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Long charged macromolecule in an entropic trap with rough surfaces
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The kinetics of the flux of a charged macromolecular solution through an environment of changing geometry
with wide and constricted regions is investigated analytically. A model device consisting of alternating deep and
shallow slits known as an “entropic trap” is used to represent the environment. The flux is supported by the
external electrostatic field. The “wormlike chain” model is used for the macromolecule (dsDNA in the present
study). The chain entropy in both the deep and the shallow slits, the work by the electric field, and the energy
of the elastic bending of the chain are taken into account accurately. Based on the calculated free energy, the
kinetics and the scaling behavior of the chain escaping from the entropic trap are studied. We find that the escape
process occurs in two kinetic stages with different time scales and discuss the possible influence of the surface
roughness. The scope of the accuracy of the proposed model is discussed.
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I. INTRODUCTION

The study of the dynamics, kinetics, and thermodynamics
of a macromolecule in a confined geometry by theoretical
and experimental methods has attracted much attention in
recent decades [1]. The wide interest in the topic is due to
its significant importance both for the understanding of many
fundamental biological processes and for numerous applica-
tions in modern nanotechnological devices. Transportation
of the molecules through narrow constrictions is commonly
observed in translocation of DNA and RNA through nanopores
in nuclear and cellular membranes [2,3], in the process of DNA
and proteins sieving [4–7], and in DNA sequencing [8–10]. Of
considerable technological importance is the behavior of DNA
in nanochannels [11]. Microfabricated entropic trap arrays
have been demonstrated to be useful for efficient separating
of large (5–200 kbp) DNA molecules [5–7]. The entropy-
driven separation of DNA molecules has been investigated
extensively [12–16]. Further development of the technique for
optimal separation, selectivity, and resolution requires a deeper
understanding of the mechanism of entropic trapping and the
kinetics of the escape of the macromolecule from the trap.
Live biological objects like proteins and membrane channels
possess irregular, rough surfaces in microscopic scale and/or
nanoscale. Here we study the kinetics and scaling behavior of
macromolecules escaping from the entropic trap and discuss
the possible influence of surface roughness.

The schematic diagram of the device which mimics the
environment of changing geometry is shown in Fig. 1. The
idea of the scheme is borrowed from Refs. [5–7]. Entropic
barriers can be made in a microfluidic channel by alternating
two different (deep and shallow) regions. DNA molecules
migrating under an external driving force (electric field of
strength Es in this case) are retarded at the entropic barriers. It
has been shown that the local deformation of DNA molecules
at the interface between the deep and the shallow regions is
critical for the escape kinetics. The activation energy of this
deformation is independent of the length of the chain.
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Relatively short, rodlike DNA has been studied theoret-
ically in Ref. [12]. However, the model of the rodlike chain
does not include the free energy of elastic extension of dsDNA,
the conformational degrees of freedom, and the work of the
electric field on the long chain transfer. These factors become
non-negligible in the case of the long chains. It should be
mentioned that the predictions of the theory developed in
Ref. [12] deviate from the experimental data as the DNA length
increases to several persistence lengths, lp. Here we take into
account accurately the conformational degrees of freedom,
which allows us in principle to address the intermediate
and long chain lengths and to improve the agreement with
the experimental data. However, we focus only on the long
chain limit because in this case the conformational degrees of
freedom play the most important role.

The escape of relatively long DNAs from the entropic trap
has been investigated recently in Refs. [17,18], exploiting
Brownian dynamics simulations. Here we present an analytical
model describing the chain escape from the entropic trap with
heterogeneous walls. We take into account the free energy of
entropic stretching in a confined environment, the contribution
of the electric field work, and the entropy loss in the narrow
slit. Our basic goal is to investigate the dynamics of dsDNA
repartitioning inside the entropic trap device, described, e.g.,
in Ref. [7] and, more specifically, the process of escaping of the
long polyelectrolyte chain from the entropic trap with fractal
walls. We find that the escape process occurs in two kinetic
stages with different time scales and discuss the possible
influence of the surface roughness.

II. FREE ENERGY OF THE WORMLIKE CHAIN (WLC)
IN THE SLIT

We assume that the height of the shallow slit Hs satisfies
the condition Hs � a, where a is the Kuhn length of the chain,
and the height of the deep slit Hd ∼ Rg , where Rg is the mean-
square radius of gyration of the polymeric chain in a relaxed
configuration. The total change of the free energy, caused by
transfer of the subchain of length λ to the confined environment
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FIG. 1. A macromolecule approaches the right wall and starts to
be sucked into the slit. Since a � Hs , the fluctuations in the plane of
the page are restricted and the part λ, which has entered the slit, looks
stretched. The chain cannot make turns in that plane.

