
a conductor with free charge Q on its surface. Specifically,
C = Q/φ∞, where φ∞ is the potential difference between
the conductor and infinity. For the sensor the cylindrical fiber
is the absorbing surface. With a radius Ri = 0.1 mm and
length L = 50 mm (i.e., aspect ration 500) it is as good as
a one-dimensional line. For a line charge density λ, extending
from x = −L/2 to L/2, the expression for the potential
φ(z) along the perpendicular bisector, z distance away from

the center of the line charge, is φ(z) = k λ
ε0

ln
√

1+(z/L)2+1√
1+(z/L)2−1

,

where k = 1/4πε0 is the Coulomb force constant. Using the
approximation Ri/L � 1 we get φ(Ri) � 2kQ

L
ln(2L/Ri) and

C � L
2 ln(2L/Ri). Thus JBP � 2πDLρ0 ln(2L/Ri).

To compute the binding flux Jin we have to numerically
time evolve the dynamical equations [Eqs. (3) and (4). First,
to get realistic values for the kinetic coefficients ωb and ωu

we use experimental data on surface adsorption σ (t) versus
time from Ref. [11], obtained at two widely different initial
bulk densities (a) ρ0 = 0.001 mg/ml and (b) ρ0 = 0.1 mg/ml,
and possibly at different surface density of receptors. Note
that the nondimensionalized equations (3) and (4) do not
explicitly scale with antigen (X) density ρ0 and therefore
these data sets can be treated as independent. Despite the
wide difference in ρ0, the saturation times (τ0) in the two
cases were similar (the symbols in Fig. 3). This could be
rationalized by noting that in case-b the fiber was soaked in
the receptor solution for 2 hrs while for case-a it was soaked
for a very long time (about 16 h). From this information we
inferred that in case a σa

0 = σ max
0 while for case b σb

0 < σ max
0 .

We choose D = 10−5 cm2/s typical of diffusion of small
molecules in water [12,13] (BP also took the same D for
their estimates). We had to determine ωb, ωu, and σb

0 by
matching our numerical results [from Eqs. (3) and (4)] with the
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FIG. 3. (Color online) Surface density of bound antigens σ (t)
vs time. The y axis is scaled with the saturation value σ∞ =
σ (t → ∞) since we do not know the proportionality constant
connecting experimentally measured absorbance A and σ . The
symbols represent experimental data. In (a) ρ0 = 0.001 mg/ml and
in (b) ρ0 = 0.1 mg/ml. The solid lines are from our numerical
integration of Eqs. (3) and (4). For (a) we chose σ0 = 0.08 μg/mm2,

i.e., the maximum possible surface coverage. It turns out that a
reasonably good match with the two experimental σ (t) profiles
and with σ a

∞/σ b
∞ were obtained for ωb = 0.75 × 10−5 μm3/s, ωu =

0.35 × 10−2/s, and σ b
0 = 0.014 μg/mm2, i.e., about 5.5 times less

than the maximal coverage.

temporal profiles of σ (t) and the ratio σa
∞/σ b

∞. We converged
to ωb = 0.75 × 10−5 μ m3 s−1, ωu = 0.35 × 10−2 s−1, and
σb

0 = 0.014 μg/mm2. These numbers for ωu, ωb appear rea-
sonable when compared to the reaction-diffusion processes on
bacterial membranes [10].

As mentioned earlier we used a cylindrical polar coordinate
system to discretize the space. Uniform binning was used along
z and φ, while r coordinate was binned nonuniformly such
that the volume of each bin (rdrdφdz) remains constant.
Reflecting boundary condition was used at the walls of
the cylindrical chamber, by ensuring zero currents at the
boundaries. We used a uniform distribution of X molecules
in the bulk as our initial condition, that is, ρ(t = 0) = ρ0 and
σ (t = 0) = 0.

We then compute the flux Jin(t) = ∫
dAρ(σ0 − σ )ωb,

which is the binding term in the right-hand side of Eq. (2),
integrated over the cylindrical fiber surface, as a function
of time. Interestingly, Jin(t) goes through a minima before
it saturates to J∗ (see Figs. 1 and 2). We explain the origin of
this nonmonotonic behavior later when we study the dynamics
in detail. In Fig. 1 the steady state flux J∗ is much lower than
JBP , while in Fig. 2 it is comparable, but J∗ and JBP depend
on different sets of parameter values. Both of them are steady
state properties, but J∗ depends on ωb, ωu, σ0, and ρ0 while
JBP depends on D and ρ0. This difference arise from the
difference in the boundary conditions of a confined versus an
unbounded system. Therefore, the comparison is not fair. J∗
can be calculated by setting the left-hand side of Eq. (4) to
zero and using mass conservation, which is discussed later.

