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Non-Debye relaxation in the dielectric response of nematic liquid crystals: Surface and memory
effects in the adsorption-desorption process of ionic impurities
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3Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende, Italy

(Received 25 July 2012; published 26 November 2012)

We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals
may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low
frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished
by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell
when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual
kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of
the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the
Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the
mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions,
on the impedance and obtain an exact expression for the admittance. The model is compared with experimental
results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.

DOI: 10.1103/PhysRevE.86.051705 PACS number(s): 83.80.Xz, 82.45.−h

I. INTRODUCTION

Dielectric spectroscopy is widely used for characterizing
the molecular dynamics of various systems, including fuel
cells [1] and biological tissues [2]. In liquid crystals, this
is an important technique because it provides information
about the various molecular relaxation modes associated with
molecular rotation [3]. Moreover, it also provides information
about the conductivity and the permittivity, which are partic-
ularly important for display applications. Nevertheless, liquid
crystals are insulating materials, and their finite resistance
comes from the ionic impurities dissolved in the medium.
In fact, ionic charges represent an essential contribution for
the dielectric properties of liquid crystals, since the small
quantity of impurities is difficult to eliminate [3]. In displays,
these ions change the resistance of the material and challenge
the industry to avoid phenomena such as low VHR (voltage
holding ratio) and image sticking [3,4]. When an insulated
material is submitted to an alternating current, the presence
of ions will play a decisive role in the electrical impedance
of the material, especially at low frequencies, where the
time scales involved allow for strong surface effects, such
as the adsorption-desorption phenomenon. These effects may
be responsible for a non-Markovian comportment of the
stochastic processes, i.e., an anomalous behavior. Several
mechanisms may lead to a non-usual behavior of the system
such as memory effects [5,6], long-range interactions [7–9],
long-range correlations [10], and surface effects [11–15]. The
last point plays an important role [16,17] in understanding
the dynamic aspects of the ions on the electrical response of
liquid crystals and their applications in several contexts. In this
sense, different mechanisms have been proposed to explain the
dynamic of ions in these materials such as the dissociation of
neutral particles into ionic products, the recombination of these
ions giving rise to neutral particles [18–28], electrodes with
fractal interfaces [29–31], the adsorption-desorption process

occurring at the interfaces [28,32–34], and extensions based on
fractional diffusion equations [35–42] connected to anomalous
diffusion. Here, we consider an electrolytic cell such as liquid
crystals in the framework of the Poisson-Nernst-Planck model,
taking into account the dissociation-association process. The
surface contribution is accounted for by means of a gen-
eral kinetic equation representing the adsorption-desorption
processes occurring at the interfaces. By using this general
equation, we extend the usual discussed in Ref. [43] which
is characterized by a relaxation regime with a non-usual (or
non-Debye) relaxation. As we will show below, this equation
contains a fractional time derivative and a temporal kernel
associated with the desorption rate that may be connected to
memory effects, as discussed in Refs. [12,13]. Indeed, in the
adsorption of ions at a solid electrode, an elastic scattering
occurs when there is no loss of translational energy during the
collision; however, if the ion is still in a weakly bound state,
even if it is on the surface, the thermal motion of the surface
atoms can cause the ion to desorb. Finally, when the ion collides
with a surface, it loses energy and is converted into a state
where it remains on the surface for a reasonable time, i.e., it
is physically adsorbed. As a consequence, the actual position
of the ion on the electrode has a memory of its incoming
state, eventually modifying the adsorption-desorption rates.
These effects may also be connected to the roughness of
the surface, which in the low-frequency limit leads us to
obtain Y = 1/Z ∝ (iω)η where Y and Z denote the admittance
and the impedance and η is a parameter connected to the
roughness of the surface [44,45] (see also Refs. [46,47] for
an additional discussion). The solution of the problem in
the absence of the adsorption-desorption process has been
presented in Refs. [19,48], and the solution without generation
and recombination of ions can be found in Refs. [32–34].
The mathematical problem is faced by means of analytical
methods, and the solutions are found by assuming first that
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the diffusion coefficients of the positive and negative ions
are different, which constitutes a more appropriate scenario
for describing the impedance response of insulating materials
such as liquid crystals. The non-Debye relaxation process
can be used for explaining non-usual behavior observed in
bent-core liquid crystal [49] and nematic cells with strong
dipoles (e.g., materials with cyano groups such as the n

CB family) [50].
The paper is organized as follows: Sec. II presents the

fundamental equations relevant to the drift-diffusion problem
for ions in an insulating medium, in the presence of the
generation-recombination phenomenon, described as a first-
order chemical reaction, and incorporating a generalized
kinetic equation at the interface. The case in which the neutral
particles are trapped and the positive and negative ions have
different mobilities is discussed in Sec. III, where it is shown
that the adsorption-desorption phenomenon is responsible for
a low-frequency plateau in the real part of the electrical
impedance. Theoretical predictions and a comparison with
experimental data are presented in Sec. IV. Concluding
remarks are drawn in Sec. V.