(Fig. 1), consists of three parts discussed in following three
subsections.

A. Free energy change caused by loss of entropy

Using the results from Refs. [19,20], one can estimate the
entropy loss caused by transfer of the subchain of length λ

from the deep to the shallow slit by

�S � −(kBλ/a)(a/Hs)
2/3, (1)

where a is the Kun’s segment of the chain. In the case Hs � a,
the corresponding free energy change is

�F ≡ −T �S � kBT λ

a

(
a

Hs

)2/3

. (2)

Odijk’s scaling [19] has been initially obtained for the chain
confined in the tube, but in Ref. [20] its validity has been
justified for the chain confined in the slit. According to
Ref. [20], the more accurate estimation of the entropy loss
�S requires one to use the crossover expression

�S � −kBλ

a

(a/Hs)2

[C1(a/Hs)2 + C2(a/Hs) + 1]2/3
. (3)

Here C1 and C2 are some constants.
The next two parts to be calculated in the next two

subsections are (i) the free energy change caused by the chain
stretching under the electric field and (ii) the free energy
change due to the work of the electric field on the chain transfer
from the deep slit into the shallow one as a whole. These terms
can be calculated separately (and we do so for the convenience)
since the physical work in the potential (electrostatic in this
case) field depends only on the initial and final states of the
system. Thus, although the chain transfer and stretching are not
independent processes, one can separate the total free energy
into two terms. Below we discuss the limits of accuracy of our
approach.

The free energy change in Eq. (2) and the free energy
change (i), mentioned in the previous paragraph are not
completely decoupled. However, if the Kuhn segment length a

satisfies the condition Hs � a, the transverse conformational
fluctuations are substantially suppressed and have no effect
on the longitudinal ones. Thus, in case of Hs � a, the free
energy terms due to confinement, stretching, and chain transfer
can be included through the additive scheme. In this case,
the conformational behavior of the chain is expected to be
two-dimensional. If Hs � a, the effective two-dimensional
behavior is supposed to be described not by the original

FΔ

0 λλ max

FIG. 2. Dependence of the free energy change �F on the segment
length λ.

persistence length lp, but by some effective persistence length
(see, e.g., Ref. [21]).

B. The free energy change due to WLC stretching

If λ ∼ lp with lp = a/2 being the persistence length, then
the free energy of stretching is negligible. Thus, the depen-
dence of the free energy change on λ exhibits the well-known
behavior [5] shown in Fig. 2 with a maximum at λmax. Under
typical experimental conditions, the free energy barrier �Fact

is comparable to the thermal energy kBT [7] (�Fact ∼ kBT ).
According to Ref. [22], the corresponding activation time
τact for crossing the barrier is τact � τ0 exp(β�Fact), where
τ0 ∼ 1/L and L is the total counter length of the chain.

On the scale of λmax, the WLC behaves as a rigid rod
and the free energy is defined mainly by Eq. (2) and �F ∼
T λ − Esλ

2 [5]. The initial stage of the chain escape from the
entropic trap has been investigated, e.g., in Refs. [5,7]. To
describe stretching of the long chain (λ � lp), one needs to
estimate the contribution of the entropic elasticity into the free
energy. Following Refs. [23,24] we estimate the free energy
of the WLC at a given value of the extending external force
f = qlpEs , where q is the effective linear charge density.
A similar approach has been developed initially for the end
forces. However, as it is shown in Ref. [25], the end force f

transfers along the chain and acts on each segment. That is
why the polymer chain can be presented as being located in
the effective stretching potential field, tending to orient each
segment of the chain. Thus, the stretching of a chain by its
end can be equated to the action on it by an external orienting
field. As f is the parameter under control, the chain end-
to-end distance x becomes a physically observable quantity,
conjugated to the force f :

x = ∂ ln Zλ

∂(βf )
, (4)

where Zλ is the partition function of a WLC of length λ. To
calculate the free energy of a WLC at a given value of f , we
define the Legendre transform

�(x/λ) = −(β/λ)FWLC[λ,fλ(x)] − βf x/λ, (5)
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where

