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Population dynamics and wave propagation in a Lotka-Volterra system with spatial diffusion
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We consider the competitive population dynamics of two species described by the Lotka-Volterra model in the
presence of spatial diffusion. The model is described by the diffusion coefficient (dα) and proliferation rate (rα) of
the species α (α = 1,2 is the species label). Propagating wave front solutions in one dimension are investigated
analytically and by numerical solutions. It is found that the wave profiles and wave speeds are determined by the
speed parameters, vα ≡ 2

√
dαrα , of the two species, and the phase diagrams for various inter- and intracompetitive

scenarios are determined. The steady wave front speeds are obtained analytically via nonlinear dynamics analysis
and verified by numerical solutions. The effect of the intermediate stationary state is investigated and propagating
wave profiles beyond the simple Fisher wave fronts are revealed. The wave front speed of a species can display
abrupt increase as its speed parameter is increased. In particular for the case in which both species are aggressive,
our results show that the speed parameter is the deciding factor that determines the ultimate surviving species,
in contrast to the case without diffusion in which the final surviving species is decided by its initial population
advantage. Possible relations to the biological relevance of modeling cancer development and wound healing are
also discussed.
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I. INTRODUCTION

The dynamics of population evolution has received a
great deal of interest both theoretically and in experimental
observations [1,2]. In particular the cooperative Lotka-Volterra
(LV) model [3–5] is believed to be an appropriate model for a
competitive community. While the dynamics and stability of
the system in the case of well-mixed populations have been
rather well described, the case in which the species can undergo
spatial diffusion is less understood. The motion or migration
of interacting species would produce important effects on the
ecology of the system. The effects of species mobility modeled
by spatial diffusion can result in possible wave fronts giving
rise to interesting spatiotemporal dynamics. There have been
several analytical studies focused on the stability of the LV
system induced by diffusion. Vance and Allen showed that
dispersal did not always promote the stability of the population
[6,7]. Takeuchi and Hastings suggested that diffusion does not
affect the system’s stability [8,9].

It is known that for the LV model with diffusion, there
exist traveling wave solutions propagating from one stationary
point to another. At first glance, diffusion is a kind of random
motion which should not be associated with directed motion.
However, nonlinearity resulting from the interactions between
the species can produce propagating waves, which travel
much faster than the species’ diffusional speeds. Such a
propagating wave front represents a progressive replacement
of one equilibrium (ahead of the front) by another (behind
the front). So from the viewpoint of wave propagation, one
can observe the stability of the system directly. On the other
hand, previous research had been focused on the existence of
traveling waves in the diffusive LV model. The simple Fisher’s
wave front can provide the connection of two states (one stable
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to the other unstable states) in part of the parameter space,
but the intermediate equilibrium state is often overlooked or
ignored. For the competitive diffusive LV model, there exists
a combination of wave fronts as first mentioned by Tang and
Fife in the uncoupled logistic growth model [10].

In this paper, we consider the LV model of two competitive
species with spatial diffusion and investigate the steady wave
front propagation not limited to the simple Fisher’s waves. In
particular, we examine the effect of intermediate equilibrium
on the wave front profiles and wave speeds. Analytical
results for the wave front and wave back speeds are obtained
and verified by numerical solutions. It is found that not
only dispersal but also proliferating rates affect the system’s
stability. In other words, it is the intrinsic speed parameters
of these species that determine the population evolution and
species domination or extinction.

II. COMPETITIVE LOTKA-VOLTERRA MODEL
WITH SPATIAL DIFFUSION

We consider the two-species LV model with each species
capable of undergoing spatial diffusion in one dimension. The
populations of the two species are denoted by n1(x,t) and
n2(x,t), obeying the reaction-diffusion type PDEs:

∂n1

∂t
= d1

∂2n1

∂x2
+ r1n1(1 − n1 − a12n2),

(1)
∂n2

∂t
= d2

∂2n2

∂x2
+ r2n2(1 − n2 − a21n1),

where dα > 0 and rα > 0 (α = 1,2) are the diffusion coef-
ficients and growth rates, respectively. For the competitive
LV model, both a12,a21 > 0, and the environmental carrying
capacity is taken to be 1. There are two kinds of compe-
tition among the members in the population: intraspecific
competition and interspecific competition. The parameters a12
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determine the competitiveness of two different species. In
this paper, we will consider systems in one dimension and
investigate the associated wave propagations.

