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Estimating nonstationary input signals from a single neuronal spike train
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Neurons temporally integrate input signals, translating them into timed output spikes. Because neurons
nonperiodically emit spikes, examining spike timing can reveal information about input signals, which are
determined by activities in the populations of excitatory and inhibitory presynaptic neurons. Although a number
of mathematical methods have been developed to estimate such input parameters as the mean and fluctuation of
the input current, these techniques are based on the unrealistic assumption that presynaptic activity is constant
over time. Here, we propose tracking temporal variations in input parameters with a two-step analysis method.
First, nonstationary firing characteristics comprising the firing rate and non-Poisson irregularity are estimated
from a spike train using a computationally feasible state-space algorithm. Then, information about the firing
characteristics is converted into likely input parameters over time using a transformation formula, which was
constructed by inverting the neuronal forward transformation of the input current to output spikes. By analyzing
spike trains recorded in vivo, we found that neuronal input parameters are similar in the primary visual cortex V1
and middle temporal area, whereas parameters in the lateral geniculate nucleus of the thalamus were markedly
different.
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I. INTRODUCTION

Multichannel recording techniques have provided a great
deal of information about the activities and functional con-
nectivity of neuronal ensembles [1–3]. Yet further analyses
are required to obtain a full understanding of computations
conducted by mammalian neuronal circuits. One approach
is to estimate presynaptic inputs from the spike trains of
postsynaptic neurons (Fig. 1). Currently available techniques
to examine synaptic inputs, including intracellular or patch
recording [4–9], have some disadvantages, such as the need for
anesthesia, constraints on animal behavior, damage to recorded
neurons, and limited recording time [10–13]. Therefore,
analytic techniques are needed to allow analysis of presynaptic
inputs based on spike trains recorded from a neuron in vivo for
extended periods of time.

Generally, problems of estimating inputs from output sig-
nals are ill posed. In the case of neuronal signal transformation,
however, a large number of randomly arriving input spikes
make it possible to extract some information from an output
spike train; a number of irregular synaptic inputs result in
uncorrelated fluctuations with means and amplitudes, which
can be translated into the activities of presynaptic excitatory
and inhibitory neuronal populations. Mathematical methods
have been developed, assuming that presynaptic neuronal
activities are constant over time [14–17].

Stationary input conditions for standard spiking mecha-
nisms, however, cannot account for spiking statistics of cortical
neurons in vivo [18]. To resolve this inconsistency, some
studies have suggested introducing nonstationary or correlated
fluctuations to the inputs [19,20]. Recently, to analyze situa-
tions in which input parameters comprising the mean and the
amplitude of uncorrelated fluctuations vary in time, several
methods have been proposed using time-dependent stimulus
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traces [21–23] or averaging over repeated trials [24]. Inputs
to individual neurons, however, are not entirely controlled
by animal behavior or reproduced exactly under identical
behavioral conditions, but instead may fluctuate from trial to
trial. Therefore, it is essential to develop a method that is
capable of estimating input parameters in a single trial.

In this paper, we constructed a method for estimating
nonstationary inputs from a single spike train. We first
incorporated an input estimation method, formulated based
on the assumption of constant input parameters, into a
state-space model, allowing both the mean input and the
amplitude of uncorrelated fluctuations to vary over time. This
method was computationally complex and the analysis was
limited to trains of up to hundreds of spikes. To make the
estimation practical for larger data sets, we then developed
a method to transform the neuronal firing characteristics into
input parameters, from which we can estimate activities in
populations of excitatory and inhibitory presynaptic neurons
(Fig. 2). The instantaneous firing characteristics consisting
of the spike rate and non-Poisson irregularity were estimated
using a state-space method that can efficiently process much
larger sets of data [25]. We then constructed a formula to
transform the firing characteristics into the input parameters;
a two-dimensional interpolation formula was obtained by
inverting the forward transformation from input to output
signals (Fig. 3). This transformation method does not require
complex computational analyses.

The method was tested against synthetic data obtained
from a simulation of neuronal spiking under fluctuating input
parameters. The method was then used to examine temporal
variations in input parameters by analyzing in vivo spike trains
recorded from the primary visual cortex (V1), middle temporal
area (MT), and lateral geniculate nucleus (LGN) of monkeys.

II. MODEL OF A SPIKING NEURON

To estimate inputs based on a train of evoked spikes,
we need a spiking neuron model that mimics the neuronal
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FIG. 1. (Color online) Schematic depiction of how neurons are
receiving inputs from a large number of neurons. Tens or hundreds
of recordable neurons constitute a small portion of local cortical
circuitry, which often comprises millions of neurons. Blue (gray),
yellow (light gray), and purple (dark gray) triangles represent
recorded neurons generating spike trains 1, 2, and 3, respectively.
Three large ovals represent neuronal populations sending signals to
the three neurons. Some neuron pairs (such as 1 and 2) are receiving
many common inputs, while others (such as 1 and 3 or 2 and 3) are not.

transformation of inputs to output spike times. We adopted the
basic leaky integrate-and-fire (LIF) model [26,27], which is
given by

τm
dV (t)

dt
= VL − V (t) + RI (t),

(1)
if V (t) > VTH, then V (t) → VR,

where τm, VL, VTH, VR, R, and I (t) represent the membrane
time constant, resting potential, threshold potential, resetting
potential, membrane resistance, and input current, respec-
tively. We set the model parameters at standard published
values: τm = 20 ms [28], VL = −75 mV [28,29], VTH =
−55 mV [29,30], VR = VTH − 6 = −61 mV [31,32], and
R = 40 M� [28].

