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Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields
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Electrochemical deposition (ECD) in thin cells in a vertical position relative to gravity, subject to an external
uniform magnetic field, yields a growth pattern formation with dense branched morphology with branches tilted
in the direction of the magnetic force. We study the nature of the inclined growth through experiments and
theory. Experiments in ECD, in the absence of magnetic forces, reveal that a branch grows by allowing fluid to
penetrate its tip and to be ejected from the sides through a pair of symmetric vortices attached to the tip. The
upper vortices zone defines an arch separating an inner zone ion depleted and an outer zone in a funnel-like
form with a concentrated solution through which metal ions are carried into the tip. When a magnetic field is
turned on, vortex symmetry is broken, one vortex becoming weaker than the other, inducing an inclination of
the funnel. Consequently, particles entering the funnel give rise to branch growth tilted in the same direction.
Theory predicts, in the absence of a magnetic force, funnel symmetry induced through symmetric vortices driven
by electric and gravitational forces; when the magnetic force is on, it is composed with the pair of clockwise
and counterclockwise vortices, reducing or amplifying one or the other. In turn, funnel tilting modifies particle
trajectories, thus, growth orientation.
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I. INTRODUCTION

Electrochemical deposition (ECD) of ramified deposits in
thin-layer cells gives rise to complex geometries, ranging
from fractal to dense branch morphology, depending on
cell geometry, its orientation relative to gravity, electrolyte
concentration, cell voltage, and other parameters. The addition
of a magnetic field also has strong effects on the ECD. From
the morphogenesis perspective, the application of a weak
external magnetic field perpendicular to the plane of the growth
generates pattern spiraling and/or asymmetrical branching, for
instance, in copper and zinc growths in aqueous solutions.
In Refs. [1,2], examples of Zn deposits, grown under these
conditions, are presented; there is a morphological tendency
to form spirals with branches gyrating counterclockwise or
clockwise, depending on the magnetic field direction. In some
experiments, the main branches show some asymmetry as well,
i.e., in which secondary branches at one side of the central
nerve are longer than on the other [2]. In the literature on
quasi-two-dimensional electrochemical deposition, two main
groups of processes have been addressed: the first related to
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kinetic transfer, including chemical mechanisms as well as
surface phenomena at the growing front and the second related
to mass transport due to diffusion, migration, and convection.
Convection here is mainly driven by electric, gravitational,
and magnetic forces, hereafter, Coulomb, Archimedes, and
Lorentz, respectively. Many papers in the literature show that
no significant field effect due to kinetic transfer should be
expected; on the contrary, many more papers evidence its
influence on mass transport. Magnetohydrodynamics (MHD)
convection [3,4] is a well-known effect due to the magnetic or
Lorentz body force. This force induces ion motion and MHD
flow by momentum transfer of these ions to the surrounding
solvent [5,6] as illustrated in Ref. [2] where fluid motion
is visualized by tracking optically opaque oil microdroplets
added to the electrolyte. When a magnetic field is applied
in the positive direction (z axis), a global fluid motion in
counterclockwise rotation is observed. In brief, experience
from these and other authors confirms the occurrence of MHD
convection induced by the Lorentz force upon application of
an external magnetic field [7]. This effect could be attenuated
by increasing fluid viscosity [8]. A secondary effect, related
to the MHD force, appears in the diffusion layer close to the
electrode when the magnetic field applied is orthogonal to
the current. Here, the Lorentz force, acting on local charges,
induces a motion parallel to the interface (electrokinetic
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magnetohydrodynamics effect) [7,9]. This effect was analyzed
in Ref. [10] where it was concluded that the magnetic field
did not affect the kinetics of transference. Computational
modeling has been successfully used in studying the nature
of electrochemical deposition. Models, showing the deposit
growth seen as a fractal growth with or without a magnetic
field, were presented in Refs. [11,12]. They were based on
the diffusion-limited aggregation (DLA) mechanism [13] to
which the effect of migration, diffusion, and fluid convection
was added [1,14–16]. In Refs. [1,14], morphologies observed
in thin cell electrodeposition under a magnetic field normal to
the cell were simulated with a DLA algorithm using a term
representing fluid rotation. With this model, it was possible
to reproduce the chirality induced by the magnetic field
observed in the experiments. In other papers, models were
based upon the introduction of the Coulomb forces, resulting
from the electrostatic potential and the Lorentz forces induced
by the magnetic field applied perpendicular to the plane of
the cell [4,17]. All these models of electrodeposition under
magnetic fields consider the deposit as a fractal growth and use
a one-field equation to describe them. However, more realistic
models need to take mass transport and deposit growth into
account. The goal of this paper is to study the nature of inclined
growth in thin-layer electrodeposition under uniform magnetic
fields taking into account mass transport and deposit growth. In
this context and considering that convection certainly increases
ECD complexity and that it is natural to try to reduce its
influence, in this paper, we analyze ECD in a cell in a vertical
position relative to gravity and with the cathode above the
anode as an example of the convection reduced ion transport
regime. In this configuration, ECD gives rise to electrodeposits
that are close to what is termed dense branch morphology, see,
for instance, Ref. [18]. Also, they possess a uniform front rather
than a hierarchy of branch sizes as seen in horizontal cells.
Although global convection is suppressed, this configuration
plays an important role in electrodeposition. The role of
convection in ECD in thin cells in a vertical position relative
to gravity with a cathode above an anode (without a magnetic
field) was thoroughly analyzed in Refs. [19–23]. The role of
convection in ECD in very thin cells (30 μm) in a horizontal
position relative to gravity on the formation of meshlike elec-
trodeposits is worth mentioning. This was specially studied
in Refs. [24,25] where it was found that symmetry of the
convective vortices on the two sides of the growing tip is
responsible for whether or not a meshlike structure is formed.
For describing ECD under a magnetic field (MECD), we
introduce a phenomenological macroscopic model using first
principles taking into account the most relevant variables of the
problem and considering ion transport, electrostatic potential,
and viscous fluid under electric, magnetic, and gravity forces.
Its mathematical analogy includes the Nernst-Planck equations
for ion transport, the Poisson equation for the electrostatic
potential, the Navier-Stokes equations for the solvent, taking
into account the Lorentz force represented by an external
magnetic field, and a growth law based on a discrete version
of a DLA presented in Refs. [4,17]. In order to validate
the mathematical model, experimental results of MECD with
and without magnetic fields are presented. Particle image
velocimetry is used for showing the underlying flow pattern de-
termining growth mechanism in MECD. The paper is divided