FWLC[λ,fλ(x)] = −kBT ln Zλ[fλ(x)]. (6)

The term fλ(x) has been defined implicitly in Eq. (4)
and corresponds to the force-extension expression derived in
Ref. [26] for a WLC in two dimensions. From the Legendre
transform, the elastic free energy change of the WLC of length
λ and at the given value of f = qlpE can be written as

�Gel.(λ,f ) =
∫ x

0
dx ′fλ(x ′) − f x

= −kBT λ

16lp

(
x0

λ

)2[ 1

(1 − x0/λ)2
+ 3

]
. (7)

Here x0 is the mean end-to-end distance of a WLC in a two-
dimensional space and is defined by f = fλ(x0), where fλ(x)
is the elastic force of the WLC of length λ [26]:

fλ(x) = (kBT /lp)[3x/8λ − 1/16 + (1/16)(1 − x/λ)−2], (8)

which implies direct proportionality of the end-to-end distance
at a given value of f to the length of subchain, x0 ∼ λ. Thus,
the elastic contribution (7) into the free energy from WLC
stretching is directly proportional to the length of subchain λ

and is written as

�Gel.(λ,f ) = λkBT g(E,q,lp), (9)

where

g(E,q,lp) = − 1

16lp

(
x0

λ

)2[ 1

(1 − x0/λ)2
+ 3

]
.

C. Free energy change due to the work of the electric field

We calculate this term separately for the shallow and the
deep regions. For the shallow slit we have

Es = −qEs

∫ λ

0
dt x(t), (10)

where x(t) is the mean-square displacement of the segment
(t ; t + dt) along the x axis inside the shallow slit. Here we
assume that x(t) is not perturbed by chain stretching. To
estimate Es , let us consider two limiting cases: λ ∼ lp and
λ � lp. When λ ∼ lp one can approximate the chain as a rigid
rod, and the free energy Es reads

Es � −qEs

∫ λ

0
dt t = −qEsλ

2/2. (11)

It has been shown in Ref. [20] that, when Hs � a, the
polymer segments are forced toward the near-wall regions and
thus the WLC in a shallow slit behaves as a two-dimensional
polymer in the case of flat walls and as a dS-dimensional
polymer in the case of rough walls, where 2 � dS < 3 is the
fractal dimension of the rough surface.

Calculation of the free energy Es requires understanding
the typical conformations formed in the process of the chain
escape from the shallow slit. The hairpin can cross the
activation barrier with probability higher than that of the linear
subchain [22]. At the same time, the DNA, confined in a
shallow slit with Hs < lp, must contain thermally activated
hairpins with some typical distance g (the so-called global
persistence length) between them [27].

In a shallow channel with a square cross section, g � lp
[27]. However, for the nanoslit of a rectangular cross section,
Ws × Hs , where Ws � Hs , the global persistence length is of
the same order as the regular persistence length lp, g ∼ lp [27].
Hence, for λ � lp the typical chain conformation is supposed
to be a single stretched subchain of length λ. In this case the
reasonable estimate of the mean-square dimension x(t) is

x(t) � a(t/a)ν2 , (12)

where ν2 = ν(d)|d=2 = 3
4 for the flat surface. For the rough

surface, the ν2 value depends on the relationship between the
excluded volume of the chain and the roughness of the surface
[28]. Using Eqs. (10) and (12) we obtain the following for the
free energy of a long chain in the shallow slit:

Es � −qEsa
1−ν2

1 + ν2
λ1+ν2 . (13)

The free energy decrease caused by the work of the electric
field inside the deep slit can be written as

Ed = E ′
d (λ) + E ′′

d (L,λ), (14)

where E ′
d (λ) is the free energy loss caused by the transfer of

the subchain of length λ from the deep slit and E ′′
d (L,λ) is that

for the subchain of length L − λ. The first term is calculated
in a manner similar to that of Eq. (13):

E ′
d (λ) � −qEda

1−ν3

1 + ν3
λ1+ν3 , (15)

where ν3 = ν(d)|d=3 = 3
5 . Removing the subchain of length

λ from the deep slit means moving by distance a(λ/a)ν3 the
remaining part of the molecule of length L − λ as a whole.
Since the force applied to the subchain of length L − λ is
equal to Edq(L − λ), the free energy decrease reads

E ′′
d (L,λ) � −Edq(L − λ)a(λ/a)ν3x. (16)