II. CONTINUOUS MODEL

Consider a slab of thickness d, whose electrodes are
placed at z = ±d/2, with z the axis normal to the surfaces.
In addition to the situation treated in Ref. [48], where the
sample has the same geometry, in the present approach the
adsorption-desorption process is incorporated at the surface of
the electrodes and governed by a non-usual kinetic equation
that can be connected to a non-Debye relaxation, as shown
below.

A. Kinetic equation

We denote by Nn, Np, and Nm the bulk densities of neutral,
positive, and negative particles, respectively. The equations of
continuity, stating the conservation of particles, are

∂

∂t
Nn = − ∂

∂z
Jn − cdNn + caNpNm and (1)

∂

∂t
Nα = − ∂

∂z
Jα + cdNn − caNpNm, (2)

with the bulk densities of current of particles being given,
respectively, by

Jn = −Dn

∂

∂z
Nn , and (3)

Jα = −Dα

[
∂

∂z
Nα + q

kBT
Nα

∂

∂z
V

]
, (4)

where V (z,t) is the electrical potential, q is the ion charge, kB

is the Boltzmann constant, T is the absolute temperature, and α

refers to either the positive ion (α = p) or the negative ion (α =
m). In the preceding equations, ca and cd are, respectively, the
constants of association and dissociation. The corresponding
diffusion coefficients for the two types of ions are Dp and Dm,
with Dn being the diffusion coefficient for neutral particles.

The next step in the construction of the continuous model
is to invoke the Poisson equation governing the bulk density

of charges, ρ(z,t) = q(Np − Nm), simply written in the form

∂2

∂z2
V (z,t) = −q

ε
(Np − Nm), (5)

where ε is the dielectric constant of the medium. Thus, the
complete mathematical problem consists in solving the set of
Eqs. (1)–(5), satisfying the boundary conditions

Jn

(
±d

2
,t

)
= 0, (6)

Jα(z,t)
∣∣∣
z=± d

2

= ± d

dt
σα(t), (7)

V

(
±d

2
,t

)
= V0

(
±d

2
,t

)
, (8)

which state that the electrodes are blocking for neutral particles
(6). The adsorption-desorption phenomenon, governed by the
general kinetic equation

τ γ dγ

dtγ
σα(t) = κτ Nα

(
± d

2
,t

)
−

∫ t

−∞
dtK(t − t)σα(t), (9)

is now imposed for the mobile ions (7), and the bulk electrical
potential profile on the surface always coincides with the
applied potential (8). In Eq. (9), the fractional operator is the
Caputo one [51], defined as

dγ

dtγ
σα(t)= 1

�(n − γ )

∫ t

0

σ (n)
α (t ′)

(t − t ′)γ+1−n
dt ′, n − 1 < γ < n,

(10)