In the presence of diffusion, Eqs. (1) resemble the
well-studied Fisher-Kolmogorov equation [11]. In the cor-
responding kinetic ODEs, steady states occur at the fixed
points (0,0),(1,0),(0,1),(n∗

1,n
∗
2), where n∗

1 ≡ a12−1
a12a21−1 and n∗

2 ≡
a21−1

a12a21−1 . The last steady state is only feasible when the densities
of the populations are nonnegative. The study of wave fronts
in Eq. (1) was initiated by Tang and Fife [10] who studied
the wave front connecting from (0,0) to (n∗

1,n
∗
2). Then other

situations involved the wave fronts connecting two of the four
equilibrium points: Gardner and Kan-on proved the existence
of waves connecting the equilibrium states (1,0) and (0,1)
[12–16]; Kanel and Zhou examined the two waves connecting
the fixed points of (1,0) and (n∗

1,n
∗
2) [17]. For the case involving

three equilibrium points, Hosono transformed Eq. (1) into a
three-dimensional ODE system and discussed the traveling
wave fronts [18,19] connecting two stationary states. All these
results merely demonstrated the existence of Fisher’s wave
fronts that connect two equilibrium fixed points. In this paper,
using analytical and numerical methods, we investigate the
stable propagating behavior beyond the simple Fisher’s wave
fronts.

A. The wave front speed constraint

We consider a local wave front that connects two equilib-
rium states X and Y as shown schematically in Fig. 1(a). For
local wave front solutions, one writes nα(x,t) = Uα(x − ct),
for α = 1,2, for some wave front speed c to be determined.
Then the reaction-diffusion type equations such as Eq. (1)
will lead to a system of ODEs with dynamics described by
(2) in a 4-dimensional phase space. Two fixed points in the
corresponding 4-dimensional phase space of the dynamical
system are denoted by X and Y, and a propagating wave
front of speed c is represented by a flow from X to
Y as shown schematically in Fig. 1(b). Suppose the first
two components in the phase space vector represent the
population or concentration profiles; a physical requirement
imposes that these population components be nonnegative.
If the final fixed point Y consists of some zero popula-
tion components, e.g., Y = (0, ∗ , ∗ ,∗), then the flow in
phase space when approaching Y cannot spiral into Y;
otherwise some population components would be negative.
The above physical requirement imposes a constraint on the
eigenvalue of the Jacobian at Y and in turn results in a

Y

X

c

X

Y

(a) (b)

FIG. 1. (Color online) Schematics illustrating the wave front
propagation for a wave front obtained by connecting the two
equilibrium states. (a) Schematic wave front profile propagating with
speed c. (b) 4-dimensional phase space flow from the fixed points X
to Y resulting in a propagating wave front in (a).

minimum constraint on the speed, c � cmin. Furthermore, in
many situations (as in all the scenarios in this paper), the
stable wave front will select to propagate with the minimal
speed cmin. However, it should be noted that even though a
wave front propagation is possible if there is a flow connecting
from X to Y, the stability of the wave front is not guaranteed
but can be tested by numerical solution of the PDEs.

Furthermore, in all the numerical solutions we obtained, the
wave front always propagates with its minimal allowed speed
and we never observe any steady wave front that propagates
with some speed not constrained by an upper limit. Therefore,
we shall adopt the conjecture that the wave front will propagate
with its minimal constrained limit.

III. ANALYTICAL RESULTS FOR WAVE SPEEDS

In this section, the wave front speed constraints are derived
analytically. Assuming local plane wave fronts with n1(x,t) =
U1(x − c1t) and n2(x,t) = U2(x − c2t), Eqs. (1) are expressed
as a four-dimensional first-order ODE dynamical system:

U ′
1 = V1,

U ′
2 = V2,

(2)
d1V

′
1 = −c1V1 − r1U1(1 − U1 − a12U2),

d2V
′

2 = −c2V2 − r2U2(1 − U2 − a21U1).