We adopted Stein’s model to represent inputs to the LIF neu-
ron [33,34], assuming a fixed membrane potential increment
or decrement for excitatory postsynaptic potentials (EPSPs)
or inhibitory postsynaptic potentials (IPSPs) in response to
excitatory or inhibitory spike inputs, respectively. If EPSPs and
IPSPs occur randomly in time and have small amplitudes, the
input current can be approximated as a diffusion process with
a mean drift and temporally uncorrelated (white) fluctuation
σξ (t) [35,36],

I (t) = μ + σξ (t), (2)

where ξ (t) is white noise satisfying the ensemble statistics
〈ξ (t)〉 = 0 and 〈ξ (t)ξ (t ′)〉 = δ(t − t ′). Thus, the interspike
interval (ISI) distribution of the LIF model with an uncor-
related fluctuating current is equivalent to the first-passage
time distribution of the Ornstein-Uhlenbeck process (OUP)
[34,36,37].

With the knowledge of EPSPs and IPSPs, the mean drift and
uncorrelated fluctuation are related to the rates of excitatory
and inhibitory input spikes rE and rI [34,36] as follows:

Rμ/τ = aErE − aIrI, (Rσ/τ )2 = a2
ErE + a2

I rI, (3)

where aE and aI are the unitary EPSP and IPSP, respectively.
The first equation represents that the mean input is given by the
average EPSP subtracted by the average IPSP, and the second
equation implies that the input fluctuation is given by the sum
of random noisy bombardment of EPSPs and IPSPs.

The linear relation (3) can be inverted so that activities in the
populations of excitatory and inhibitory presynaptic neurons
can be estimated from the input parameters μ and σ :

rE = (Rσ/τ )2 + aI(Rμ/τ )

aE(aE + aI)
,

(4)

rI = (Rσ/τ )2 − aE(Rμ/τ )

aI(aE + aI)
.

III. A METHOD TO DIRECTLY ESTIMATE
INPUT PARAMETERS

The probability that a neuron generates output spikes
at times {tj }nj=0 = {t0,t1,t2, . . . ,tn} can be obtained as the
conditional distribution function given input parameters �.
Here, we represented a set of such input parameters as a
two-dimensional vector, and modeled them as varying over
time: � = �(t). For Stein’s model, the input parameters
were defined as the mean and the amplitude of uncorrelated
fluctuation �(t) = [μ(t),σ (t)]. The input parameters can be
estimated from the spike times using the Bayes theorem,

P (�(t)|{tj }) = P ({tj }|�(t))P (�(t))
P ({tj }) . (5)

To estimate the probability of an output spike based on variable
input parameters, we approximated the input parameters as
constant during each ISI as follows:

P ({tj }|�) =
n∏

j=1

P (sj |�j ), (6)

where sj ≡ tj − tj−1 is the j th ISI and �j represents the input
parameters at the time of the j th spike �(tj ). It should be
noted that the constancy of the input parameters does not mean
that the input current was constant; the input current fluctuated
rapidly with amplitude σ , reflecting bombardment of a number
of input spikes from presynaptic populations of excitatory and
inhibitory neurons.

To model the prior distribution of the input parameters rep-
resented by the two-dimensional vector �(t) ≡ [�1(t),�2(t)],
we incorporate the tendency to vary slowly by penalizing large
gradients:

P (�(t)) =
n∏

j=1

Pγ (�j |�j−1)

=
n∏

j=1

2∏
k=1

N
(
�k

j−1,γ
ksj

)
, (7)
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FIG. 2. (Color online) Estimating fluctuating inputs from a spike train. (a) A neuron receives an input current that is characterized by the
mean input μ(t) and the fluctuation amplitude σ (t), which reflect activities in the presynaptic excitatory and inhibitory neuronal populations,
rE(t) and rI(t). (b) A sample input current I (t) that is fluctuating with the mean μ(t) and the fluctuation σ (t). (c) A sample spike train derived
from the input parameters. (d) The firing rate λ̂(t) and irregularity κ̂(t) were captured using a state-space method. The spike train is represented
as an orbit in the firing characteristic plane. (e) The firing characteristics were transformed into likely input parameters, including the mean
μ̂(t) and the fluctuation amplitude σ̂ (t). (f) Firing rates of excitatory and inhibitory presynaptic neurons are transformed by linear relation (4)
as r̂E(t) and r̂I(t). The estimated dynamics are represented as a solid line in the input parameter plane, and are unfolded on the original time
axis, as shown with the dashed lines.

where γ ≡ (γ 1,γ 2) is a hyperparameter representing the
stationarity of the input parameters, and N (x,y) is the Gaussian
distribution with mean x and variance y. The initial parameter
�0 ≡ (�1

0,�
2
0) was set to the value that has been estimated on

the basis of the assumption that input parameters are constant
over time. This is identical to input parameters exhibiting a
random walk; the variance should therefore be rescaled with
the ISI sj .

Based on the empirical Bayes method, the hyperparameter
γ ≡ (γ 1,γ 2) was determined by maximizing the marginal
likelihood,

Pγ ({tj }) =
n∏

j=1

∫∫
d�jP (sj |�j )Pγ (�j |�j−1). (8)

Given a set of spike times, maximization of the marginal
likelihood function can be performed using the expectation
maximization (EM) algorithm [38,39]. The details are given
in Appendix A. When using the state-space method to assess
such input parameters as the mean and fluctuation of the
input current, we found that the process was computationally
complex and only feasible with up to hundreds of spikes even
with a high-performance computer. A major cause for this
limitation is the need to solve a complex integral equation
[21,40,41] to estimate the ISI distribution function P (s|�) for
any given set of input parameters � = (μ,σ ).