which reduces to the usual derivative if γ = n, with n an
integer and non-negative. The problem as formulated above is
a further generalization of the problem treated in Ref. [28],
in which a usual kinetic equation describing a chemical
reaction of the first species was considered. The developments
based on the usual kinetic equation of the first species has
a correspondence with the theory presented by Macdonald
and Franceschetti in Ref. [19]. This pioneer approach adopts
Chang-Jaffe boundary conditions to take specific adsorption at
the electrodes into account. In this direction, a similar approach
was recently proposed in terms of an usual kinetic equation
at the interfaces (Langmuir’s approximation) to get some
details about the role of the adsorption-desorption process
in combination with the phenomenon of ionic recombination
[28]. In the kinetic equation, Eq. (9), κ and τ are parameters
describing the adsorption phenomenon in such a way that
κτ has the dimension of length. It can be interpreted as
the characteristic length over which the adsorption-desorption
phenomenon takes place in the sample. This kind of approach
is thus characterized by the presence of three characteristic
lengths, namely, the Debye screening length (to be introduced
later in the formalism), the thickness of the sample d, and
this intrinsic length, giving an idea of the spatial extension
involved in the adsorption process for each type of ion α.
Furthermore, the kernel Kα(t) is connected to the effect of
the surfaces on the bulk. In particular, the kernel is present in
the desorption term, accounting for memory effects that may
be connected to the roughness of the surface electrode in the
process. In fact, as discussed in Ref. [44], the surface roughness
plays an important role in determining the anomalous character
of the impedance. It is therefore expected that this effect, as
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shown in Refs. [12,13,44], may lead to a non-usual relaxation
and, consequently, to an anomalous diffusion. This approach,
based on a generalized kinetic equation, is investigated in the
context of charged particles to analyze the stationary solution,
in contrast to the results presented before [11–14], which
were obtained for neutral particles as an initial problem of
boundary condition. Another aspect to be underlined in this
regard is that the results obtained here, with Eq. (9), differently
from the ones presented, for example, in Refs. [17,28], come
from a much more general problem, where non-Debye, hence
more realistic, surface effects are considered to represent the
behavior in the low-frequency limit, governed by a power
law equation, i.e., Z ∼ 1/(iω)γ , where γ < 1 is a parameter
describing the behavior of the impedance. This behavior is
essential to describe a wide variety of experimental data
as, for example, ionic solutions and liquid crystals. The
lack of an equation such as Eq. (9) cannot describe any
complex, low-frequency surface effect whatsoever. Such an
aspect of the experimental data cannot be accounted for
by using the formalism discussed in Refs. [17,28], where
usual kinetic equations are employed to incorporate adsorption
effects.

B. Linear approximation

As in preceding works [32,48], the analysis is limited to
the linear approximation. The applied potential has the form
V0(±d/2,t) = ±(V0/2) exp(iωt), where V0 is the amplitude
and ω is the circular frequency of the applied voltage. We
assume that for low-amplitude V0, it is possible to write
Nn = Nn + δnn, Np = N + δnp, and Nm = N + δnm and to
work in the limit Nn � δnn, N � δnp, and N � δnm, which
states that, in the low-voltage regime, the densities differ only
slightly from the zero field densities, where the over line
symbols represent the charged particles in the bulk. Similar
assumptions are made for the adsorbed quantities, which
become σp = σ + δsp ≈ σ and σm = σ + δsm ≈ σ , because
σ � δsp and σ � δsm. In particular, one can write N0 =
N + Nn (where N0 represents the bulk dissociable particles

plus adsorbed particles by the surface) and cdNn = caN
2
,

with N = N/[1 + 2κτ/(dK)] and σ = κτN/[K + 2κτ/d],
where Kα = ∫ ∞

0 Kα(u)du and it is assumed, henceforth,
that Kα(t) = K(t). Since the electrodes are not blocking for
charged particles, the total number of mobile charges in the
bulk fluctuates. For this reason, it is necessary to impose the
conservation of the number of particles, which takes the simple
form δsp + δsm + ∫ d/2

−d/2[δnn + (δnp + δnm)/2]dz = 0.
In the limit of low applied voltage, the solutions of the

problem can be sought in the form

δnα(z,t) = ηα(z)eiωt , with α = n,p,m,

δsα(t) = σαeiωt , and (11)

V (z,t) = φ(z)eiωt ,

which permits the rewriting the fundamental equations of the
problem as

iωηn = Dn

d2

dz2
ηn − cdηn + caN (ηp + ηm), (12)

iωηα = Dα

d2

dz2
ηα + qN

kBT
Dα

d2

dz2
φ + cdηn − caN (ηp + ηm) ,

(13)

d2

dz2
φ = −q

ε
(ηp − ηm) . (14)

Equations (12)–(14) have to be solved with the boundary
conditions

Dn

d

dz
ηn

∣∣∣∣
z=± d

2

= 0, (15)

−
(

Dα

d

dz
ηα ± qN

kBT
Dα

d

dz
φ

)∣∣∣∣∣
z=± d

2

= ±iωσα, (16)

φ

(
±d

2

)
= ±V0

2
, (17)

where

σα = κτηα

(iωτ )γ + K(iω)

∣∣∣∣
z=±d/2

,

(18)

K(iω) = e−iωt

∫ t

−∞
dteiωtK(t − t).