This ODE system always has three fixed points X0 ≡
(0,0,0,0), X1 ≡ (1,0,0,0), X2 ≡ (0,1,0,0), and another fixed
point X3 ≡ (n∗

1,n
∗
2,0,0) emerges when both populations are

nonnegative. Nonlinear dynamic is employed to analyze these
fixed points one by one. The eigenvalues of the Jacobian at
the fixed point X0 ≡ (0,0,0,0) obeys [λ(λ + c1

d1
) + r1

d1
][λ(λ +

c2
d2

) + r2
d2

] = 0, which can be directly computed to give

− c1

2d1
±

√(
c1

2d1

)2

− r1

d1
, − c2

2d2
±

√(
c2

2d2

)2

− r2

d2
.

(3)

It is clear that all the eigenvalues have negative real parts and
the fixed point is stable. The physical requirement demands
that the fixed point must be a stable node but not a stable
spiral; otherwise regions with negative populations will result.
So the wave speeds for the wave front ending with X0 must
exceed the lower bound given by

c � max[v1,v2], (4)

where

vα ≡ 2
√

dαrα, α = 1,2, (5)

is the “speed parameter” of the α species. It will be shown
later that the phase diagrams for the wave profiles and all the
wave front speeds are determined by the speed parameters of
the two species.

For the fixed point X1, the eigenvalues can be similarly
shown to obey [λ(λ + c1

d1
) − r1

d1
][λ(λ + c2

d2
) + r2(1−a21)

d2
] = 0,
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FIG. 2. (Color online) The phase diagram of steady wave prop-
agation. Wave profiles are determined by the speed parameters of
the two species, with two different wave properties separated by the
boundary v2 = v1. The regions v1 < v2 and v2 < v1 are denoted by I
and II, respectively.

which can be directly computed to give

2λ
(1)
± = − c1

d1
±

√(
c1

d1

)2

+ 4r1

d1
,

(6)

2λ
(2)
± = − c2

d2
±

√(
c2

d2

)2

− 4r2(1 − a21)

d2
.

One can see that λ
(1)
± is always real. But for a21 < 1, there

is the possibility of Im{λ(2)
± } �= 0 resulting in a spiral. So the

physical requirement ensuring that λ
(2)
± must be real leads to

c2 �
√

(1 − a21)v2. (7)

In this case, the fixed point X1 is a saddle, which has three
stable directions and only one unstable direction. Similar
analysis is applied to X2 ≡ (0,1,0,0) and one can get the wave
speed constraints of n1 to be

c1 �
√

(1 − a12)v1. (8)

X2 is also a saddle with three stable directions and one unstable
direction. Finally, for the fourth fixed point X3, the eigenvalues
cannot be expressed analytically, but they are given by the
solution of the quartic polynomial equation

λ2

(
λ + c1

d1

)(
λ + c2

d2

)
+ r1

d1
λ

(
λ + c2

d2

)
(1 − 2n∗

1 − a12n
∗
2)

+ r2

d2
λ

(
λ + c1

d1

)
(1 − 2n∗

2 − a21n
∗
1)

+ r1r2

d1d2
(1 − 2n∗

1 − a12n
∗
2)(1 − 2n∗

2 − a21n
∗
1)

− r1r2a12a21n
∗
1n

∗
2

d1d2
= 0, (9)

and the numerical values of the eigenvalues and eigenvectors
can be obtained precisely. This fixed point X3 does not set a
limit to the wave speed, but the wave solution connecting these
fixed points can become more complicated if X3 emerges. To
get some insights about the wave front profiles, the PDEs
in Eq. (1) are solved numerically, and the wave speeds are
measured.

