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Second-harmonic generation in a laterally azo-bridged trimer ferroelectric liquid crystal:
Phase matching in the presence of a helicoidal structure
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Optical second-harmonic generation (SHG) has been studied in a trimer smectic C∗ liquid crystal especially
designed for nonlinear optical applications. The molecule has a long conjugated donor-acceptor unit that
transversally links three parallel rod-shaped moieties. A strong SHG signal has been observed at a fundamental
wavelength of 1369 nm even in the presence of the spontaneous helicoidal structure of the smectic C∗ phase.
This unusual behavior has been interpreted as due to the existence of phase matching, in which the wave vector
mismatch is compensated by the wave vector of the helix. This point has been confirmed by the study of the SHG
intensity versus sample thickness and light polarization characteristics. The main coefficient of the second-order
susceptibility tensor of the material has been estimated to be d22 = 28 pm/V.
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I. INTRODUCTION

It is well known that ferroelectric liquid crystals (FLCs)
are potentially attractive materials from the viewpoint of
nonlinear optics (NLO) [1]. FLCs with a large second-order
susceptibility are a compelling alternative to inorganic and
poled-polymer compounds since they offer important advan-
tages. For example, FLCs possess inherent thermodynamically
stable polar order, their polar direction can be externally
controlled with an electric field, and they can be integrated with
already available silicon technology on large areas, allowing
for the fabrication of more complex hybrid devices.

The first approaches to the design of NLO FLCs used
normal calamitic mesogens [2–8]. More recently bent-core
liquid crystals have also been studied, with improved NLO
efficiencies [9–12] since their bent shape allows the effective
incorporation of stronger chromophores while preserving the
mesogenic character.

Using an alternative idea proposed by Walba et al. [13]
we reported a class of laterally azo-bridged H-shaped dimer
FLCs [14,15] in which a disperse red (DR-1) unit transversally
connects a pair of rod-shaped moieties. These materials
possess an enantiotropic SmC∗ phase, and second-harmonic
generation (SHG) measurements of one dimer at a wavelength
of 1064 nm gave a d22 coefficient of 17 pm/V. Continuing
with this approach, a SHG investigation on the trimer shown
in Fig. 1 has been recently presented [16]. Since the NLO
moiety is longer than DR-1, an improved SHG efficiency far
from material resonances was obtained. The SHG results show
in addition some unexpected features, the most prominent of
which is the appearance of a SHG signal in absence of an
applied electric field.

The SHG process in helicoidal SmC∗ phases was the-
oretically analyzed some years ago [17–19]. In particular
it was shown that the helicoidal structure provides some
special possibilities to achieve phase matching (PM). The
same effect was reported earlier for third-harmonic generation
in cholesterics [20]. The wave vector mismatch can be
compensated with the wave vector of the helix similarly to
what happens in the so-called quasi PM with periodically

poled materials. In fact there are several possibilities for the
PM. Some experimental studies carried out on this subject
have shown an actual enhancement of the SHG by helicoidal
distributed feedback action in SmC∗ phases [21]. This is
a peculiar PM process involving two counterpropagating
fundamental waves and generating light in both directions
with a wavelength equal to the optical pitch of the helix. As
will be shown below our results can be explained in terms of
two other helicoidal phase matchings (HPMs) involving waves
propagating only in the forward direction. The main point of
the present work is the detailed description and analysis of this
phenomenon.

II. MATERIAL CHARACTERISTICS AND
EXPERIMENTAL PROCEDURE

The phase sequence of the compound can be seen in Fig. 1.
Despite the rather planar molecular shape, the material shows
a broad SmC∗ phase. Textures (Fig. 2) show the typical
lines, which indicate a helicoidal structure with a pitch p =
1.7 μm, practically constant in the SmC∗ range. The heli-
coidal structure can easily be unwound by an electric field.
Polarization measurements gave a spontaneous polarization
Ps = 27 nC/cm2 at 120 ◦C. Other characterization mea-
surements [differential scanning calorimetry (DSC), x-ray,
tilt angle, electro-optic studies] confirmed the above phase
assignment [16].