This completes the mathematical formulation of the problem
in the linear approximation, which is usually employed when
the amplitude of the applied voltage can be considered small
enough. Notice the generality of the problem in considering
three different mobile particles with different mobilities when
the adsorption-desorption phenomenon is taken into account
by means of a fractional kinetic equation combined with the
effects of association-dissociation of particles in the system.
Several situations of experimental relevance can be analyzed
in this general framework because, as shown below, we were
able to analytically solve this difficult mathematical problem.
In the following, for simplicity and to compare the predictions
and results with experimental data, we discuss the particular
case Dp �= Dm with Dn = 0, which is relevant to describe a
typical electrolytic cell.

III. IMMITTANCE RESPONSE OF THE
CELL—EXACT RESULTS

As stated before, the mathematical problem formulated in
the preceding sections can be analytically solved for Dp �= Dm

with Dn = 0. Indeed, the solutions of the set of Eqs. (12)–(14)
are given by

ηp = C(1)
p eγ1z + C(2)

p e−γ1z + C(3)
p eγ2z + C(4)

p e−γ2z, (19)

ηm = C(1)
m eγ1z + C(2)

m e−γ1z + C(3)
m eγ2z + C(4)

m e−γ2z, (20)

with

C(1)
m

C
(1)
p

= C(2)
m

C
(2)
p

= − 1

λp

(
γ 2

1 − ξ 2
p

) = k1, (21)

C(3)
m

C
(3)
p

= C(4)
m

C
(4)
p

= − 1

λp

(
γ 2

2 − ξ 2
p

) = k2 , (22)

where k1 and k2 are constants and

γ1,2 =
√

1
2 (ξpm) ± 1

2

√
(ξpm)2 − 4

(
ξ 2
pξ 2

m − βpβm

)
, (23)
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where ξpm = ξ 2
p + ξ 2

m and with

ξ 2
α = 1

2λ2
+ iωcaN

(cd + iω)Dα

+ iω

Dα

and

(24)

βα = 1

2λ2
− iωcaN

(cd + iω)Dα

,

where λ =
√

εkBT /(2Nq2) is the Debye screening length. By
using the previous equations, from Eq. (14) it is possible to
show that the potential for this system is given by

φ(z) = −q

ε

{
1 − k1

γ 2
1

(
C(1)

p eγ1z + C(2)
p e−γ1z

)
+ 1 − k2

γ 2
2

(
C(3)

p eγ2z + C(4)
p e−γ2z

)} + Az + B . (25)

Equations (19), (20), and (25) may also be simplified by
applying the condition φ(z) = −φ(−z). Thus,

ηp = 2C(1)
p sinh(γ1z) + 2C(3)

p sinh(γ2z), (26)

ηm = 2k1C
(1)
p sinh(γ1z) + 2k2C

(3)
p sinh(γ2z), (27)

φ(z) = −q

ε
2

{
1 − k1

γ 2
1

C(1)
p sinh (γ1z)

+ 1 − k2

γ 2
2

C(3)
p sinh(γ2z)

}
+ Az . (28)

In order to obtain a relation between C(1)
p and C(3)

p , Eqs. (16)
and (17) can be used, yielding

C(3)
p = −�C(1)

p , (29)

with

�(iω) = (1 + k1)γ1 cosh(γ1d/2) + iω[Gp(iω) + k1Gm(iω)] sinh(γ1d/2)

(1 + k2)γ2 cosh(γ1d/2) + iω[Gp(iω) + k2Gm(iω)] sinh(γ2d/2)
, (30)

where Gα(iω) = κτ/{[(iωτ )γ + K(iω)]Dα}. By using
Eq. (29) and the boundary conditions Eqs. (15)–(17), it is
possible to show that

A = −4λ2q

ε
F1(iω)C(1)

p and
(31)

C(1)
p

V0
= − ε

4λ2q

1

�(iω) + F1(iω)d
,

where

F1(iω) =
[ (

γ1 − 1 − k1

2γ1λ2

)
cosh

(
γ1

d

2

)

−
(

γ2 − 1 − k2

2γ2λ2

)
�(iω) cosh

(
γ2

d

2

) ]

+ iωGp(iω)

[
sinh

(
γ1

d

2

)
− �(iω) sinh

(
γ2

d

2

)]
(32)

and

�(iω) = 1 − k1

γ 2
1 λ2

sinh

(
γ1

d

2

)
− 1 − k2

γ 2
2 λ2

�(iω) sinh

(
γ2

d

2

)
.