IV. NUMERICAL RESULTS

According to the phase plane analysis for the nondiffusive
LV model, there are four situations, but these can be reduced
to three cases without loss of generality: (1) interspecific
competition in which one species dominates over the other:
0 � a12 < 1 < a21; (2) two populations coexisting: 0 � a12 �
a21 < 1; (3) interspecific competition in which both species
are aggressive: a12 � a21 > 1. One can study the wave front
profiles by numerically solving the PDEs in Eq. (1) for
the above cases. Open boundary conditions are used. For
convenience, time is in units of 1/r1 and space is in units
of

√
d1/r1 in these numerical results. In all cases, the

steady propagating wave profiles are determined by the speed
parameters of the two species, and the phase diagram is shown
in Fig. 2 with two different wave properties separated by the
boundary v2 = v1.
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FIG. 3. (Color online) For the case 0 � a12 < 1 < a21, with a12 = 0.75. (a) The nullclines of the corresponding kinetic ODE system in
Eq. (1); solid black and dashed red lines represent the nullclines of species 1 and 2. The stable and unstable fixed points are denoted by • and ◦,
respectively. (b) Steady wave front profiles in region I (v2 > v1) of the phase diagram Fig. 2. Wave profiles each separated by a time difference
of 50 propagating in the +x direction are shown. Time is in units of 1/r1 and space is in units of

√
d1/r1. (c) Similar steady wave front profiles

in region II (v1 > v2) of the phase diagram.
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FIG. 4. (Color online) For the case 0 � a12 < 1 < a21, with a12 = 0.75. In this case, the wave front speeds are independent of the parameter
a21. Symbols in (a) and (b) are wave speeds measured from the numerical solutions. (◦): Wave front speed of n1. (�): Wave front speed of n2.
(•): Wave front speed of n1 accompanied with the wave back of n2 of the same speed. (�): Wave front speed of n2 accompanied with the wave
back of n1 of the same speed. The solid and dashed lines in (a) and (b) are analytic results of the wave front speeds c1 and c2, respectively.
(a) Wave front speeds vs the speed parameter v1 for fixed value of v2. In the v1 < v2 region, solid and dashed lines are c1 = v1

√
1 − a12 and

c2 = max(v1,v2) = v2, respectively. In the v1 > v2 region, solid line is c1 = max(v1,v2) = v1. (b) Wave front speeds vs the speed parameter v2

for fixed value of v1. In the v2 < v1 region, solid line is c1 = max(v1,v2) = v1. In the v2 > v1 region, solid and dashed lines are c1 = v1
√

1 − a12

and c2 = max(v1,v2) = v2, respectively.

(1) 0 � a12 < 1 < a21. In this case the two species have
opposite intra- and interspecific competitions. From the two-
dimensional phase portrait for the LV model in Fig. 3(a), one
can see that if the interspecific competition of one species
dominates over the other, then the dominant species (the 1
species in this case) will become the final winner in the absence
of spatial diffusion. But the above consequence can be quite
different in the presence of diffusion. The steady propagating
wave profiles are determined by the speed parameters of the
two species separated by the boundary v2 = v1 as described
by the phase diagram in Fig. 2. The wave profiles of the two
species at three different times in the two regimes of the phase
diagram are also shown in Figs. 3(b) and 3(c). In the v2 >

v1 region (I), the dynamics can be described by the flow of
fixed points: X1 → X2 → X0. The dynamics of the system
is first attracted to the intermediate steady state (saddle fixed
point) X2, leading to slow wave front of n1 and the wave
back of n2 in the wave profiles. In the v2 < v1 region (II),
the dynamics can be described by the flow of fixed points:

X1 → X0. There is no doubt that the superior species (the
1 species) with high intrinsic speed will ultimately drive the
other to extinction [see also Fig. 3(c) for the wave profiles].
But when the inferior species (the 2 species) has a larger speed
parameter (i.e., v2 > v1, region I), then the two populations can
coexist albeit in different regions, as shown in the wave profiles
in Fig. 3(b). This interesting situation originates from their
different intrinsic propagating speeds: The superior competitor
owns a slow speed, but the inferior competitor can escape by
propagating with a faster wave front while having a slower
wave back of vanishing population as shown in Fig. 3(b). The
wave back of the inferior species propagates with the same
speed as the wave front of the superior species reflecting the
fact that they are driven to extinction by the superior species.
The faster speed of the inferior species is determined by the
fixed point X0 and the superior population has the slow speed
determined by the fixed point X2.