The material is rather absorbing in the visible range. In
fact its absorption spectrum in CH2Cl2 solution [16] shows a
strong band in the visible range at λ0 = 572 nm (maximum
molar absorption coefficient εmax = 27 700 M−1 cm−1). For
this reason, the wavelength of a Nd:YAG laser (1064 nm)
which is usual in SHG measurements is not a good choice
in this case. Therefore, we placed a Raman-shifter crystal
[Ba(NO3)2] after the Nd:YAG laser of our SHG equipment [22]
to get a wavelength shifted by a second-Stokes process to
1369 nm. The material still shows some absorption at the
second-harmonic wavelength 684.5 nm, though the main effect
is avoided. In any case, the absorption coefficient of the
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Heating: Cr1  84 ºC  Cr2 123 ºC  SmC*  135 ºC  N*  146 ºC  Iso
Cooling: Iso  145 ºC  N*  134 ºC  SmC*  31 ºC  gSmC*

FIG. 1. (Color online) Molecular structure of the trimer incor-
porating a strong chromophore along its polar axis and its phase
sequence according to DSC data. Cr: the crystalline state; Iso: the
isotropic liquid; gSmC∗: the glassy state of the SmC∗ phase.

material at 684.5 nm, extrapolated from the measurements
in CH2Cl2 solution, is quite high, α = 0.74 μm−1, and should
be taken into account in the interpretation of the results.

SHG measurements were carried out at normal incidence
using cells made of two glass plates treated with octadecyltri-
ethoxysilane (ODS) to attain homeotropic orientation. One of
the glasses was coated on its inner surface with two transparent
indium tin oxide (ITO) electrodes parallel to each other for
electric field application. The gap between electrodes was
0.1 mm. Five cells were used, with thicknesses 1, 2, 3.75, 7,
and 11 μm. The material was introduced by capillarity in the
isotropic phase. In all cases very good alignment was achieved
in the SmC∗ phase, with a uniform dark texture that became
birefringent within the gap region upon field application. This
fact indicates that the smectic layers are parallel to the plates
and the helicoidal structure is wound or unwound depending
on the absence or presence of the in-plane electric field. Typical
values to unwind the helix in this homeotropic geometry are

FIG. 2. (Color online) Optical textures of the trimer compound
at 120 ◦C in a cell of thickness 6 μm. The fact that the material is
switchable with electric fields of about 4 V/μm and the helix lines
in the absence of a field indicate a SmC∗ phase. From the distance
between the lines a pitch of 1.7 μm was deduced.
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about 5 V/μm, similar to those needed for planar or unaligned
samples.

III. SHG RESULTS IN A HELICOIDAL SmC∗ STRUCTURE

As mentioned above a strong SHG signal was observed in
all the cells even before field application. These large SHG
signals were obtained in practically the entire SmC∗ range.
Typically the SHG intensity increased with sample thickness
and tended to saturate for thicknesses about 10 μm.

In general the SHG light was found to be elliptically
polarized for linearly polarized fundamental light. When
the polarization plane of the input light was rotated by a
certain angle, the azimuth of the output light rotated by the
same amount. For other polarizations of the incident light
the behavior of SHG intensity is interesting, as shown in
Fig. 3. The different polarizations were achieved by means
of a compensator placed at 45◦ with respect to the plane
of polarization of the incident light. As can be seen, the
SHG vanishes for right circularly (RC) polarized light and
remains strong for left circularly (LC) polarized light. This
characteristic unambiguously indicates that the helicoidal
structure plays a relevant role in the effect. This left-right
asymmetry together with the large size of the SHG intensity
suggests that we are observing a SHG process where a PM
condition takes place and where the SmC∗ helicoid is involved.