Thus, the total free energy decrease in the whole systemE(λ) =
Es + Ed caused by the work of electric field is

E(λ) � −qaλ

[
Es

1 + ν2
(λ/a)ν2 − Ed

1 + ν−1
3

(λ/a)ν3

]

−EdqaL(λ/a)ν3 . (17)

From Eqs. (2), (9), and (17), the free energy for λ � lp is

V (λ) � kBT λ(�	 + g) + E(λ), (18)

where �	 = 1
a

( a
Hs

)2/3. Thus, the free energy of stretching just
adds some additional term to the entropic barrier �	 and does
not change qualitatively the system kinetics.

III. ESCAPE FROM THE ENTROPIC TRAP

A. Stochastic equation for dynamics of the chain

Following the approach of Refs. [17,18], one can con-
sider the escape process from the deep slit into the
shallow one as occurring in three stages with different
characteristic time scales: (1) the approach time tapp, required
for the molecule to reach the gate into the constriction; (2)
the activation time tact, required to reach the transition state
(the point of the free energy maximum); and (3) the escape
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time tesc, which is the time required to completely exit from
the deep slit into the shallow one after the molecule has been
activated. Here we focus mainly on the chain escape process,
and that is why we consider tesc instead of tcross [17,18], the
time required to exit the shallow slit.

The walls of the slit screen off the hydrodynamic in-
teractions at scales larger than that of the slit depth [29].
Thus, in the shallow slit the total screening of hydrodynamic
interactions takes place and the WLC segments undergo a
Rouse-like friction [30]. The electric force acts not only on the
DNA but also on the counterions. This force induces a flow
in the opposite direction, which cancels the hydrodynamic
interactions between the monomers, and the polymeric coil
becomes freely drained in the wide slit too [31]. Thus the
hydrodynamic friction scales as L and the stochastic equation
for the dynamics of the chain to escape from the entropic
trap is

γ ∂tλ = −∂λV (λ) +
√

2Dξ (t), (19)

where V (λ) is the free energy defined by Eq. (18), γ = Lη is
the coefficient of friction, and η is the solvent viscosity per unit
length. It can be estimated as η = ζ

a
, where ζ is the viscosity

of the Kuhn segment. The diffusion coefficient D is defined
by the equation D = γ kBT and ξ (t) is the white noise.

To analyze the escape dynamics we consider two limiting
cases: (i) a � λ � L and (ii) L − λ � L, for the early and
the late stages of the escape process, respectively.

B. Early and late stages of escape

For a � λ � L we have V (λ) � E � −EdqaL(λ/a)ν3 .
Then for the early stage the dynamic Eq. (19) can be
transformed into

∂tλ = (ν3Edqa1−ν3/η)λν3−1 + (2T /ηL)1/2ξ (t). (20)

If the chain is sufficiently long then one can neglect
fluctuations, and the mean value of the chain length m = 〈λ〉
satisfies the equation

ṁ(t) � χ1m(t)ν3−1, (21)

where χ1 = ν3Edqa1−ν3/η. By solving this equation one
obtains estimates for the time and the velocity of the first
stage of escape:

t1 ∼ (L/2)2−ν3 , V1 = L/2t1 ∼ Lν3−1. (22)

For the late stage of escape (L − λ � L), we have the
following dynamic equation:

∂tλ = (Esqa1−ν2/ηL)λν2 + (2T /ηL)1/2ξ (t). (23)

By neglecting fluctuations we obtain

ṁ(t) � χ2m(t)ν2, (24)

where χ2 = Esqa1−ν2/ηL. Using a procedure similar to that
for the early stage, one obtains the time t2 and the mean velocity
V2 for the late stage of escape:

t2 ∼ L2−ν2 , V2 = L/2t2 ∼ Lν2−1. (25)

IV. CONCLUSIONS AND DISCUSSION

In summary, the chain escaping from the deep slit into the
shallow one occurs in two kinetic stages. The first, early stage
is governed mainly by work, performed by the electric field
inside the deep slit, Ed . The characteristic time of escape
is scaled with the chain length as ∼L2−ν3 . Thus, the first
stage of escape is defined by conformational statistics in
three-dimensional space and t1 increases with the length of
the chain. The second stage is governed by the electric field
inside the shallow slit Es and scales with the molecular weight
of the chain, according to the two-dimensional conformational
statistics, as ∼L2−ν2 .

