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Microorganisms like bacteria can sense concentrations of chemoattractants in their medium very accurately.
They achieve this through interaction between the receptors on their cell surfaces and chemoattractant molecules
(like sugar). Physical processes like diffusion set some limits on the accuracy of detection, which was discussed
by Berg and Purcell in the late seventies. We re-examine their work in order to assess what insight it may offer
for making efficient, practical biosensors. We model the functioning of a typical biosensor as a reaction-diffusion
process in a confined geometry. Using available data first we characterize the system by estimating the kinetic
constants for the binding and unbinding reactions between the chemoattractants and the receptors. Then we
compute the binding flux for this system, which Berg and Purcell had discussed. Unlike in microorganisms where
the interval between successive measurements determines the efficiency of the nutrient searching process, it turns
out that biosensors depend on long time properties like signal saturation time, which we study in detail. We also
develop a mean field description of the kinetics of the system.
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I. INTRODUCTION

Berg and Purcell (BP), in their pioneering article [1]
on “physics of chemoreception,” had considered how a
microorganism could sense concentration of a chemoattractant
molecule (say, X) in its surrounding media. They assumed the
organism to be a sphere of radius a, immersed in an unbounded
liquid medium, and py be the far field concentration of X.
A simple example could be a bacterium in a dilute sugar (X)
solution of local density p. The X molecules diffuse and bind
to the surface of the sphere, which is assumed to be a perfect
sink for X. They solved the diffusion equation, 8,0 = DV?p,
in the steady state, using spherical coordinates centered at
the sphere. Using the boundary conditions p(r = a) = 0 (i.e.,
fully absorbing surface) and p(r = 00) = pg (at far field), they
found the steady state influx of X molecules (J) integrated over
the spherical surface to be J = 4waDpy.

We now briefly introduce a typical biosensor and discuss the
applicability of these ideas. A biosensor is designed to detect
traces of specific biochemicals present in a carrier medium.
It can detect, for example, E. coli in drinking water [2],
hepatitis B surface antigen present in human serum [3], or
pollutants in air [4]. The past decade has seen proliferation
of such biosensors [5-7] in day-to-day use, mainly due to
their (a) quick response time [8] and (b) sensitivity to minute
amounts of biomolecules [2]. The particular type of biosensors
we discuss here are optics-based chemical sensors, which
convert chemical reactions between GaHIgG (X) and HIgG
(receptor) molecules into an optical signal, which is then
detected using fiber-optics technology. In this sensor, an optical
fiber of radius R; runs along the axis of a cylindrical chamber
of radius R,. The fluid containing the antigen (X) is injected
into the annular space between the fiber and the chamber. The
surface of the fiber is functionalized by putting on it a certain
surface density (op) of antibodies (receptors), which serve as
the binding targets for the antigen molecules. Antigens bind to
the receptors on the surface of the fiber and absorb evanescent
waves generated by the light-carrying fiber. This results in
loss of intensity carried by the fiber. For our purpose here, the
absorbance (A) of the evanescent waves [9] is proportional to
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the total bound antigen [‘od A on the fiber surface, where o
is the surface density of bound antigens.

II. MODEL

Such a system can be described, at the continuum level,
by reaction diffusion equations [10]. The X molecules bind
to the receptors on the fiber surface with a rate w, and
surface-bound X molecules can also unbind at a rate w,,
typically much smaller than the binding rate. The values of the
kinetic coefficients w, and w, are unknown a priori, which we
determine from experimental data. The bulk concentration of X
is p, the surface concentration of receptor-bound X molecules
is o, and the surface concentration of receptors is 0p. Dynamics
of p follows

ap 2

5 —PVie— 8(r — Rlp(op, — o)wp —w,0]. (1)
We use a cylindrical polar coordinate frame where p =
o(r,¢,z,t) and 0 = o(¢,z,t) with R, > r > R;. The second
term on the right-hand side represents surface reactions at
r = R;. The first term in the square brackets describes binding
and the second term represents unbinding. Dynamics of o
follows

ao

., P(Ua - G)wb — WyO. (2)

ot
Here p is the bulk density in the immediate vicinity of the
surface. These equations can be nondimensionalized. We

rescale the bulk and the surface densities as p = % and

6 = 01; and the space and time variables as 7 =r/R;,Z =

0 . . ~
z/L,and T = ’R—lz). In terms of dimensionless parameters &, =

- i R? .
wpfB, &, = %Z,B,andy = %,Whereﬂ = - Po, the equations
are

= V%6 —8GF — Dylp(l — &) — @,6.1  (3)
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FIG. 1. (Color online) Semilog plot of binding (J/;,) and unbind-
ing (Jou) fluxes (both scaled with the steady state value J,) as a
function of time, at fixed D and po(= 0.001 mg/ml). Values of w,
and w, are same as those found through Fig. 3 (discussed later). J;,
and J,, are plotted separately because their scales of variations are
very different, unlike that in Fig. 2.