(33)

The electric field can be obtained from Eq. (11) as E(z,t) =
−∂V (z,t)/∂z. Thus, the electrical current will be given as
I = Sd�/dt , where S is the electrode surface and � is
the surface density of charge on the electrode at z = d/2,
being determined by the value of the field at the surface,
i.e., E(d/2,t) = −[�(t) + qσ (t)]/ε, with qσ = (σp − σm)q
expressing the net adsorbed charge at z = d/2. By using these
quantities, the admittance Y = I/V and, consequently, the
impedance Z = 1/Y of the system can be easily determined.

Thus, combining all the results reported above, one finally has

Y = iωεS

2λ2

F2(iω) + 2λ2F1(iω)

�(iω) + dF1(iω)
, (34)

where

F2(iω) = (1 − k1)[cosh(γ1d/2)/γ1 + sinh(γ1d/2)]

− (1 − k2)[cosh(γ2d/2)/γ2 − sinh(γ2d/2)]�(iω) .

IV. RESULTS

A. Theoretical predictions

Let us now highlight some of the main predictions of the
model worked out before. Figure 1(a) shows the behavior
of the real part of the impedance for different values of the
diffusion coefficients when the adsorption-desorption process
is characterized by Eq. (9), with the kernel K(t) = δ(t/τ )/τ
and γ = 1, which corresponds to a Debye relaxation, i.e.,
the usual kinetic equation. The generation and recombination
of ions are also considered in Fig 1(a). In this figure, the dashed
curve represents the case where generation-recombination and
adsorption-desorption are not considered and the positive and
negative ions are assumed to have equal mobilities. The dotted
curves represent the same conditions as the dashed curves,
except that the diffusion coefficients have different values. In
both cases, the impedance assumes a constant value for low
frequencies. The squares show the case where the diffusion
coefficients are different and the combination-recombination
effect is not present. In this case, the two phenomena interplay,
and two different behaviors, represented by two different
plateaus, are observed, indicating that the two phenomena
occur at different time scales. Finally, the circles and the solid
line represent the situation where the adsorption-desorption
effect is present. The solid line was depicted for the case
where the combination-recombination effect is not present,
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FIG. 1. (Color online) Illustration of the real (a) and imaginary (b) parts of the impedance vs log[ω/(2π )]. The circles correspond
to the case characterized by Dp = 10−7 m2/s, Dm = 10−8 m2/s, cd = 10 s−1, ca = 5 × 10−20 m3/s, σp = σm = 10−6, and τ = 0.1 s. The
solid line (black) represents the effect of adsorption-desorption by taking into account the parameters used for the circles (blue) in the
absence of association-dissociation. The squares (red) show only the effect of different ionic mobility on the real part of the impedance.
The dashed (green) and dotted (pink) lines illustrate the usual case for Dp = Dm = 10−7 m2/s and Dp = Dm = 10−8 m2/s, respectively,
in absence of adsorption-desorption or association-dissociation of ions. For simplicity, the other parameters used were S = 2 × 10−4 m2,
d = 10−3 m, λ = 2.15 × 10−7 m, and ε = 6.7ε0. The inset in (a) displays a zoom in the region −3 � log10 (ω/(2π )) � 0, showing the small
contribution of combination-recombination when adsorption-desorption is present. In (b), for clarity, the main frame displays the region
−1 � log10 (ω/(2π )) � 1. The bottom left corner inset presents the region −6 � log10 (ω/(2π )) � −1, while the top right corner inset shows
the region 1 � log10 (ω/(2π )) � 6.

whereas the circles refer to the most general case. It is clear
that the adsorption-desorption effect is the dominant one in the
low-frequency regime, where the time scales involved dictates
the strong interaction with the surfaces. The inset exhibits a
zoom in the region (−3 � log10[ω/(2π )] � 0), showing the
small contribution of the combination-recombination process
when the adsorption-desorption phenomenon is present.

Figure 1(b) shows the imaginary part of the impedance,
using the same parameters as in Fig. 1(a). For the imaginary
part of the impedance, in this context, it is verified that
the adsorption-desorption and the generation-recombination

phenomena of ions are influential in the low and inter-
mediate frequencies regime. In the high frequency regime,
the standard behavior is verified, which is obtained when
blocking electrodes are considered. In Fig 1(b), for clarity,
the main frame displays the region −1 � log10 (ω/(2π )) �
1. The bottom left corner inset presents the region −6 �
log10 (ω/(2π )) � −1, while the top right corner inset shows
the region 1 � log10 (ω/(2π )) � 6.