We now summarize the basic aspects of the theory for SHG
in helicoidal structures [18,19]. Figure 4 shows the dispersion
curves for light propagating along the helix axis of a SmC∗
structure. Mode l is a coherent superposition of two Bloch
waves with wave vectors l ± q where q = 2π/p is the helix
wave vector. The four curves can be calculated from the
expressions [18]

l = ±[(
k2

0 n̄
2 + q2

) ±
√

4k2
0 n̄

2q2 + a4k4
0

]1/2
, (1)
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FIG. 4. (Color online) Dispersion relationship for light propaga-
tion along the helicoidal axis in a SmC∗ phase. Modes in branches
1 and 2 propagate in the forward direction. If the helix is positive
(q > 0) and the anisotropy a is not too large, modes in branches 1
and 2 have essentially LC and RC polarizations, respectively, for all
frequencies of practical interest. If q < 0 the polarizations are the
opposite. These results do not apply near the gap (close to l = 0).

where all sign combinations are possible. Here k0 = ω/c is
the wave vector in vacuum, c the speed of light, and ω the
light frequency. The parameters n̄2 and a2 account for the
mean refractive index and anisotropy of the material. They are
related to the values of tilt angle θ and the optical dielectric
tensor components parallel ε‖ and perpendicular ε⊥ to the
director according to the equations

n̄2 = 1

2

[
2ε⊥ + (ε‖ − ε⊥)ε⊥ sin2 θ

ε⊥ sin2 θ + ε‖ cos2 θ

]
, a2 = n̄2 − ε⊥.

(2)

For each frequency, four modes are allowed (except in the gap
region).

Modes in branches 1 and 2 have positive propagation veloc-
ities (forward propagation) and here we will restrict ourselves
to these branches. For light frequencies of practical interest it
can be shown that if the helix is positive (q > 0) the modes of
branches 1 and 2 have essentially left circular (LC) and right
circular (RC) polarizations, respectively. The corresponding
refractive indices nL,nR are given approximately through the
expressions

l − q = k0nL branch 1; l + q = k0nR branch 2. (3)

The PM condition for SHG is realized for 	l = 0 [18,19],
i.e.,

l(ω) + l′(ω) = l′′(2ω). (4)

Here l and l′ denote the l-wave vectors of the fundamental
light photons that combine to produce a 2ω photon with wave
vector l′′. As can be seen the relation is similar to that of
ordinary PM but now the expression involves Bloch (l) instead
of the usual wave vectors (k0n).

A further simplification arises if the anisotropy is small,
a2 � ql. Except for terms in O(a4), all the refractive indices
become equal, i.e., nL = nR = n̄. Under these conditions
Eq. (4) gives six different HPM possibilities that have been
collected in Table I.

TABLE I. Possible HPMs for fundamental and SHG waves
propagating in the forward direction. l1,l′1 are the Bloch wave vectors
for polarization LC (branch 1) and RC (branch 2) of the fundamental
light. l2,l

′
2 are the corresponding wave vectors for the SHG light. A

positive helicoidal pitch means a right-handed helix. If the condition
n2 > n1 is assumed, a right-handed helix gives rise to HPMs 1, 4, and
5.

HPM Polarization Wave vector Helicoidal
No. combination conditions pitch

1 LC + LC→LC 2l1 = l2 λ/2(n2 − n1)
2 LC + RC→LC l1 + l′1 = l2 λ/2(n1 − n2)
3 RC + RC→LC 2l′1 = l2 3λ/2(n1 − n2)
4 LC + LC→RC 2l1 = l′2 3λ/2(n2 − n1)
5 LC + RC→RC l1 + l′1 = l′2 λ/2(n2 − n1)
6 RC + RC→RC 2l′1 = l′2 λ/2(n1 − n2)

As can be seen, for a definite sign of the pitch and a definite
sign of the dispersion only three HPMs are possible. For
positive pitch and positive dispersion, two of them (HPMs
1 and 5) occur for a helicoidal pitch,

p = λ

2(n2 − n1)
, (5)

where n2 and n1 denote the refractive indices for the SHG
and fundamental lights, respectively, and λ is the vacuum
wavelength. The third HPM (HPM 4) takes place for a pitch
three times larger.

Our case corresponds to Eq. (5). We give three examples as
evidence to prove this point.