Superficially the spherical surface of BP is replaced in our
biosensor by a cylindrical surface but the big difference is
that our system is confined and the total number of antigens
is fixed. Thus the steady state here corresponds to a state of
dynamic equilibrium when the binding and unbinding at the
fiber surface balance each other, making both the bulk and
surface concentrations constant is time. Note that although the
surface concentration becomes static, the steady state binding
(Jin) and unbinding (Joy) fluxes individually are not zero at the
surface (see Figs. 1 and 2, obtained at different values of wj)
and at large time Ji, = Jou = Ji. In BP’s case, with perfectly
absorbing surface, Ji, is given by the surface integral of the
diffusional current —D [ Vpd A onto the absorbing surface
(of area A). But for our sensor with finite binding constant, the
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FIG. 2. (Color online) Semilog plot of binding (J;,) and unbind-
ing (Joy) fluxes (both scaled with the steady state value J. ,;) as a
function of time. Here we used the same py, D, and w, as in Fig. 1
while w, was increased 100 times to reach a steady state value J,
comparable to Jzp. We explain later why this comparison is not
very useful due to difference in the boundary conditions in the two
problems.
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influx Ji, = [ dAp(o, — 0)w, is computed by integrating the
binding term [on the right-hand side of Eq. (2)] over the area A
of the fiber surface, and similarly the outflux Jo, = f dAw,o
is computed from the unbinding term. We consider the initial
condition where at + = O the system is filled up with a fluid
carrying an uniform concentration of X. At ¢t = 0 the influx is
nonzero as the concentration of X molecules in the vicinity of
the fiber surface (py) is nonzero. On the other hand the outflux
is zero at ¢ = 0 because there are no bound X molecules at the
beginning. BP has considered a perfectly absorbing surface,
which can theoretically be attained in the limit oy — oo and
w, — 0. Note that, in Egs. (1) and (2), when oy > o, the
binding term reduces to p;09w;, and it appears that we do not
need wy, to be infinity in addition. But practically oy is bounded
due to the finite size of the receptors. BP had approximated the
receptors to occupy a small area with radius s ~ 10 A. For our
sensor it amounts to about 10'® receptors covering the whole
fiber surface. We used this value as the maximum coverage
oy for Figs. 1 and 2. To compare with BP’s case we focus
on the binding flux of X only.

First we adapt BP’s general expression [1] for the steady
flux J = 4mwaDp, to our cylindrical geometry. BP had shown
that this flux can be calculated for any shape by mapping the
steady diffusion equation V?p = 0 to the Poisson equation
for potential V2¢ = 0, in charge-free space. It can be shown
that generally J = 4w C Dpy, where C is the capacitance of
a conductor with free charge Q on its surface. Specifically,
C = 0/¢o0, Where ¢ is the potential difference between
the conductor and infinity. For the sensor the cylindrical fiber
is the absorbing surface. With a radius R; = 0.1 mm and
length L = 50 mm (i.e., aspect ration 500) it is as good as
a one-dimensional line. For a line charge density A, extending
from x = —L/2 to L/2, the expression for the potential
¢(z) along the perpendicular bisector, z distance away from
V1HG/LP+1
N e

where k = 1/4meg is the Coulomb force constant. Using the
approximation R; /L < 1 we get ¢(R;) =~ ZI‘TQ In(2L/R;) and
C ~ LInQ2L/R;). Thus Jgp ~ 27 DLpy In(2L/R;).

To compute the binding flux J;, we have to numerically
time evolve the dynamical equations [Eqgs. (3) and (4). First,
to get realistic values for the kinetic coefficients w;, and w,
we use experimental data on surface adsorption o (¢) versus
time from Ref. [11], obtained at two widely different initial
bulk densities (a) pg = 0.001 mg/ml and (b) pg = 0.1 mg/ml,
and possibly at different surface density of receptors. Note
that the nondimensionalized equations (3) and (4) do not
explicitly scale with antigen (X) density py and therefore
these data sets can be treated as independent. Despite the
wide difference in pg, the saturation times (7y) in the two
cases were similar (the symbols in Fig. 3). This could be
rationalized by noting that in case-b the fiber was soaked in
the receptor solution for 2 hrs while for case-a it was soaked
for a very long time (about 16 h). From this information we
inferred that in case a o = o™ while for case b of < ™.
We choose D = 107 cm?/s typical of diffusion of small
molecules in water [12,13] (BP also took the same D for
their estimates). We had to determine wy, w,, and aob by
matching our numerical results [from Eqgs. (3) and (4)] with the