IV. TRANSFORMATION METHOD

To perform this estimation with a larger data set, we
developed a computationally feasible state-space method and
transformed the information into the mean and fluctuation
of the input current. Based on a previous report [25], we
approximated the ISI distribution P (s|�) with the following
gamma distribution:

g(s|λ,κ) ∝ (κλs)κ−1 exp(−κλs), (9)

where λ and κ are the scale factor and shape factor representing
the mean firing rate and irregularity, respectively. A Poisson
random firing is characterized by the exponential distribution
of ISIs, which is obtained by setting κ = 1. A deviation of the
shape factor from κ = 1 represents non-Poisson irregularity;
κ > 1 and < 1 indicate non-Poisson regular firing and burst
firing, respectively. We used a previously described state-
space method to estimate these firing characteristics, which
is computationally efficient, and is able to handle larger data
sets [25]. For each spike train, we can obtain the maximum
a posteriori (MAP) estimates of the firing rate λ̂(t) and
irregularity κ̂(t).

Then we converted the information into the likely input
mean μ̂(t) and variation σ̂ (t) using a transformation formula
given by a set of maps (Fig. 3):

μ = M(λ,κ), σ = S(λ,κ). (10)
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FIG. 3. (Color online) Transformation between presynaptic
neuronal activities, input parameters, and firing characteristics.
(a) Forward transformations from presynaptic neuronal activities
(rE,rI) to input parameters (μ,σ ), and to firing characteristics (λ,κ).
The first transformation is given by the linear relation (3), and the
second one is given by the nonlinear relation (11). According to the
latter nonlinear transformation, a circular area on a plane of (μ,σ )
is mapped into a deformed area on a plane of (λ,κ). (b) Reverse
transformations from firing characteristics to likely input parameters,
and to likely presynaptic neuronal activities. The first transformation
is given by the linear relation (4), and the second one is given by the
nonlinear relation (10) (see also Table I). A circular area on a plane
of (λ,κ) is mapped into a deformed area on a plane of (μ,σ ).

This transformation formula was constructed by inverting the
neuronal forward transformation of input signals to output
spiking, which was given by

λ = L(μ,σ ), κ = K(μ,σ ). (11)

The forward transformation was obtained by fitting the gamma
distribution g(s|λ,κ) to the ISI distribution of the spiking
neuron model P (s|μ,σ ) by minimizing the Kullback-Leibler
(KL) divergence. The fitting was obtained by solving the
relationship ∫ ∞

0
dssP (s|μ,σ ) = 1/λ,∫ ∞

0
ds(log s)P (s|μ,σ ) − log

(∫ ∞

0
dssP (s|μ,σ )

)
= ψ(κ) − log(κ), (12)

where ψ(κ) is the digamma function. The details are given in
Appendix B.

In practice, the transformation formula was obtained in
two steps. First, we tested a huge number of possible input
parameters μ and σ to estimate the firing characteristics λ

and κ , with an empirical ISI distribution function P (s|μ,σ )
obtained from the OUP simulation [Fig. 3(a)] (for details, see
Appendix C). Next, we inverted the relationship from Eq. (11)
into Eq. (10) [Fig. 3(b)]. Detailed forms of the polynomial
functions approximating Eq. (10) are presented as a usable
formula (see Appendix C).

V. RESULTS

We assessed the validity of the estimation methods devel-
oped above by examining synthetic data, and using the method
to analyze spike trains obtained in vivo.

A. Testing the estimation methods with synthetic data

To compare the direct and transformation methods of input
estimation, we generated synthetic data by simulating spiking
in the neuron model given nonstationary input parameters
comprising the mean and fluctuation of the input current.
The model parameters were chosen to match those that were
incorporated into the input estimator. We made the following
three types of input parameters given by the mean input μ(t)
and the amplitude of uncorrelated fluctuation σ (t).

(i) The mean current was modulated sinusoidally with a
period T , while the amplitude of fluctuation was constant:

μ(t) = μ0 + δμ sin(2πt/T ), σ (t) = σ0.

(ii) The mean was held constant, while the amplitude of
fluctuation was modulated sinusoidally:

μ(t) = μ0, σ (t) = σ0 + δσ sin(2πt/T ).

(iii) Both the mean and the amplitude of fluctuation were
modulated sinusoidally with the phase shifted by 
:

μ(t) = μ0 + δμ sin(2πt/T ),

σ (t) = σ0 + δσ sin(2πt/T − 
).

We then examined spike trains derived from the leaky
integrate-and-fire (LIF) model (cf. Sec. II) under the various
input parameters with both the direct estimation method and
the transformation method. Sample estimations are denoted
as μ̂(t) and σ̂ (t) (Fig. 4). Both the direct and transforma-
tion methods have provided an equally accurate estimation.
However, the direct method required extensive computation
spending several hours even for analyzing a short train of
several hundreds of spikes, while the transformation method
swiftly completed the computation.

Using the computationally tractable transformation
method, we evaluate the goodness of the input estimation
in terms of the integrated squared error (ISE) between the
intended input parameters and the estimated parameters:∫ �

0
dt{[μ(t) − μ̂(t)]2 + [σ (t) − σ̂ (t)]2},

where � or the entire observation interval is set to 50 s. The
ISEs for the three types of input parameters were plotted
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FIG. 4. (Color online) Three fluctuating input parameters and estimations from sample spike trains. (a) Three input parameters (from left to
right): (i) the mean μ(t) = μ0 + δμ sin(2πt/T ) and the amplitude of fluctuation σ (t) = σ0; (ii) μ(t) = μ0 and σ (t) = σ0 + δσ sin(2πt/T ); and
(iii) μ(t) = μ0 + δμ sin(2πt/T ) and σ (t) = σ0 + δσ sin(2πt/T − 
). Numerical parameters: μ0 = 0.5 nA, δμ = 0.15 nA, σ0 = 1 nA ms1/2,
δσ = 0.6 nA ms1/2, T = 2.5 s, and 
 = π/2. (b) Sample spike trains. (c) The estimated firing rate λ̂(t) and irregularity κ̂(t). (d) Estimated
input parameters μ̂(t) and σ̂ (t). Red (light gray) and blue (gray) lines represent the estimation results obtained using the direct method and the
transformation method, respectively. (e) Orbits in the space of the mean and fluctuation of the input current.

against the period of input modulation T (Fig. 5). Rapid
modulation was undetectable, because a small number of
output spikes cannot sufficiently represent the temporally
fluctuating input parameters. For those cases in which a neuron
was firing at a mean rate of approximately 40 spikes/s, the
estimation was effective if the time scale of input modulation
was longer than 1 s.