(i) For LC fundamental light, the resulting SHG light is
also LC (HPM 1). If HPM 4 should occur then the polarization
of the SHG light would be RC. In addition, provided that
n2 > n1, this fact implies that the helicoidal pitch is positive,
i.e., a right-handed helix (See Table I).

(ii) If the input light is linear the output SHG light is
elliptical. This is explained as a coherent superposition of
HPMs 1 and 5. Moreover, for a given input light, the output
light polarization remains the same when rotating the sample
about the helix axis. This was also experimentally observed.

(iii) For a more general polarization of the incident light,
numerical calculations based on the exact theory described in
Ref. [19] give the results shown in Fig. 5 [23]. Here we have
assumed Eq. (5) to be valid and have checked that the result
does not depend very much on the anisotropy a and the precise
values of ε‖ and ε⊥. The data of Fig. 5 have been obtained with
ε‖(ω) = 2.50, ε⊥(ω) = 2.20, ε‖(2ω) = 4.11, ε⊥(2ω) = 3.55,
p = +1.7μm, θ = 20◦, λ = 1369 nm, and a cell thickness
L = 11 μm. As can be seen the correspondence with the
experimental points (Fig. 3) is remarkable.

If perfect HPM is achieved then Eq. (5) predicts a rather
high dispersion, n2 − n1 = 0.4. This can be understood in
terms of the relative proximity of 2ω to the band at 572 nm [16].
The sign of the index dispersion is assumed to be positive since
at the fundamental and SHG wavelengths normal dispersion is
expected. It is interesting to point out that though our results do
not necessarily imply an exact HPM, the actual helicoidal pitch
must be close to the HPM value. Figure 6 shows the theoretical
SHG intensity as a function of the pitch for a cell of 11 μm. A
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linearly polarized input light is assumed. As can be seen the
width of the first SHG peak is rather small (the second peak
corresponds to HPM 4). The experimental observation of an
intense SHG implies then a margin for the pitch of less than
0.2 μm from the exact HPM value.

IV. MAGNITUDE OF THE SHG EFFICIENCY

A key point to identify a PM process is the study of the
SHG intensity as a function of the sample thickness, which
we present next, along with an estimation of the second-order
susceptibility value dij of the material. The exact analysis is
complicated because, besides the helix, the SHG calculations
should also incorporate the existence of absorption. Here we
present a simple approach that takes into account both aspects
of the problem.

We will start by recalling an expression for the SHG
intensity I2ω in a homogeneous sample, at normal incidence
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FIG. 6. (Color online) SHG versus pitch for a L = 11-μm-thick
cell. A linearly polarized fundamental light is assumed. The HPM
peak at p = 1.7 μm has a FWHM of 0.3 μm.

and neglecting the absorption at ω, [24]

I2ω = Cd2
effL

2e−αL/2 sin2(	kL/2) + sinh2(αL/4)

(	kL/2)2 + (αL/4)2
, (6)

where C is a constant, α the absorption coefficient of SHG
light, deff an effective nonlinear coefficient depending on
the input and output polarizations, and 	kL/2 is the phase
mismatch between second-harmonic and fundamental lights.
In the presence of a helicoidal structure it seems reasonable to
expect the validity of Eq. (6) except that now 	l should appear
instead of 	k. For HPM, since 	l = 0, we will have

I2ω = Cd2
effL

2e−αL/2 sinh2(αL/4)

(αL/4)2
. (7)

If the absorption is dominant, as in our case, the SHG
intensity is constant for thicknesses larger than a relatively
short L (of the order of, let us say, 10/α). However, in
the hypothetical case of a nonabsorbing material we have
checked numerically that the intensity is proportional to L2.
In order to highlight this fact, in Fig. 7 a fit of the SHG
intensity for LC polarized fundamental light divided by the
absorption dependent factor F (L) = e−αL/2 sinh2(αL/4)