With Ed � Es [7] and ν2 > ν3, we see that the escape of
the first half of the chain is the limiting factor which slows
down substantially the escape of macromolecules from the
entropic trap. The total characteristic time of escape increases
nonlinearly with the length of the chain, while the mean
velocity is decreased. In the thermodynamic limit L → ∞,
the total escape time is defined mainly by three-dimensional
statistics as tesc ∼ L2−ν3 .

Thus, we have obtained analytically the nonlinear ∼Lα

(α > 1) scaling dependence for the time of escape from
the entropic trap. This nonlinear result differs from the
linear dependence, obtained analytically for the crossing time
tcross ∼ L by Sebastian and Paul [22], which is substantially
one-dimensional, and it can be reproduced in the framework
of our theory in the case of the one-dimensional slit, ν1 =
ν(d)|d=1 = 1. Thus, we conclude that the chain escape from
the entropic trap is not one-dimensional and conformational
statistics is an important point of this process.

To determine the limits of validity of the proposed theory,
let us go back to Eq. (19). The length of the chain inside the
shallow slit λ is considered as a reaction coordinate of the
chain transfer. At the same time, −∂λV (λ) is acting as the
thermodynamic force, produced by the free energy gradient.
The polymer chain needs enough time to explore the available
conformational space to consider the free energy as an effective
potential for the thermodynamic force. Thus, this approach can
be valid only in the case of sufficiently slow dynamics and,
consequently, for weak electric fields.

The most interesting case for applications is when the
free energy barrier is comparable with the energy of thermal
fluctuations, �Fact � kBT . From Eq. (1) and the paragraph
below Eq. (11), the free energy barrier is written as

�Fact = 1

2qEs

(
kBT

a

)2(
a

Hs

)4/3

. (26)

Thus, the electric field inside the shallow slit must satisfy the
equation

a2qEs

kBT
�

(
a

Hs

)4/3

. (27)

At the same time, the total characteristic time of escape tesc

must be comparable or larger than the longest relaxation time
of the polymer chain (the Rouse relaxation time [32]) to be
sufficient for exploration of the conformational space:

τR � ζa2

kBT

(
L

a

)1+2ν

, (28)
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where ν is the Flory exponent. In the most interesting case of
the long chain,

tesc ∼ ζ

Edqa2−ν3
L2−ν3 . (29)

Since ν2 > ν3, the limiting stage of relaxation will be the
second stage of escape and we need to use ν = ν2 in
Eq. (28). By comparing the Rouse relaxation time (28) and the
characteristic time of escape (29), we obtain that the electric
field inside the deep slit must satisfy the equation

a2qEd

kBT
�

(
a

L

)2ν2+ν3−1

. (30)

Using the values ν2 = 0.75 and ν3 = 0.6 we obtain the
following from Eqs. (27) and (30):

Ed

Es

�
(

a

L

)1.1(
Hs

a

)1.3

. (31)

The typical conditions described in Ref. [7] correspond to
Ed/Es ∼ 10−2 and a � Hs . In this case the Kuhn length a =
2�, where � is the renormalized persistence length [21], which
accounts for the geometric coupling between the normal and
transverse fluctuations in the shallow slit.

Taking the Kuhn length value equal to a = 300 bp, we can
see that under the experimental conditions used in Ref. [7] our
approach should be valid for chains up to tens of kilobase pairs
as these lengths have been addressed in Ref. [7].

The proposed analytical approach describes an escape
kinetics in terms of Flory exponents ν(d). It allows one to
address the influence of the roughness of the surface on
the chain escape from the entropic trap. As it was shown,
e.g., in Ref. [28], the roughness of the surface affects the
mean size R of the chain. The ν2 value depends on the
relationship between the excluded volume of the chain and
the roughness of the surface [28]. In a two-dimensional case
it can reduce the Flory exponent ν2 down to ν2 = 0.5 and
even make R independent of the molecular weight, i.e.,
ν2 = 0. In this case the escape of the second part of the
chain becomes limiting. If ν2 = 0.5 then t2 � t1 for the long
chain. Thus, the roughness of the narrow constriction can
substantially slow down the chain escape from the entropic
trap and thereby complicate the separation of macromolecules
by molecular weight. To clarify this issue we propose to
investigate experimentally the chain escape from the deep
slit to the shallow slit with the different roughness of the
surface.
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