In Fig. 2, the kernel K(t) = δ(t/τ )/τ − K1(τ/t)1+ne−τ/t /τ

is considered, with n = 1/2, K1 = 1/�(n), and γ �= 1, which
presents a non-usual relaxation for short times and for long
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(b)

FIG. 2. (Color online) Illustration of the real (R) and imaginary (X) parts of the impedance vs log (ω/(2π )). The solid line (black)
corresponds to the case characterized by Dp = 10−7 m2/s, Dm = 10−8 m2/s, cd = 10 s−1, ca = 5 × 10−20 m3/s, σp = σm = 10−6, and
τ = 0.1 s. The circles (blue) show the effect of the adsorption-desorption by taking into account the parameters used for the solid line with
Dp = Dm = 10−8 m2/s in the absence of association-dissociation. For these cases, it is also considered, for simplicity, S = 2 × 10−4 m2,
d = 10−3 m, λ = 2.15 × 10−7 m, and ε = 6.7ε0.

051705-5



J. L. DE PAULA et al. PHYSICAL REVIEW E 86, 051705 (2012)

-2 0 2
log10(ω/(2π))

104.0

106.0

108.0
lo

g 10
(R

(M
Ω

))

Theoretical prediction
Experimental data
Perfect blocking electrodes
Asymptotic low frequency

(a)

-2 0 2
log10(ω/(2π))

106.0

108.0

1010.0

lo
g 10

(X
(M

Ω
))

Theoretical prediction
Experimental data
Perfect blocking electrodes
Asymptotic low frequency

(b)

-2 0 2
log10(ω/(2π))

104.0

106.0

108.0

lo
g 10

(R
(M

Ω
))

Experimental data
Non-usual kinetic equation
Usual kinetic equation

(c)

-2 0 2
log10(ω/(2π))

106.0

108.0
lo

g 10
(R

(M
Ω

))

Experimental data
Non-usual kinetic equation
Usual kinetic equation

(d)

FIG. 3. (Color online) Real (a) and imaginary (b) parts of the electrical impedance of the cell vs the frequency of the applied voltage,
f = ω/2π . The parameters (in SI units) are S = 10−4 m2, ε = 7.5ε0, Dp = Dm = 2.5 × 10−12 m2/s, d = 37 × 10−6 m, κ = 2 × 10−6 m3/s,
τ = 0.12 s, λ = 1.61 × 10−7 m, and γ = 0.07. The experimental data illustrated by the circles (blue) correspond to the sample AU10 (see
the text) and the solid line (black) represents the results obtained from Eq. (34). To highlight the strengths of the model, the dotted (red) line
represents the graphic made with Eq. (35), showing the importance of the surface terms in the low-frequency region. The dashed (green) curve
represents the case for perfect blocking electrodes [Z ∼ 1/(iω)], where the agreement is poor at low frequencies. (c) and (d) show a comparison
of the experimental data (blue circles) and theoretical predictions made by using the kinetic equation, Eq. (9) (black solid line), and the usual
kinetic equation (red dashed line) [17,28]. The usual kinetic equation is not capable of reproducing the experimental data at low frequencies.

times it recovers the usual, Debye-like case. For simplicity, the
same parameters as in Fig. 1 were used. In the low-frequency
limit, the behavior of the impedance with this choice of K(t)
is similar to the that reported in Refs. [44,45], which is
connected to the roughness of the surfaces and their fractal
characteristics. The behavior of the impedance for this case
changes significantly for the real and imaginary parts in the
low-frequency regime, indicating an anomalous behavior with
memory effects at the surfaces.