So far we had implicitly assumed that the microorganism
can sense the ambient ρ0 by measuring the influx (J ) of X
molecules, but BP had also considered the realistic possibility
that they can infer ρ0 by measuring the state of occupation
of its surface receptors, that is, density of receptors that are
bound to X molecules. In fact this is the recipe which most
practical biosensors employ. For example, in our particular
sensor σ (t) decides the intensity of optical adsorption. In BP’s
theory a bacteria can sense its σ (t) in response to local ρ0 and
decide to move towards or away from the chemoattractant or

the chemorepellent, respectively. For a static biosensor σ (t)
can only increase towards saturation. Since a system takes
some time to attain saturation, this measurement process is
inherently slow compared to the measurement of instantaneous
flux. On the other hand, measurement of any instantaneous
variable is prone to fluctuation error whereas long time
observables like σ (t → ∞) are more dependable. So the
challenge is either to reduce the saturation (waiting time)
time or choose an optimum time interval T over which an
instantaneous variable like J (t) or σ (t) should be measured
(so that �J/J or �σ/σ is small). BP had correctly concluded
that a bacteria must employ the second strategy since it has to
rapidly change its direction of motion based on comparisons
between its successive measurement of σ (t). BP had estimated
T ∼ 1 s for E. coli bacteria. Recent findings [14] show that
bacteria have a very efficient mechanism for amplifying the
minute signal generated by binding of external sugar molecules
to its receptors. It has the capability of detecting 0.1% change
in the attractant density and over four orders of magnitude
of sugar concentrations. Reference [15] has shown that for
a particular type of biosensor flux detection could be a
superior method compared to measuring long time saturation
properties. For our sensor, we now investigate in detail how
saturation time of the sensor varies in response to ρ0 and how
it can be steered by choosing σ0.

III. MEAN FIELD THEORY

First we discuss a simple mean field (MF) limit of the
dynamics. In the MF approximation we consider the surface
concentration to be uniform over the surface of the fiber and
the volume concentration to be uniform through out the bulk.
Let V0 be the volume of the annular space and A0 be the
surface area of the fiber. At t = 0, N0 = ρ0V0 and later N0 =
ρ

M
V0 + σ

M
A0, where ρ

M
= ρ

M
(t) is the mean field density

(denoted by subscript M) of X molecules and σ
M

= σ
M

(t) is
the corresponding surface density of the bound X molecules.
In the nondimensional form we have

ρ̃
M

= 1 − ασ̃
M
, (5)

where ρ̃
M

= ρ
M

ρ0
, σ̃

M
= σ

M

σ0
, and α = σ0A0

ρ0V0
= Ns

N0
. The bulk

density ρ
M

is homogeneous and slaved by σ
M

[via Eq. (5)]
so we need to consider only the equation of motion for the
surface reaction, namely Eq. (4). By substituting for ρ

M
, from

Eq. (5) into Eq. (4), and simplifying, we get

dσ̃
M

dτ
= λ1σ̃

2
M

− λ2σ̃M
+ λ3, (6)

where λ1 = αω̃b, λ2 = [(1 + α)ω̃b + ω̃u], and λ3 = ω̃b.
By integrating this equation we get

τ =
∫ σ̃

M
(τ )

σ̃
M

(0)=0

[
dσ

M

λ1σ 2
M

− λ2σM
+ λ3

]
(7)

= 2

iλR

[
tan−1

(
λ2

iλR

)
− tan−1

(
λ2 − 2λ1σ̃M

iλR

)]
, (8)

where λR =
√

λ2
2 − 4λ1λ3. By inverting the above equation,

σ̃
M

(τ ) = 1

2λ1

{
λ2 − λR tanh

[
tanh−1

(
λ2

λR

)
+ λRτ

2

]}
. (9)
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For any set of parameter values, it can be shown that λR

is always real and we also have λ2/λR > 1. As a result
tanh−1(λ2/λR) is always a complex number. Using the
standard property tanh−1 x − coth−1 x = iπ/2, we can rewrite
Eq. (9) as

σ̃
M

(τ ) = 1

2λ1

[
λ2 − λR

tanh
[

tanh−1
(

λR

λ2

) + λRτ
2

]
]
. (10)

This formula gives excellent fit to the numerical data (not
shown here), obtained by integration of Eqs. (3) and (4), at a
high value of the diffusion constant, D = 10−3 cm2/s.