The steady wave front propagating speeds for both species
are examined as functions of their speed parameters as shown
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FIG. 5. (Color online) For the case 0 � a12 � a21 < 1. (a) The nullclines of the corresponding kinetic ODE system in Eq. (1); solid black
and dashed red lines represent the nullclines of species 1 and 2. (b) Steady wave front profiles in region I of the phase diagram Fig. 2. Wave
profiles each separated by a time difference of 50 propagating in the +x direction are shown. Time is in units of 1/r1 and space is in units of√

d1/r1. (c) Similar steady wave front profiles in region II of the phase diagram.
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FIG. 6. (Color online) For the case 0 � a12 � a21 < 1, with a12 = 0.25 and a21 = 0.75. Notations for the measured speeds and the analytic
results are the same as in Fig. 4. (a) Wave front speeds vs the speed parameter v1 for fixed value of v2. In the v1 < v2 region, solid and dashed
lines are c1 = v1

√
1 − a12 and c2 = max(v1,v2) = v2, respectively. In the v1 > v2 region, solid and dashed lines are c1 = max(v1,v2) = v1

and c2 = v2
√

1 − a21, respectively. (b) Wave front speeds vs the speed parameter v2 for fixed value of v1. In the v2 < v1 region, solid and
dashed lines are c1 = max(v1,v2) = v1 and c2 = v2

√
1 − a21, respectively. In the v2 > v1 region, solid and dashed lines are c1 = v1

√
1 − a12

and c2 = max(v1,v2) = v2, respectively.

in Fig. 4. Figure 4(a) shows the wave front speeds as v1

increases for a fixed value of v2. The wave speeds are measured
from the numerical solutions of Eq. (1) for waves that have
attained their steady shapes. It is clear that the nature of the
propagating waves shows a sharp change as v1 increases across
v2. The wave front speeds as a function of v2 for a fixed value
of v1 are also shown in Fig. 4(b). As shown in Fig. 4, the wave
front speeds are well predicted by minimal speed values from
the analytic results given by Eqs. (4), (7), and (8) in Sec. III.

Furthermore, it is worthwhile to note that for fixed v2, as v1

increases from small values, there is an abrupt jump in the wave
front speed of the 1 species as its speed parameter exceeds v2.
The jump in wave front speed of the superior species can be
obtained from the discontinuity of the speed as v1 increases
across the value of v2, and is given by

δc = v1(1 −
√

1 − a12). (10)

Such a scenario can be depicted by an analogy in the
process of cancer development. One of the characteristics of
cancer is uncontrolled growth and fast dispersal [20,21]. One
can think of the cancer cells as being the superior species
(1 species) in the sense that they have strong competition on

normal cells (2 species). The case of low v1 (v1 < v2) can be
thought of as benign cancerous tumor cells in which they can
proliferate but migrate with a slow speed and healthy cells
can still grow. In the metastasis stage, the proliferation and/or
migration of the cancer cells becomes active and its speed
parameter increases. As v1 becomes larger than v2, there is a
sharp increase in the propagation speed of the cancer cells by
a factor of 1/

√
1 − a12, and at the same time the cancer cells

will occupy all the possible resources and suppress the growth
of normal cells.

(2) 0 � a12 � a21 < 1. In this case the interspecific compe-
tition is not so strong such that the two populations can coexist
persistently, as depicted in the phase portrait in Fig. 5(a).
Although the presence of diffusion does not change the
stability of system, the wave fronts are different and can have
different propagating speeds. Their propagating behavior is
shown in Fig. 5, which is similar to the previous case of
a superior competitor with a slow wave speed. The wave
front also ends at the population fixed point (0,0) which
determines the fast propagating speeds. The only difference
is that the wave front profile starts from the new fixed point
X3 ≡ (n∗

1,n
∗
2,0,0) instead, and passes through the fixed point
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FIG. 7. (Color online) For the case a12 � a21 > 1, with a12 = 3 and a21 = 2. (a) The nullclines of the corresponding kinetic ODE system
in Eq. (1); solid black and dashed red lines represent the nullclines of species 1 and 2. (b) Steady wave front profiles in region I of the phase
diagram Fig. 2. Wave profiles each separated by a time difference of 50 propagating in the +x direction are shown. Time is in units of 1/r1 and
space is in units of

√
d1/r1. (c) Similar steady wave front profiles in region II of the phase diagram.
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FIG. 8. (Color online) For the case a12 � a21 > 1. In this case, the wave front speeds are independent of the parameters a12 and a21.
Notations for the measured speeds and the analytic results are the same as in Fig. 4. (a) Wave front speeds vs the speed parameter v1 for
fixed value of v2. Solid and dashed lines are c1 = max(v1,v2) = v1 and c2 = max(v1,v2) = v2, respectively. (b) Wave front speeds vs the speed
parameter v2 for fixed value of v1. Solid and dashed lines are c1 = max(v1,v2) = v1 and c2 = max(v1,v2) = v2, respectively.