B. Applying the estimation methods to experimental data

Next, we used the transformation method to examine
publicly available spike data that were recorded in vivo from
visual cortical areas V1 and MT, and the LGN of anesthetized
monkeys (Macaca fascicularis) [42–47]. Recordings from
area V1, area MT, and the LGN were obtained while a drifting
sinusoidal grating was presented to the monkeys (duration,
6000 or 3000 ms for V1, typically 1280 ms for MT, and
5138 ms for the LGN). We excluded spike sequences with

a mean firing rate that was less than 10 spikes/s, because
the data was not sufficient for analysis. Consequently, 44, 43,
and 52 neurons were selected for area V1, area MT, and the
LGN, respectively; neurons in these groups were represented
by approximately 15, 25, and 15 trials, each containing
approximately 250, 50, and 150 spikes, respectively.

We accounted for the effects of the absolute refractory
period, which was estimated from the spike width as 1.74 ±
0.41 ms [28,31]; we analyzed spike trains that were converted
from the original spike trains by subtracting the 2 ms absolute
refractory period. ISIs smaller or equal to 2 ms in the original
spike train were categorized as misdetected intervals, the
second spike was ignored, and consecutive ISIs were summed
as a single ISI.

The estimated firing characteristics and input parameters
were summarized for individual neurons (Fig. 6). For spike
trains obtained from each experimental trial, we estimated
the estimated trajectory of the firing characteristics λ̂(t)
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FIG. 5. (Color online) The ISE between the intended input pa-
rameters and estimated parameters. ISEs averaged over 100 samples
are plotted against the period of the input modulation T . Dashed,
dotted, and bold lines represent the three fluctuating input conditions
(i)–(iii), respectively, with parameters μ0 = 0.5 nA, δμ = 0.15 nA,
σ0 = 1 nA ms1/2, δσ = 0.6 nA ms1/2, and 
 = π/2.

and κ̂(t) with the state-space method [Fig. 6(a)]. The firing
characteristics [λ̂(t),κ̂(t)] were plotted for every spike t = tj
as a scatter diagram in the (λ,κ) plane [Fig. 6(b)], and the
spike trains recorded from a single neuron were collected in
the (λ,κ) plane [Fig. 6(c)]. To obtain another scatter diagram

in a plane of input parameters (μ,σ ), the firing characteristics
were converted into the likely input trajectory μ̂(t) and σ̂ (t)
using the nonlinear transformation formula [Fig. 6(d)]. Finally,
the input parameters of a single neuron were summarized as
an ellipse describing a 75% quantile of a two-dimensional
Gaussian distribution function fitted to the data.

The inferred input parameters (μ,σ ) for groups of neurons
in area V1, area MT, and the LGN were summarized by
plotting ellipses representing individual neurons [Fig. 7(a)].
The distributions of input parameters for all neurons in the
three brain regions were summarized as three ellipses repre-
senting 75% quantiles of Gaussian distributions [Fig. 7(b)].
It is noteworthy that the distributions of input parameters are
similar for areas V1 and MT, which differ markedly from
the results obtained for the LGN; the input fluctuation was
not significantly correlated with the mean input in the visual
cortical areas, whereas the input fluctuation was negatively
correlated with the mean input in the thalamus [Fig. 7(c)].

VI. DISCUSSION

In the present paper, we developed a method to estimate
nonstationary population activities of excitatory and inhibitory
presynaptic neurons from a single train of spikes (Fig. 2). The
model estimates likely input parameters over time from time-
varying firing characteristics using a nonlinear transformation
(Fig. 3). Instantaneous firing characteristics comprising the
firing rate and non-Poisson irregularity of a spike train were

FIG. 6. (Color online) Analyzing in vivo data using the transformation method. (a) MAP estimates of the firing rate λ̂(t) and irregularity
κ̂(t) for a spike sequence in a single trial. (b) Scatter plot of the estimated firing characteristics for each spike in a log-log (λ,κ) plane.
(c) Scatter plot of the log-log data (λ,κ) for a single neuron within and across trials. (d) Scatter plot of the estimated input mean and fluctuation
(μ̂,σ̂ ). Ellipses represent 75% quantiles of two-dimensional Gaussian distribution functions fitted to the data.
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FIG. 7. (Color online) Distributions of input parameters for all neurons in the visual areas V1, MT, and LGN. (a) Ellipses represent 75%
quantiles of two-dimensional Gaussian distribution functions fitted to the estimated mean and fluctuation of the input current for individual
neurons. (b) The blue (dark gray), red (light gray), and green (gray) ellipses represent distributions for neurons from area V1, area MT, and the
LGN, respectively. (c) Percentages of neurons in the three regions exhibiting a positive (orange, left), nonsignificant (gray, middle), or negative
(cyan, right) correlation between the mean and fluctuation.

estimated using a state-space model [25]. Our purpose is not
simply characterizing an output signal, but is inferring the input
parameters that are most likely to have evoked the spike train.
For this purpose we constructed a nonlinear transformation
formula by inverting the forward neuronal transformation of
input signals to output spike times. The forward transformation
was modeled as a set of radial basis functions and polynomial
functions with coefficients determined using the first-passage
time of the OUP, which is a mathematical simplification of
neuronal spiking conditions based on the LIF model.