the center of the line charge, is ¢(z) = k%]n
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FIG. 3. (Color online) Surface density of bound antigens o (¢)
vs time. The y axis is scaled with the saturation value oy =
o(t — o0o) since we do not know the proportionality constant
connecting experimentally measured absorbance A and o. The
symbols represent experimental data. In (a) pp = 0.001 mg/ml and
in (b) po = 0.1 mg/ml. The solid lines are from our numerical
integration of Egs. (3) and (4). For (a) we chose oy = 0.08 pug/mm?,
i.e., the maximum possible surface coverage. It turns out that a
reasonably good match with the two experimental o(¢) profiles
and with 0% /o%, were obtained for @, = 0.75 x 107 um?/s, w, =
0.35 x 1072/s, and o{ = 0.014 ug/mm?, ie., about 5.5 times less
than the maximal coverage.

temporal profiles of o (¢) and the ratio o2, /o2 . We converged
to wp =0.75x 107 ums™!, w, =0.35x1072s7!, and
aé’ = 0.014 ug/mm?. These numbers for w,, w, appear rea-
sonable when compared to the reaction-diffusion processes on
bacterial membranes [10].

As mentioned earlier we used a cylindrical polar coordinate
system to discretize the space. Uniform binning was used along
z and ¢, while r coordinate was binned nonuniformly such
that the volume of each bin (rdrd¢dz) remains constant.
Reflecting boundary condition was used at the walls of
the cylindrical chamber, by ensuring zero currents at the
boundaries. We used a uniform distribution of X molecules
in the bulk as our initial condition, that is, p(t = 0) = py and
o(t=0)=0.

We then compute the flux Ji,(¢) = f dAp(og — o)wp,
which is the binding term in the right-hand side of Eq. (2),
integrated over the cylindrical fiber surface, as a function
of time. Interestingly, Ji,(f) goes through a minima before
it saturates to J, (see Figs. 1 and 2). We explain the origin of
this nonmonotonic behavior later when we study the dynamics
in detail. In Fig. 1 the steady state flux J, is much lower than
Jpp, while in Fig. 2 it is comparable, but J, and Jzp depend
on different sets of parameter values. Both of them are steady
state properties, but J, depends on wj, w,, 0y, and py while
Jpp depends on D and py. This difference arise from the
difference in the boundary conditions of a confined versus an
unbounded system. Therefore, the comparison is not fair. J,
can be calculated by setting the left-hand side of Eq. (4) to
zero and using mass conservation, which is discussed later.

So far we had implicitly assumed that the microorganism
can sense the ambient py by measuring the influx (J) of X
molecules, but BP had also considered the realistic possibility
that they can infer py by measuring the state of occupation
of its surface receptors, that is, density of receptors that are
bound to X molecules. In fact this is the recipe which most
practical biosensors employ. For example, in our particular
sensor o (t) decides the intensity of optical adsorption. In BP’s
theory a bacteria can sense its o () in response to local py and
decide to move towards or away from the chemoattractant or
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the chemorepellent, respectively. For a static biosensor o (¢)
can only increase towards saturation. Since a system takes
some time to attain saturation, this measurement process is
inherently slow compared to the measurement of instantaneous
flux. On the other hand, measurement of any instantaneous
variable is prone to fluctuation error whereas long time
observables like o(t — oo) are more dependable. So the
challenge is either to reduce the saturation (waiting time)
time or choose an optimum time interval 7 over which an
instantaneous variable like J(¢) or o(¢) should be measured
(sothat AJ/J or Ao /o is small). BP had correctly concluded
that a bacteria must employ the second strategy since it has to
rapidly change its direction of motion based on comparisons
between its successive measurement of o (7). BP had estimated
T ~ 1s for E. coli bacteria. Recent findings [14] show that
bacteria have a very efficient mechanism for amplifying the
minute signal generated by binding of external sugar molecules
to its receptors. It has the capability of detecting 0.1% change
in the attractant density and over four orders of magnitude
of sugar concentrations. Reference [15] has shown that for
a particular type of biosensor flux detection could be a
superior method compared to measuring long time saturation
properties. For our sensor, we now investigate in detail how
saturation time of the sensor varies in response to py and how
it can be steered by choosing oy.