X1 ≡ (1,0,0,0) or X2 ≡ (0,1,0,0), which in turn sets the wave
speed limit of the slow wave back. The slow wave back
speed is the same as the propagating wave front speed of
the other species. In the v2 > v1 region (I), the dynamics can
be described by the flow of fixed points X3 → X2 → X0; in
the v2 < v1 region (II), the dynamics can be described by the
flow of fixed points X3 → X1 → X0. The steady wave front
propagating speeds for both species are examined as functions
of their speed parameters as shown in Fig. 6. Figure 6(a) shows
the wave front speeds as v1 increases for a fixed value of v2.
The wave speeds are measured from the numerical solutions
of Eq. (1) for waves that have attained their steady shapes.
Similarly to the previous case, the nature of the propagating
waves shows a sharp change as v1 increases across v2. The
wave front speeds are also well predicted by minimal speed
values from the analytic results in Sec. III. Again there is a
jump in the wave front speed of δc1 = v1(1 − √

1 − a12) for
the 2 species as v1 increases across v2 [see Fig. 6(a)]. On
the other hand, there is also a jump in the wave front speed
of δc2 = v2(1 − √

1 − a21) for the 1 species as v2 increases
across v1 [see Fig. 6(b)]. It is worthwhile to note that such
a “shift of gears” in the abrupt change of wave front speed
has also been observed in a recent reaction diffusion model
involving cell differentiation [22].

The present scenario can be used to describe the process of
wound healing [23] in which old cells (2 species) and newly
proliferated cells (1 species) can coexist perpetually. Old cells
have less competitive effect on the newly proliferated cells
so as to assist the growth of new cells, and are modeled by
the condition of a12 < a21 < 1. When there is a wound, the
epidermal cell will begin its fast proliferation and undergoes
migration. The other healthy cells properly reduce their growth
speed which is determined by the competition of intra- and
interspecific capacity as given by Eqs. (7) and (8).

(3) a12 � a21 > 1. In this case, the interspecific competition
is aggressive. In the pure LV model without diffusion as
depicted in the phase portrait in Fig. 7(a), ultimately one
population wins while the other is driven to extinction and the
winning species depends on which population has the starting
advantage. However, in the presence of spatial diffusion, the
situation can be quite different. The steady propagating wave
profiles are also determined by the speed parameters of the two
species, with the phase diagram in Fig. 2 with two different

wave properties separated by the boundary v2 = v1. The wave
profiles of the two species at three different times in the two
regimes are also shown in Figs. 7(b) and 7(c). In the v2 > v1

region (I), the dynamics can be described by the flow of fixed
points X2 → X0; in the v2 < v1 region (II), the dynamics can
be described by the flow of fixed points X1 → X0. The wave
front propagating behavior is relatively simple with one species
propagating while the other species is swiped out to extinction.
The steady wave front propagating speeds for both species are
examined as functions of their speed parameters as shown in
Fig. 8. In this case, the variations in the wave front speeds are
simpler due to the fact that there is no intermediate steady state
effect. Again the measured wave front speeds agree precisely
with the theoretical values.