Using synthetic data generated in a simulation, we con-
firmed that the transformation method matched the accuracy of
the state-space method for directly estimating input parameters
(Fig. 4). The direct method, however, requires extensive
computation analysis, including several hours to examine
a spike train obtained during a period of few seconds.
By contrast, the transformation method is computationally
efficient when estimating the firing characteristics. Thus, we
can use the transformation method to analyze experimental
data containing as many as 10 000 or 100 000 spikes. We also

estimated the goodness of the estimation with the transforma-
tion method. The results showed that input variations occurring
on the order of 1 s can be tracked (Fig. 5).

We used the method to examine open-access spike train
data recorded from visual pathways, revealing similarities
between areas V1 and MT, whereas the LGN differed from
these cortical locations (Fig. 7). Input fluctuation was not
significantly correlated with the mean input in areas V1 and
MT, whereas the input fluctuation was negatively correlated
with the mean input in the LGN (Fig. 7). If inhibitory activity
follows excitatory activity, the input fluctuation could be
independent of the mean input, but if inhibitory activity is small
or does not follow excitatory activity, the input fluctuation
could be negatively correlated with the mean input. Thus,
the results suggest the existence of balanced input in areas
V1 and MT, and the absence in the LGN. Especially, the
covariation between excitatory and inhibitory activities implies
that the visual cortex processes information in a recurrent
manner [5,48,49]. Although the relative contributions of
excitatory and inhibitory activities have been analyzed in the
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cerebral cortex by carefully observing temporal modulation
of synaptic conductances [5,50,51], our method does not
require anesthesia or significant constraints on the animal
when estimating inputs. Instead, inputs are estimated solely
from spike times obtained via extracellular recordings.

Estimating input parameters from a single neuronal spike
train can be helpful even when analyzing multiple spike
trains recorded from hundreds of neurons. Because recordable
neurons constitute a small portion of local cortical circuitry,
which often comprises millions of neurons, most input signals
originate from unrecorded neurons (Fig. 1). It is important to
capture input conditions of individual neurons when discussing
local connections between recorded neurons. Comparing the
temporal profiles of estimated input parameters may also allow
a better understanding of which neurons are receiving common
inputs (Fig. 1).

When estimating inputs from output spike parameters, it is
essential to understand the neuronal forward transformation
from input signals to output spikes. We adopted the standard
LIF model with the input current fluctuating rapidly based on
incoming EPSPs and IPSPs. The spiking model was reduced
to the OUP by assuming that the amplitudes of the EPSPs and
IPSPs are small and that they occur randomly in time. The
advantage of this approach was that the OUP contains only
two independent parameters, expediting parameter exploration
based on the firing characteristics.

Nevertheless, the OUP should be replaced by a more realis-
tic model [52–55] to improve the estimation. One advantage of
the transforming method is that any spiking neuron model can
replace the LIF model. Because the neuronal transformation
is also dependent on individual neurons, it may be possible
to adapt the model to individual neurons. The neuron model
can be selected according to the accuracy in reproducing spike
timing given fluctuating input [54,55]. It is desirable that the
model in combination with the estimation method is ultimately
validated with experimental data of neurons in vitro applied
with controlled input current representing fluctuating input
parameters.

A number of methods have been developed to estimate
constant input parameters from a spike train [14–17]. Among
these approaches, the method proposed by Inoue et al. [14]
resembles the basic estimation described in the present study,
except that the authors determined input parameters via
the mean rate and coefficient of variation (Cv). We have
shown in Appendix A that their input estimation corresponds
to approximating the ISI distribution with the Gaussian
distribution. Because Cv gives unstable estimates of neuronal
firing characteristics [56,57] and the Gaussian distribution
can provide negative ISIs, we believe that using the gamma
distribution family is more appropriate for this analysis. In
addition to statistical methods, others have attempted to infer
input parameters using the self-consistent analysis of networks
of model spiking neurons [49,58]. In all of these methodologies
and the present method, estimation of input parameters is based
on measuring neuronal firing characteristics, such as the rate
and non-Poisson irregularity.

Previous papers showed that the distributions of the firing
rate and the firing irregularity differed between functional
areas in the brain [25,56,59]. The fact implies that there be
specific input conditions to generate output spikes with the

firing characteristics specific to each area, although the details
about inputs remain to be known. In this paper, we derived a
method to estimate input conditions from the resulted neuronal
firing characteristics, which provides a way of revealing the
input conditions specific to functional areas. Especially in this
study, we showed that the difference in the distributions of
the neuronal firing characteristics among V1, MT and LGN,
which has been reported in Ref. [25], could result from the
absence or presence of balanced input.

A key advance in the present study is that our method allows
us to track temporally varying input parameters by capturing
firing characteristics over time using a state-space method. We
characterized the neural activity in terms of the firing rate and
irregularity by adjusting the scale and shape factors to fit the
gamma distribution function to the ISI sequence [25]. Even if
we use a parametric family of functions, there may be other
appropriate choices, such as an inverse Gaussian distribution
function or log-normal distribution function. In addition,
to make the state-space method function, we incorporated
a random walk prior to the firing rate and irregularity to
ensure that the firing characteristics did not fluctuate rapidly.
Hyperparameters controlling the degree of fluctuation were
determined using the empirical Bayes method such that
the marginal likelihood was maximized. Of note, however, the
state-space model is not perfect, and it may not work properly
in some cases—for example, when the firing characteristics
change too rapidly. The state-space method should therefore
be improved to work more robustly.