III. MEAN FIELD THEORY

First we discuss a simple mean field (MF) limit of the
dynamics. In the MF approximation we consider the surface
concentration to be uniform over the surface of the fiber and
the volume concentration to be uniform through out the bulk.
Let V, be the volume of the annular space and Ay be the
surface area of the fiber. At = 0, Ny = poVy and later Ny =
o, Vo + 0, Ao, where p,, = p, (t) is the mean field density
(denoted by subscript M) of X molecules and o,, = o,,(¢) is
the corresponding surface density of the bound X molecules.
In the nondimensional form we have

o, =1—0asd,, &)

where g, = Pu G, = v and o = 240 — N The bulk
} o ) o0 Vo No™

density p,, is homogeneous and slaved by o, [via Eq. (5)]
so we need to consider only the equation of motion for the
surface reaction, namely Eq. (4). By substituting for p,,, from
Eq. (5) into Eq. (4), and simplifying, we get

do,

d__:l:)\l&; — A6, + Az, (6)
where Ay = ad@p, Ay = [(1 + @)dp + @, ], and A3 = @p.

By integrating this equation we get

T () do
.= / o @)
5,0)=0 | M0, — A0, + A3

2 A Ay — 206
= — tan~! —2 — tan~! 2,—10"” , (8
iAg iAg iAR

where Agp = \/)»% — 411 A3. By inverting the above equation,

1 A A
6,(r)= 2—)”{)»2 — Agtanh I:tanh1 (ﬁ) + %ri“ ©))
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For any set of parameter values, it can be shown that Az
is always real and we also have Ay/Ag > 1. As a result
tanh~'(A,/Ag) is always a complex number. Using the
standard property tanh~! x — coth™!' x = im/2, we can rewrite
Eq. (9) as

1 AR
Y =— Ay — . 10
5u(®) le[z tanh[tanh_l(i—f)—i—“%]] 10

This formula gives excellent fit to the numerical data (not
shown here), obtained by integration of Egs. (3) and (4), at a
high value of the diffusion constant, D = 1073 cm?/s.

The steady state solution (&;4’) can be obtained either
by setting &,, = 0 in Eq. (6) or from the t — oo limit of
Eq. (9). We get & = 5[ — A].

The mean field approximation will fail if diffusion is
not sufficiently fast compared to the time scale at which
surface binding reactions cause a depletion in the antigen
concentration (o). In such a scenario the spatial inhomogeneity
in p (along r) takes a long time, comparable to the saturation
time of the sensor, to homogenize. A better understanding
can be gained by comparing the time scales of the three
processes: diffusion (7p), binding (#,), and unbinding (z,).
We get the individual time scales from Eq. (1) by comparing
each term on the right-hand side with that on the left-hand
side. For example, p ~ DV?p gives, by dimensional analysis,
tp' ~ L. Similarly, 7, ~ 22 and £;! ~ 2. Here we
have assumed R = R, — R; to be the only relevant length
scale. For diffusion, this is the spatial scale of density
inhomogeneity. Now, f, and ¢, are the time scales over which
density inhomogeneity are created near the fiber due to the
surface reactions, while 7 is the time interval during which
such inhomogeneities are ironed out. Therefore, mean field
approximation requires diffusion to be a faster process, that
is, tp K tp,t,. These inequalities yield the criteria % <1
and "Up‘;’—“; & 1. The first inequality suggests that mean field
approximation will be correct at high D or low oy values.
We have verified these conditions numerically by looking
for density inhomogeneity p(r) during the transients, in the
numerical solution of Egs. (3) and (4) (see Fig. 4). For
example, for Ny/Ng = 1,D = 107 cm?/s the density remains
uniform through out, at all times. But when oy is increased by
choosing N/ Ny = 10, strongly inhomogeneous p(r) appears
(i.e., MF theory fails). Now, in addition, if D is hiked, p(r)
becomes homogeneous again (graph not shown here). The
second inequality suggests that, along with high D and low
oy, we also need high pg. Only then can both #,,t, > tp be
satisfied. We have verified this condition on py along with
similar conditions on w, and w, resulting from the inequalities.
Figure 5 shows a comparison between numerical solution of
Egs. (3) and (4) and mean field results for pp = 0.1 mg/ml
and o¢ = 0.01 ugm/mmz, that is, at high py and low oy. At
these parameter values the influx J;, does not go through
any minima. The reason why the influx J;, goes through a
minimum in Figs. 1 and 2 is now clear from Fig. 4(b), which
shows when p(r) becomes inhomogeneous (in the non-MF
case) the p(r) in the vicinity of the fiber undergoes a dip
(triangles) before it becomes uniform (circles) at late times. In
the mean field regime the minima is absent because the p(r)
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FIG. 4. (Color online) Radial density profile p as a function of
r — R; in the bulk, at three different times: right after start (square),
at saturation (circle), and at some intermediate time (triangle). Panels
(a) and (b) differ in the parameter N, /N, (which is proportional to oy
at fixed pg). The values of D, w;, w, were obtained through Fig. 3.
Transition from mean field to non-mean-field-type density profile
occurs as we go from panels (a) to (b) by increasing N,;/N,. Note
that, at a fixed py, the fraction of antigens (X) remaining in the bulk
can be reduced (consequently the bound proportion can be increased)
by increasing N;/N,. This is desirable for making the sensor more
sensitive, especially when py is small.

in the vicinity of the fiber decreases monotonically in time, as
is clear from Fig. 4(a).