(αL/4)2 versus

L2 is depicted. As can be seen a straight line is obtained
in agreement with Eq. (7). The only fitting parameter is the
proportionality constant Cd2

eff . The absorption coefficient is
taken, α = 0.74 μm−1 (from the extrapolation of the absorption
measurements in CH2Cl2 solution). The good fit gives us some
confidence on our hypothesis, at least if the HPM condition
holds. The constant C can be obtained by comparison of I2ω

with the SHG signal of quartz I
quartz
2ω . Using a y-cut quartz

plate and the ordinary + ordinary→ordinary SHG conversion
we have I

quartz
2ω = 4Cd2

11/(	kquartz)2 for the maximum of the
first Maker fringe. Taking d11 = 0.4 pm/V for quartz at 1369
nm we obtain deff = 10 pm/V for the trimer material.

deff is the effective susceptibility for the process that
transforms two LC ω photons into one 2ω LC photon when

FIG. 7. SHG intensity divided by the factor F (L) =
exp(−αL/2) sinh2(αL/4)

(αL/4)2 as a function of the square of the sample
thickness at 120 ◦C at zero field. The fundamental light had a LC
polarization. The straight line is a fit to Eq. (7) with the slope (Cd2

eff )
as the only free parameter.
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the SmC∗ helix is wound. This susceptibility is related
in a rather complicated fashion with the four independent
dij coefficients of the unwound structure [18]. However,
assuming that, because of the molecular design, d22 is much
larger than the rest (y is the axis parallel to the spontaneous
polarization of the unwound structure) a simple expression for
deff results [16], deff = d22/(

√
2)3. This gives d22 = 28 pm/V,

which is even higher than that reported for the dimer
compound [14,15]. This considerable size for an NLO
susceptibility is only a relative surprise because, as previously
pointed out, the conjugation length of the chromophore is
crucial for the magnitude of the hyperpolarizability. Though
the coefficient is somewhat resonance enhanced, the obtained
value indicates the efficacy of the employed chemical design
in achieving high performance NLO FLCs.

V. CONCLUSIONS

In summary, we have studied the SHG of a FLC especially
designed for NLO applications. Despite the planar molecular

shape, the material possesses a SmC∗ phase with a helicoidal
structure. It has been shown that a SHG signal is observed
even in the absence of any electric field. The phenomenon
has been identified with a PM in which the helicoidal
structure plays an important role. Finally we have estimated
d22 = 28 pm/V at 1369 nm, which is a value enabling
viable applications (e.g., the NLO coefficient for widely used
commercial periodically poled lithium niobate (PPLN) is
d33 = 27 pm/V).

ACKNOWLEDGMENTS

This research was supported by CICYT-FEDER of
Spain-UE (Contract No. MAT2009-14636-CO3) and the
Basque Country Government (Project No. GI/IT-449-10).
Y.Z. and C.W. would like to thank the NSF (USA) for support
through Grants No. OII-0539835 and No. IIP-0646460 to
Displaytech, Inc. (now part of Micron Technology Inc.).

[1] Y. Zhang and J. Etxebarria, in Liquid Crystals Beyond Displays,
edited by Q. Li (Wiley, Hoboken, NJ, 2012), pp. 111–156.

[2] N. M. Shtykov, M. I. Barnik, L. A. Beresnev, and L. M. Blinov,
Mol. Cryst. Liq. Cryst. 124, 379 (1985).

[3] A. Taguchi, Y. Ouchi, H. Takezoe, and A. Fukuda, Jpn. J. Appl.
Phys. 28, L997 (1989).

[4] J. Y. Liu, M. G. Robinson, K. M. Johnson, D. M. Walba, M. B.
Ros, N. A. Clark, R. Shao, and D. J. Dorovski, J. Appl. Phys.
70, 3426 (1991).

[5] K. Schmitt, R.-P. Herr, M. Schadt, J. Funfschilling,
R. Buchecker, X. H. Chen, and C. Benecke, Liq. Cryst. 14,
1735 (1993).

[6] P. Espinet, J. Etxebarria, C. L. Folcia, J. Ortega, M. B. Ros, and
J. L. Serrano, Adv. Mater. 8, 745 (1996).

[7] J. Ortega, C. L. Folcia, J. Etxebarria, M. B. Ros, and J. A. Miguel,
Liq. Cryst. 23, 285 (1997).
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