Our method could be further refined to better represent
the experimental data by including a model of an individual
neuronal forward transformation. Nevertheless, the present
study is an important first step for estimating inputs solely
from an output spike train. Because our method does not
require any specific information other than the spike times,
we can reexamine spike data by reopening large neurophysio-
logic archives. For multiunit data, our method may provide
additional information by revealing dynamic activities of
unrecorded presynaptic neuronal populations for each neuron,
from which we can estimate the independence of individual
neuronal processing. This may help to elucidate the dynamics
of mesoscopic neuronal circuits.
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APPENDIX A: MAXIMIZATION OF THE MARGINAL
LIKELIHOOD FUNCTION

We implement a method of searching for a set of hyperpa-
rameters γ ≡ (γ 1,γ 2) that maximizes the marginal likelihood
function, using expectation maximization (EM) method [38] in
Eq. (8). In the EM method, hyperparameters are determined by
iteratively maximizing the expected value of the log likelihood,
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the Q function,

Q(γ |γ(p)) = E[log Pγ ({tj },{�j })|{tj },γ(p)]

=
n∑

j=1

E[log Pγ (�j |�j−1)|{tj },γ(p)]

+
n∑

j=1

E[log P (sj |�j )|{tj },γ(p)], (A1)

where γ(p) ≡ (γ 1
(p),γ

2
(p)) is the set of hyperparameters of the

pth iteration, and E[|{tj },γ(p)] represents the expectation with
respect to the conditional distribution of � given {tj } = {tj }nj=0
under the pth estimate of hyperparameters. From Eq. (7), the
(p + 1)st estimate of γ is determined by the conditions for
dQ/dγ = 0, leading to a set of the following equations:

γ k
(p+1) = 1

n − 1

n−1∑
j=1

1

sj

E
[(

�k
j+1 − �k

j

)2∣∣{tj },γ(p)
]
,

(A2)
for k = 1 and 2.

The expected value appearing in the right-hand side of
Eq. (A2) can be obtained using Kalman filtering and smoothing
algorithm under the assumption that the input parameters � are
Gaussian distributed. Their means, variances, and covariances,

�i|l ≡ E
[
�i

∣∣{tj }lj=0,γ(p)
]
,

�i|l ≡ E
[
(�i − �i|l)T (�i − �i|l)

∣∣{tj }lj=0,γ(p)
]
, (A3)

�i,k|l ≡ E
[
(�i − �i|l)T (�k − �k|l)

∣∣{tj }lj=0,γ(p)
]
,

are obtained by the following algorithm:
(i) Prediction algorithm:

�i|i−1 = �i−1|i−1, �i|i−1 = �i−1|i−1 + Gi−1, (A4)

where Gi is the variance-covariance matrix for the input
parameters,

Gi =
(

γ 1si 0

0 γ 2si

)
. (A5)

(ii) Filtering algorithm: The algorithm recursively com-
putes the filtered distribution [60],

P
(
�i

∣∣{tj }ij=0

) = P
(
�i

∣∣{tj }ij=0

)
P

(
si

∣∣�i,{tj }ij=0

)
P

(
si

∣∣{tj }ij=0

)
∝ P

(
�i

∣∣{tj }ij=0

)
P (si |�i). (A6)

Assuming the filtered distribution to be Gaussian, we can
obtain its mean and variance as the mode and negative inverse
of the second derivative of its logarithm, respectively [39,61],

d

d�i

log P
(
�i

∣∣{tj }ij=0

)∣∣
�i=�i|i

= 0,

(A7)

�−1
i|i = − d2

d�i
2 log P

(
�i

∣∣{tj }ij=0

)∣∣
�i=�i|i

.

(iii) Smoothing algorithm [39,62]:

�i|n = �i|i + Ai(�i+1|n − �i+1|i),
(A8)

�i|n = �i|i + Ai(�i+1|n − �i+1|i)AT
i ,

where

Ai = �i|i�−1
i+1|i . (A9)

(iv) Covariance algorithm [63]:

�i+1,i|n = Ai�i+1|n. (A10)

From the equations, we evaluate the conditional variances
in Eq. (A2):

E
[(

�k
j+1 − �k

j

)2∣∣{tj },γ(p)
]

= �
(k,k)
j+1|n − 2�

(k,k)
j+1,j |n + (

�k
j+1|n − �j |n

)2
, (A11)

for k = 1 and 2, where �(a,b) is the (a,b) component of the
matrix �.

APPENDIX B: FITTING A PARAMETRIC DISTRIBUTION
FUNCTION TO AN ISI DISTRIBUTION

Here, we derive a general method of fitting a two-parameter
exponential family f (s|θ1,θ2) to an ISI distribution of a
spiking neuron model P (s|�), based on a principle of
minimizing the KL divergence, and derive Eq. (12) for a
particular gamma distribution family.

A two-parameter exponential family is expressed in a form

f (s|θ1,θ2) = exp[η1(θ1,θ2)A1(s) + η2(θ1,θ2)A2(s)

−B(θ1,θ2) + C(s)], (B1)

where η1 and η2 are called natural parameters, and A1(s) and
A2(s) are sufficient statistics. The natural parameters (η1,η2)
can be connected with input parameters � by minimizing the
KL divergence from P (s|�) to f (s|θ1,θ2). Taking extremum
in two parameter axes θ1 and θ2 is equivalent to taking
extremum in two axes of natural parameters η1 and η2:

∂

∂ηk

∫
P (s|�) log

P (s|�)

f (s|θ1,θ2)
ds = 0,

(B2)
for k = 1 and 2.

By plugging Eq. (B1) into Eq. (B2) we obtain

∫ ∞

0
dsAk(s)P (s|�) =

∫ ∞

0
dsAk(s)f (s|θ1,θ2),

(B3)
for k = 1 and 2.