The steady state solution (σ̃ s
M

) can be obtained either
by setting ˙̃σ

M
= 0 in Eq. (6) or from the τ → ∞ limit of

Eq. (9). We get σ̃ s
M

= 1
2λ1

[λ2 − λR].
The mean field approximation will fail if diffusion is

not sufficiently fast compared to the time scale at which
surface binding reactions cause a depletion in the antigen
concentration (ρ). In such a scenario the spatial inhomogeneity
in ρ (along r) takes a long time, comparable to the saturation
time of the sensor, to homogenize. A better understanding
can be gained by comparing the time scales of the three
processes: diffusion (tD), binding (tb), and unbinding (tu).
We get the individual time scales from Eq. (1) by comparing
each term on the right-hand side with that on the left-hand
side. For example, ρ̇ ∼ D∇2ρ gives, by dimensional analysis,
t−1
D ∼ D

R2 . Similarly, t−1
b ∼ σ0ωb

R
and t−1

u ∼ σ0ωb

ρ0R
. Here we

have assumed R = Ro − Ri to be the only relevant length
scale. For diffusion, this is the spatial scale of density
inhomogeneity. Now, tb and tu are the time scales over which
density inhomogeneity are created near the fiber due to the
surface reactions, while tD is the time interval during which
such inhomogeneities are ironed out. Therefore, mean field
approximation requires diffusion to be a faster process, that
is, tD � tb,tu. These inequalities yield the criteria σ0ωbR

D
� 1

and σ0ωuR

ρ0D
� 1. The first inequality suggests that mean field

approximation will be correct at high D or low σ0 values.
We have verified these conditions numerically by looking
for density inhomogeneity ρ(r) during the transients, in the
numerical solution of Eqs. (3) and (4) (see Fig. 4). For
example, for Ns/N0 = 1,D = 10−5 cm2/s the density remains
uniform through out, at all times. But when σ0 is increased by
choosing Ns/N0 = 10, strongly inhomogeneous ρ(r) appears
(i.e., MF theory fails). Now, in addition, if D is hiked, ρ(r)
becomes homogeneous again (graph not shown here). The
second inequality suggests that, along with high D and low
σ0, we also need high ρ0. Only then can both tb,tu � tD be
satisfied. We have verified this condition on ρ0 along with
similar conditions on ωb and ωu resulting from the inequalities.
Figure 5 shows a comparison between numerical solution of
Eqs. (3) and (4) and mean field results for ρ0 = 0.1 mg/ml
and σ0 = 0.01 μgm/mm2, that is, at high ρ0 and low σ0. At
these parameter values the influx Jin does not go through
any minima. The reason why the influx Jin goes through a
minimum in Figs. 1 and 2 is now clear from Fig. 4(b), which
shows when ρ(r) becomes inhomogeneous (in the non-MF
case) the ρ(r) in the vicinity of the fiber undergoes a dip
(triangles) before it becomes uniform (circles) at late times. In
the mean field regime the minima is absent because the ρ(r)

 0
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FIG. 4. (Color online) Radial density profile ρ as a function of
r − Ri in the bulk, at three different times: right after start (square),
at saturation (circle), and at some intermediate time (triangle). Panels
(a) and (b) differ in the parameter Ns/No (which is proportional to σ0

at fixed ρ0). The values of D, ωb, ωu were obtained through Fig. 3.
Transition from mean field to non-mean-field-type density profile
occurs as we go from panels (a) to (b) by increasing Ns/No. Note
that, at a fixed ρ0, the fraction of antigens (X) remaining in the bulk
can be reduced (consequently the bound proportion can be increased)
by increasing Ns/No. This is desirable for making the sensor more
sensitive, especially when ρ0 is small.

in the vicinity of the fiber decreases monotonically in time, as
is clear from Fig. 4(a).