B. Comparison with experimental results

The validation of the theoretical predictions is
accomplished by confronting experimental data measured
for a nematic cell with the model presented here. The
liquid crystal 5CB (Merck) was used and filled into a cell
prepared with Mylar spacers of 30-μ m nominal thickness.
The electrode used consists of an evaporated gold pixel
with surface area of 1 × 1 cm2. Rubbed polyimide was
used as the alignment layer for the liquid crystal, where the
layer thickness used was 20 nm, achieved by spin coating
the substrates with 10 wt. % solution of LQ1800 (Hitachi)

in methyl pyrrolidinone (the sample is referred hereafter
as AU10). The complex impedance has been measured
by a Potentiostat/Galvanostat/Impedentiometer EG&G
Model 273A in a frequency range from 10−3 to 105 Hz. Low
amplitude of the sinusoidal applied voltage was chosen, 25 mV
rms, to avoid electrically induced reorientation of the liquid
crystal. One connector acts as working electrode, while the
counter electrode has been short-circuited with the reference
one. Measurements at lower voltages give the same results but
introduce more noise. Moreover, we are further below any 5CB
threshold (dielectric reorientation or flexoelectric effect) [3,4].

In Fig. 3, the experimental results obtained with the proce-
dure discussed above are compared with the model developed
in Sec. II. We used the same parameters that were used in
the experiment such as cell gap, electrode area and dielec-
tric constant. For simplicity, we neglected the combination-
recombination process. At the same time, other parameters not
determined in the experiment were found in the literature, such
as diffusion constants and density of ions. Finally, the fit was
performed by setting κ , τ , and γ as fitting parameters and by
using the same kernel used in Fig. 2. The agreement between
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the experimental data and the model is good, suggesting that
the processes present in the surface of the electrode may be
governed by a kinetic equation incorporating a non-Debye
relaxation process. To further test our model, we also obtained
the asymptotic expression for the impedance in the low-
frequency limit to investigate how the surface effects, repre-
sented by the boundary condition, influence the dynamic of the
system. By considering equal mobilities for positive and nega-
tive ions, and by treating the problem in the absence of genera-
tion and recombination terms, it is possible to demonstrate that

Z ∼ 2λ2

εiωS

(
1

λ + �(iω)
+ d

2D
iω

)
, (35)

where �(iω) = κτ/{[(iωτ )γ + K(iω)]}. This expression
shows that the surfaces effects, represented by �(iω) [first term
in Eq. (35)], play the decisive role in the low-frequency limit
of the impedance. γ and K(iω) are used to represent the nature
of the surface phenomena, for instance, if the surface adsorbs
through chemical reactions (chemisorption), physical interac-
tions (physisorption), or both simultaneously, as discussed in
Refs. [13,14]. In this sense, the experimental data is a guide
of the mechanisms to perform a suitable choice to represent
the process that occurs on the surface. Furthermore, it may
be instructive to note that the results obtained, for example,
in Refs. [17,28], by employing the usual kinetic equation, are
not rich enough to reproduce the behavior of the experimental
data, since in the low-frequency limit the usual kinetic equation
always gives Z ∼ 1/(iω), a behavior quite different from
the measured data. Figure 3(a) shows the real part of the
impedance, the circles (blue) represent the experimental data,
the solid line (black) is the best fit using our model, the
dotted line (red) shows the asymptotic behavior given by
Eq. (35), and the dashed line (green) represents the best fit
of the usual model for perfect blocking electrodes. Figure
3(b) shows the imaginary part of the impedance. Figures 3(c)
and 3(d) show a comparison of the experimental data (blue

circles) and theoretical predictions made by using the kinetic
equation, Eq. (9) (black solid line), and the usual kinetic equa-
tion (red dashed line), used in Refs. [17,28]. The usual kinetic
equation is shown to be not rich enough to face the highly
complex behavior of the experimental data at low frequencies.

V. CONCLUSIONS

Ionic impurities dissolved in insulating materials such
as liquid crystals play an important role in the dielectric
response of the medium. These ions diffuse around the cell
and experience strong surface effects, such as the adsorption-
desorption phenomenon. We have shown that these surface
effects and the generation and recombination of ions give rise
to a diffusive process that is strictly anomalous, yielding a
non-Debye relaxation process, with non-usual behavior of the
impedance. Due to the time scales involved in the process,
it is possible to observe the role of each contribution in the
impedance vs frequency curves. The agreement of the model
with experimental data for a sample of 5CB liquid crystal
is very good, where the encountered fitting parameters are
very close to the ones used in the measurement. As a matter
of fact, a model accounting for surface memory effects in the
ionic dynamics brings new perspectives for non-usual behavior
found in certain liquid crystal systems such as those formed
by bent-core molecules and also advances comprehension
about the influence of the surface roughness on the electrical
response of a system described by the Poisson equation with
suitable boundary conditions.
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