As noted above, in the presence of diffusion, our results
indicate that the initial population has no priority and it is
the propagating behavior that determines the ultimate winner.
This can be verified through changing the initial conditions and
following the evolution of population as shown in Fig. 9. It is
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FIG. 9. (Color online) Time evolution towards steady plane wave
front profiles obtained from numerical solution of Eq. (1) for the case
of a12 = 3 > a21 = 2 > 1 and v1 = 4, v2 = 10. The initial densities
are shown by the shaded regions with n1 = 0.8 and n2 = 0.1 in the
same local region. Wave profiles at different later times are shown.
Time is in units of 1/r1 and space is in units of

√
d1/r1.
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FIG. 10. (Color online) Steady plane wave front profiles obtained from numerical solution of Eq. (1) for the case of v1 = v2. Waves
propagating in the +x direction are shown. Time is in units of 1/r1 and space is in units of

√
d1/r1. (a) 0 � a12 < 1 < a21, with a12 = 0.75

and a21 = 1.25. The dynamics can be described by the flow of fixed points: X1 → X0. Four wave profiles each separated by a time difference
of 50 are shown. (b) 0 � a12 � a21 < 1 with a12 = 0.25 and a21 = 0.75. The dynamics can be described by the flow of fixed points: X3 → X0.
(c) a12 � a21 > 1, with a12 = 3 and a21 = 2. The dynamics can be described by the flow of fixed points: X1 → X0.

clear from Fig. 9 that although species 1 has a local dominant
population initially, the final winner is still species 2 if it has
a larger speed parameter. The propagating behavior takes over
the starting advantage in the deciding factor and determines
the final survival species.

A. Two species having the same speed parameter

For the case in which the two species have exactly the
same speed parameter, v1 = v2, the wave profile cannot be
depicted by the profiles in the previous cases. In this case,
the wave front speeds are all governed by the X0 fixed point,
leading to c1 = c2 = v1 = v2. The steady propagating wave
profiles for this special case are obtained from the numerical
solution, and are shown in Fig. 10 for the three cases of
different competitiveness. It is clear that although the two
species propagate with very different wave profiles, they travel
with the same wave speeds. For the case of 0 < a12 < 1 < a21,
n1 propagates with a step wave front whereas n2 propagates
with a small asymmetric pulse as shown in Fig. 10(a). Similar
propagating profiles hold for the a12 > a21 > 1 case, but the
pulse of n2 is even more tiny as shown in Fig. 10(c). For
the case of 0 < a12 < a21 < 1, both n1 and n2 propagate with
forward step wave fronts, with the shape of n2 characterized
by a small rising shoulder as shown in Fig. 10(b).

V. CONCLUSION AND OUTLOOK

For the LV competitive system, previous research was
mostly concerned about the effect of dispersal on the system.
But in practice proliferation and dispersal have equally
important effects on the stability of system. Furthermore,

the intermediate equilibrium plays an important role in the
population dynamics, giving rise to wave propagation beyond
the simple Fisher’s wave fronts. Finally in the case of
aggressive competition, the speed parameter, vα ≡ 2

√
dαrα ,

is the deciding factor for the surviving species instead of the
initial population advantage, and dominates the dynamics of
population evolution.

In this paper, only wave propagation in one dimension is
considered. For population dynamics of interacting biological
species on land, the two-dimensional case is relevant. For the
two-dimensional case, although Eq. (1) does not admit an
exact radial symmetric wave front solution, it can be shown
easily using analysis similar to that in the standard Fisher-
Kolmogorov equation [24] that the asymptotic solution admits
a propagating wave front with speed bounds given by the
one-dimensional results.

Only N = 2 species are considered in this paper; it is
known that in the absence of spatial diffusion, the dynamics
can be very rich for more interacting species. Without spatial
diffusion, it has been shown that there is no limit cycle for
the case of N < 3 and no chaotic dynamics for N < 4 [25],
whereas for N � 5 all kinds of dynamics are possible [26]. It
would be interesting to see the spatiotemporal patterns arising
from the interplay of interactions for the cases of many species
for N � 3.

ACKNOWLEDGMENT

This work has been supported by the NSC of the ROC under
Grant No. NSC 101-2112-M-008-004-MY3, NCTS of Taiwan,
and NSFC of China under Grant No. 11204132/A040102.

[1] H. I. Freedman, Deterministic Mathematical Models in Popula-
tion Ecology (Marcel Dekker, New York, 1980).

[2] F. Brauer and C. Castillo-Chavez, Mathematical Models
in Population Biology and Epidemiology (Springer-Verlag,
New York, 2000).