1 10 100 1000t(sec)
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FIG. 5. (Color online) Semilog plot of binding (Jin) and unbind-
ing (Jout) fluxes as a function of time in the mean field regime
(i.e., high ρ0 and low σ0 with Ns/N0 = 0.05). The symbols (circles
and squares) are obtained from numerical integration of Eqs. (3)
and (4), while the solid lines are the corresponding mean field results.
Here ρ0 = 0.1 mg/ml, σ0 = 0.01 μgm/mm2, and the values of ωb

and ωu are the same as those in Fig. 1 (i.e., the values estimated from
experimental data).
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FIG. 6. Semilog plot of saturation time τ0 (s) vs the density of
receptors σ0 (μg/mm2). The inset shows saturated signal σ∞ vs σ0.
We fix ρ0 at a very low value, 0.001 mg/ml, to test the sensitivity of
the sensor. The values of ωb and ωu are those estimated before. Both
τ0 and σ∞ saturate at high values of σ0, much beyond the maximum
surface coverage (0.08 μg/mm2) considered here. We have explored
the seemingly unrealistic σ0 > σ max

0 regime here because it may be
possible to increase σ0 by choosing smaller receptor molecules in
another system.

IV. RESULTS

We now study the general case when MF theory is invalid
and thus we have to depend on numerical integration of
Eqs. (3) and (4). Our numerical curves for σ versus time,
shown in Fig. 3, could be fit to exponential functions like
σ (t) = σ∞(1 − exp−t/τ0 ), allowing us to estimate a saturation
time scale τ0 and the saturated value σ∞ (plotted in Figs. 6
and 7). τ0 and σ∞ depend on both σ0 and ρ0.

The aim of Figs. 6 and 7 is to identify the regimes where
saturation time τ0 can be reduced and saturated signal σ∞ can
be maximized. For Fig. 6, ρ0 has been held fixed at a low
value, 0.001 mg/ml, while for Fig. 7, σ0 is fixed at σ max

0 =
0.08 μg/mm2. The insets of both the figures show that signal
can be enhanced by increasing either ρ0 or σ0, which results
in decrease or increase of τ0, respectively. Of course, at high
ρ0 a strong saturated signal can be achieved within a short
saturation time, but the sensitivity of a sensor is tested when
ρ0 is small, which we focus on below. For low ρ0, σ0 should
be maximum to maximize the signal, even at the cost of higher
waiting time. Operating near maximum receptor coverage is
also necessary, as Fig. 6 shows that the nonlinear response
starts to increases near this point. For moderate and high ρ0,
we should choose moderate σ0 such that τ0 is not so high and

FIG. 7. Semilog plot of saturation time τ0 (s) vs the density of X
molecules ρ0 (mg/ml). Here σ0 is held fixed at the maximum surface
coverage (0.08 μg/mm2) in order to maximize the signal. The inset
shows that even at this maximum surface coverage the saturated signal
σ∞ drops drastically at low ρ0.

the signal is strong enough. This may appear analogous to the
conclusion of BP, where with just a fraction of the cell area
(∼1/1000) covered with receptors the steady flux could be as
high as JBP /2, where JBP is the maximum flux with the fully
absorbing surface. The assumption behind this derivation was
that the inter-receptor distance is much much greater than the
receptor size. In Fig. 6, at 1/10th of the maximum surface
coverage (i.e., at σ0 ∼ 0.01 μg/mm2) the signal σ∞ is much
weaker compared to that at σ max

0 . This again highlights the
difference between our confined system and the steady state
behavior of Berg and Purcell’s unbounded system.

In summary, we examined the applicability of Berg and
Purcell’s ideas to real sensors. In general it turns out that a
flux-based sensor is more efficient than one which depends
on a long time signal. The flux in our sensor also shows
unexpected time variation, which results from competition
among different time scales and the extended nature of our
system. Another interesting observation is that even at realistic
diffusion constant, mean field theory works when ρ0 is high
and σ0 is small. In general, nonspecific binding of X molecules
on the fiber surface can cause complications, but for the system
we have chosen here nonspecific binding was verified to be
negligible. Further, the surface reactions need not be first order,
which we have assumed here. We checked that consideration
of second-order binding kinetics does not give any new exotic
behavior (e.g., oscillations) but changes the quantitative values
of saturation time.
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