This means that sufficient statistics should be congruent
between two distribution functions. When considering the
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gamma distribution function,

g(s|λ,κ) = exp[−λκs + (κ − 1) log s

+ κ log(λκ) − log �(κ)], (B4)

for which two natural statistics are s and log(s), relation (B3)
is written down as Eq. (12).

When replacing the normal distribution with the gamma
distribution,

n(s|λ,ν) = exp[(λ/ν2)s − (λ2/2ν2)s2 + log(λ/ν)

− 1/2ν2 − (1/2) log(2π )], (B5)

we have another set of natural statistics as s and s2. In this
case, the extremum parameters are given by∫ ∞

0
dssP (s|�) = 1/λ,

(B6)∫ ∞

0
dss2P (s|�)

/(∫ ∞

0
dssP (s|�)

)2

− 1 = ν2.

Because λ and ν represent the mean firing rate and the
coefficient of variation, respectively, fitting to the Gaussian
distribution is equivalent to the method proposed by Inoue
et al. [14].

APPENDIX C: TRANSFORMATION FROM FIRING
CHARACTERISTICS TO INPUT PARAMETERS

We constructed a formula representing a backward trans-
formation from the output firing characteristics comprising
the firing rate and irregularity, (λ,κ), to the input parameters
comprising the mean and fluctuation of the input current,
(μ,σ ).

Because any OUP can be linearly transformed into another,
all the OUP models are comprehended by investigating a single
standard OUP:

dU (x)

dx
= −U (x) + μ + σξ (x),

(C1)
if U (x) > 1, then U (x) → 0.

Thus we obtain a forward transformation for this standard
OUP from input mean and fluctuation to output firing rate
and irregularity, Eq. (11), and then invert the relation into a
backward transformation, Eq. (10).

In considering the LIF model [Eq. (1)] with an assumption
of uncorrelated inputs [Eq. (2)], we obtain another OUP:

τm
dV (t)

dt
= VL − V (t) + R(μ + σξ (t)),

(C2)
if V (t) > VTH, then V (t) → VR.

Once the standard backward transformation Eq. (10) for the
standard OUP is established, we may translate it for this
particular OUP as

μ = M(λτm,κ)
(VTH − VR)

R
+ (VR − VL)

R
,

(C3)

σ = S(λτm,κ)
√

τm
(VTH − VR)

R
.

1. Forward transformation from input to output

A forward transformation from input parameters to output
firing characteristics, Eq. (11), can be constructed by solving
Eq. (12) from the distribution of ISIs, P (s|μ,σ ). For the OUP,
the firing rate λ can be calculated using a formula for the first
moment of the first-passage time distribution [18,64,65]:

λ−1 = φ(
√

2/σ 2 (1 − μ)) − φ( −
√

2/σ 2 μ), (C4)

where

φ(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

100∑
k=1

1

2

(
√

2z)k

k!
�

(
k

2

)
: z > −5.7,

−
(

KB + log |z| +
10∑

k=1

bk

z2k

)
: z � −5.7,

(C5)

KB = 0.635 181 42, bk = (−1)k+1(2k − 1)!

k!2k+1
.

The firing irregularity κ cannot be obtained analytically. Thus
we should carry out a numerical simulation of the standard
OUP, Eq. (C1), to obtain a large number of ISIs {s1,s2, . . . ,sN },
and solve Eq. (12) numerically:

ψ(κ) − log(κ) =
N∑

i=1

log(si)

N
− log

(
N∑

i=1

si

N

)
. (C6)

Because ψ(κ) − log(κ) is a monotonically increasing
function, we can obtain the root of Eq. (C6) with the bisection
method [66]. For each set of input parameters (μ,σ ), we
generated N = 105 ISIs using a fast and accurate simulation
algorithm [67].

2. Backward transformation from output to input

The backward transformation Eq. (10) can be obtained by
inverting the forward transformation Eq. (11). In practice,
we first performed a massive numerical simulation over a
variety of input parameters (μ,σ ) to obtain the firing char-
acteristics (λ,κ). To approximate the huge number of sample
points {λi,κi,μi,σi} generated by the numerical simulation
we construct simple and handy polyharmonic splines [68] by
selecting Ns = 100 sample points:

M(λ,κ) =
Ns∑
i=1

ω
μ

i ϕ(ri) + v
μ

1 + v
μ

2 log λ + v
μ

3 log κ,

(C7)

log[S(λ,κ)] =
Ns∑
i=1

ωσ
i ϕ(ri) + vσ

1 + vσ
2 log λ + vσ

3 log κ,
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where ri =
√

(log λ − log λi)2 + (log κ − log κi)2, ϕ(r) = r3

is a basic function, ω
μ

i and ωσ
i are the Ns weights of the

basic functions, and v
μ

i and vσ
i are the three weights of

the polynomial for input parameters μ and σ , respectively.
The weights ωμ = (ωμ

1 ,ω
μ

2 , . . . ,ω
μ

Ns
)T and vμ = (vμ

1 ,v
μ

2 ,v
μ

3 )T

are determined by solving a symmetric, linear system of
equations as

(
A V T

V 0

)(
ωμ

vμ

)
=

(
y

0

)
, (C8)

where

y = (μ1,μ2, . . . ,μNs
)T ,

V =
⎛
⎝ 1 1 · · · 1

log λ1 log λ2 · · · log λNs

log κ1 log κ2 · · · log κNs

⎞
⎠, (C9)

Aij = ϕ(
√

(log λi − log λj )2 + (log κi − log κj )2).

The weights ωσ = (ωσ
1 ,ωσ

2 , . . . ,ωσ
Ns

)T and vσ = (vσ
1 ,vσ

2 ,vσ
3 )T

are also computed from Eq. (C8) by setting
y = (log σ1, log σ2, . . . , log σNs

)T . The data points and
the weights are in Table I.