2 T

1.5

FIG. 5. (Color online) Semilog plot of binding (J;,) and unbind-
ing (Jou) fluxes as a function of time in the mean field regime
(i.e., high py and low oy with N;/Ny = 0.05). The symbols (circles
and squares) are obtained from numerical integration of Egs. (3)
and (4), while the solid lines are the corresponding mean field results.
Here pp = 0.1 mg/ml, oy = 0.01 ugn]/mmz, and the values of w,
and w, are the same as those in Fig. 1 (i.e., the values estimated from
experimental data).
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FIG. 6. Semilog plot of saturation time 7, (s) vs the density of
receptors oy (ig/mm?). The inset shows saturated signal o, Vs 0.
We fix pg at a very low value, 0.001 mg/ml, to test the sensitivity of
the sensor. The values of w;, and w, are those estimated before. Both
7o and o, saturate at high values of ¢y, much beyond the maximum
surface coverage (0.08 1g/mm?) considered here. We have explored
the seemingly unrealistic oy > o}"** regime here because it may be
possible to increase oy by choosing smaller receptor molecules in
another system.

IV. RESULTS

We now study the general case when MF theory is invalid
and thus we have to depend on numerical integration of
Egs. (3) and (4). Our numerical curves for o versus time,
shown in Fig. 3, could be fit to exponential functions like
o (t) = 0so(1 — exp~/™), allowing us to estimate a saturation
time scale 1y and the saturated value o, (plotted in Figs. 6
and 7). 19 and 0, depend on both o and py.

The aim of Figs. 6 and 7 is to identify the regimes where
saturation time 7, can be reduced and saturated signal o, can
be maximized. For Fig. 6, pyp has been held fixed at a low
value, 0.001 mg/ml, while for Fig. 7, oy is fixed at oy"* =
0.08 ug/mm?. The insets of both the figures show that signal
can be enhanced by increasing either py or oy, which results
in decrease or increase of 1y, respectively. Of course, at high
po a strong saturated signal can be achieved within a short
saturation time, but the sensitivity of a sensor is tested when
0o is small, which we focus on below. For low pg, o should
be maximum to maximize the signal, even at the cost of higher
waiting time. Operating near maximum receptor coverage is
also necessary, as Fig. 6 shows that the nonlinear response
starts to increases near this point. For moderate and high py,
we should choose moderate oy such that 7y is not so high and
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FIG. 7. Semilog plot of saturation time 7y (s) vs the density of X
molecules py (mg/ml). Here oy is held fixed at the maximum surface
coverage (0.08 j1g/mm?) in order to maximize the signal. The inset
shows that even at this maximum surface coverage the saturated signal
0 drops drastically at low po.

the signal is strong enough. This may appear analogous to the
conclusion of BP, where with just a fraction of the cell area
(~1/1000) covered with receptors the steady flux could be as
high as Jpp /2, where Jpp is the maximum flux with the fully
absorbing surface. The assumption behind this derivation was
that the inter-receptor distance is much much greater than the
receptor size. In Fig. 6, at 1/10th of the maximum surface
coverage (i.e., at oy ~ 0.01 ;ug/mm?) the signal oo is much
weaker compared to that at o™, This again highlights the
difference between our confined system and the steady state
behavior of Berg and Purcell’s unbounded system.

In summary, we examined the applicability of Berg and
Purcell’s ideas to real sensors. In general it turns out that a
flux-based sensor is more efficient than one which depends
on a long time signal. The flux in our sensor also shows
unexpected time variation, which results from competition
among different time scales and the extended nature of our
system. Another interesting observation is that even at realistic
diffusion constant, mean field theory works when pg is high
and oy is small. In general, nonspecific binding of X molecules
on the fiber surface can cause complications, but for the system
we have chosen here nonspecific binding was verified to be
negligible. Further, the surface reactions need not be first order,
which we have assumed here. We checked that consideration
of second-order binding kinetics does not give any new exotic
behavior (e.g., oscillations) but changes the quantitative values
of saturation time.
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