[3] A. J. Lotka, J. Phys. Chem. 14, 271 (1910).
[4] V. Volterra, in Animal Ecology, edited by R. N. Chapman

(McGraw-Hill, New York, 1931).
[5] I. Bomze, Biol. Cybern. 48, 201 (1983); 72, 447 (1995).
[6] R. R. Vance, Am. Nat. 123, 230 (1984).

051908-7

http://dx.doi.org/10.1021/j150111a004
http://dx.doi.org/10.1007/BF00318088
http://dx.doi.org/10.1007/BF00201420
http://dx.doi.org/10.1086/284199


MAO-XIANG WANG AND PIK-YIN LAI PHYSICAL REVIEW E 86, 051908 (2012)

[7] L. J. S. Allen, Math. Biosci. 65, 112 (1983).
[8] Y. Takeuchi, Bull. Math. Biol. 48, 585 (1986).
[9] A. Hastings, J. Math. Biol. 6, 163 (1978).

[10] M. M. Tang and P. C. Fife, Arch. Ration. Mech. Anal. 73, 69
(1980).

[11] R. A. Fisher, Ann. Eugenics 7, 353 (1937); A. Kolmogorov,
I. Petrovskii, and N. Piscounov, in Selected Works of A. N.
Kolmogorov, Vol. 1, edited by V. M. Tikhomirov (Kluwer,
Dordrecht, 1991), pp. 248–270.

[12] R. A. Gardner, J. Diff. Equ. 44, 343 (1982).
[13] R. A. Gatenby, J. Theor. Biol. 176, 447 (1995).
[14] R. A. Gatenby, Eur. J. Cancer A32, 722 (1996).
[15] Y. Kan-on, SIAM J. Math. Anal. 26, 340 (1995).
[16] Y. Kan-on, Nonlin. Analysis TMA 28, 145 (1997).

[17] J. I. Kanel and L. Zhou, Nonlinear Anal. TMA 27, 579 (1996).
[18] Y. Hosono, Bull. Math. Bio. 60, 435 (1998).
[19] Y. Hosono, in Numerical and Applied Mathematics, Part

II, IMACS Annals on Computing and Applied Mathematics
(Baltzer, Basel, 1989), pp. 687–692.

[20] L. Liu et al., Proc. Natl. Acad. Sci. USA 108, 6853 (2011).
[21] J. Y. Chang and P. Y. Lai, Phys. Rev. E 85, 041926 (2012).
[22] M. X. Wang, Y. J. Li, P. Y. Lai, and C. K. Chan, preprint.
[23] M. Poujade et al., Proc. Natl. Acad. Sci. USA 104, 15988 (2007).
[24] J. D. Murray, Mathematical Biology, 3rd ed. (Springer,

New York, 2002).
[25] M. Hirsch, SIAM J. Math. Anal. 16, 423 (1985); Nonlinearity

1, 51 (1988); SIAM J. Math. Anal. 21, 1225 (1990).
[26] S. Smale, J. Math. Biol. 3, 5 (1976).

051908-8

http://dx.doi.org/10.1016/0025-5564(83)90068-8
http://dx.doi.org/10.1007/BF02450786
http://dx.doi.org/10.1007/BF00283257
http://dx.doi.org/10.1007/BF00283257
http://dx.doi.org/10.1016/0022-0396(82)90001-8
http://dx.doi.org/10.1006/jtbi.1995.0212
http://dx.doi.org/10.1016/0959-8049(95)00658-3
http://dx.doi.org/10.1137/S0036141093244556
http://dx.doi.org/10.1016/0362-546X(95)00142-I
http://dx.doi.org/10.1016/0362-546X(95)00221-G
http://dx.doi.org/10.1006/bulm.1997.0008
http://dx.doi.org/10.1073/pnas.1102808108
http://dx.doi.org/10.1103/PhysRevE.85.041926
http://dx.doi.org/10.1073/pnas.0705062104
http://dx.doi.org/10.1137/0516030
http://dx.doi.org/10.1088/0951-7715/1/1/003
http://dx.doi.org/10.1088/0951-7715/1/1/003
http://dx.doi.org/10.1137/0521067
http://dx.doi.org/10.1007/BF00307854