TABLE I. Polyharmonic spline parameters that provide a formula for the reverse transformation representing output to input signals. A
hundred sets of output values {log λi, log κi} and the weights ωμ and ωσ are listed. The polynomial weights are vμ = (4.5067, 0.2396, 6.4132)T

and vσ = (10.4627, 3.6756, −2.9621)T .

log λi −3.5066 −3.5066 −3.5066 −3.5066 −3.5066 −3.5066 −3.5066 −3.0173 −3.0173 −3.0173
log κi −1.2040 −0.7840 −0.3640 0.0559 0.4759 0.8959 1.3159 −1.2040 −0.7840 −0.3640
ω

μ

i −1.5020 2.9633 −0.4089 −3.0000 4.0182 −2.0971 0.2100 3.6651 −8.8952 5.9133
ωσ

i 0.2189 −0.1863 −1.1754 1.0946 7.7236 −4.4587 −2.8359 −1.1241 1.8934 −0.8938

−3.0173 −3.0173 −2.5280 −2.5280 −2.5280 −2.5280 −2.5280 −2.5280 −2.5280 −2.5280
0.0559 0.4759 −1.2040 −0.7840 −0.3640 0.0559 0.4759 1.3159 1.7358 2.1558

−1.6041 0.2324 −0.5383 3.0197 −1.2777 −0.3986 0.1064 0.0649 −0.0064 −0.0540
−4.3503 1.6684 0.2327 −0.5613 0.8288 0.4180 0.1336 1.8696 0.9663 0.0215

−2.5280 −2.0387 −2.0387 −2.0387 −2.0387 −2.0387 −2.0387 −2.0387 −1.5494 −1.5494
2.5758 −1.2040 −0.7840 −0.3640 0.0559 0.4759 0.8959 1.3159 −1.2040 −0.7840
0.0508 −1.8373 0.7161 0.2975 0.0447 −0.2122 0.2746 −0.0535 2.2960 −1.4239
0.4354 0.2294 0.0526 −0.3755 −0.4076 0.1728 −0.5741 −1.3993 −0.4376 0.5005

−1.5494 −1.5494 −1.5494 −1.5494 −1.5494 −1.5494 −1.5494 −1.0601 −1.0601 −1.0601
−0.3640 0.0559 0.4759 0.8959 1.3159 1.7358 2.9957 −1.2040 −0.7840 −0.3640

0.3310 −0.5560 0.2099 −0.1609 −0.0577 0.0353 0.1055 −2.5169 2.2593 −0.9155
−0.1746 0.5201 −0.3004 0.2558 0.9916 −0.9933 0.4760 0.3134 −0.2794 −0.0070

−1.0601 −1.0601 −1.0601 −1.0601 −1.0601 −1.0601 −0.5708 −0.5708 −0.5708 −0.5708
0.0559 0.4759 0.8959 1.3159 1.7358 2.5758 −1.2040 −0.7840 −0.3640 0.0559
0.3619 0.0622 −0.1336 0.1936 −0.1084 −0.0297 0.8374 0.3963 −0.2710 −0.0364

−0.1336 −0.1087 0.0060 −0.4774 0.6445 −0.3057 −0.0869 0.1169 0.0524 −0.1024

−0.5708 −0.5708 −0.5708 −0.5708 −0.5708 −0.5708 −0.0816 −0.0816 −0.0816 −0.0816
0.4759 0.8959 1.3159 1.7358 2.1558 2.5758 −1.2040 −0.7840 −0.3640 0.0559

−0.2214 0.2697 −0.1706 0.0200 0.1333 −0.0457 −0.9905 0.5750 −0.8229 0.2315
0.3359 −0.2014 0.3718 −0.5005 0.1387 −0.2947 −0.1291 0.2349 −0.2669 0.2255

−0.0816 −0.0816 −0.0816 −0.0816 −0.0816 −0.0816 −0.0816 0.4077 0.4077 0.4077
0.4759 0.8959 1.3159 1.7358 2.1558 2.5758 2.9957 −1.2040 −0.7840 −0.3640

−0.0902 −0.1672 0.0729 0.1495 −0.4979 0.2658 −0.2093 1.7693 0.5372 0.1253
−0.3099 0.2540 −0.4281 0.6236 −0.4814 0.4768 −0.1148 0.0044 −0.1507 0.2636

0.4077 0.4077 0.4077 0.4077 0.4077 0.4077 0.4077 0.4077 0.8970 0.8970
0.0559 0.4759 0.8959 1.3159 1.7358 2.1558 2.5758 2.9957 −1.2040 −0.7840
0.0876 0.0262 0.5736 −0.3523 0.5601 −0.1704 0.4590 0.4054 −4.4480 5.2994

−0.3491 0.3693 −0.2019 0.0344 −0.0133 0.1009 −0.0897 −0.0250 0.2147 −0.2061

0.8970 0.8970 0.8970 0.8970 0.8970 0.8970 0.8970 0.8970 0.8970 1.3863
−0.3640 0.0559 0.4759 0.8959 1.3159 1.7358 2.1558 2.5758 2.9957 −1.2040
−5.8417 1.6794 −0.4261 −0.8512 0.4199 −0.3693 −0.2911 0.1715 −1.1037 −3.7557

0.0785 −0.0078 −0.0101 0.0016 0.1511 −0.1950 0.0536 −0.0444 0.0186 0.1417

1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863 1.3863
−0.7840 −0.3640 0.0559 0.4759 0.8959 1.3159 1.7358 2.1558 2.5758 2.9957

8.2145 −2.9267 0.7087 −0.5920 0.4985 0.4634 −1.5411 2.1052 −1.4131 0.9063
−0.2687 0.1304 −0.0697 0.1181 −0.1852 0.2439 −0.3095 0.3395 −0.1528 −0.0076
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