FIG. 1. Experimental setup.

as follows: Sec. II presents experimental measurements and
a phenomenological model, Sec. III introduces a theoretical
analysis of the ECD with a magnetic field, Sec. IV presents a
general discussion, and Sec. V gives some conclusions.

II. EXPERIMENTAL RESULTS

All the experiments were carried out using a thin-layer cell
in a vertical position relative to gravity, placing the cathode
above the anode to attenuate convection. The cell consists
of a thin layer of unsupported electrolyte solution confined
between two parallel glass plates (see Fig. 1). The electrolyte
solution was 0.1 mol/l CuSO4. Copper plate electrodes were
placed at both ends of the cell with a separation of L = 5 mm;
their thickness of 0.127 mm defined the thickness d of the
cell. The cell width was w = 25 mm. For fluid tracking,
latex spheres with a diameter of 0.9 μm were added to the
electrolyte, and lateral illumination was used to visualize
particles by the Tyndall effect. Video images were digitized
and were saved to disk at up to 10 frames/s with a spatial
resolution of up to 3.5 μm/pixel. A public domain software
package [26] was used for image capturing and processing.
In some of the experiments, an artificial spike was used in
an otherwise flat electrode to mimic a leading branch and its
neighbors. In the experiments referred to as “with a magnetic
field,” a 1 T magnet was placed behind the cell covering the
whole space between electrodes. The experiments were carried
out under galvanostatic conditions at 2 mA.

With the aim of describing how Lorentz forces influence
the hydrodynamic pattern and the growth in the thin-layer
cell electrochemical deposition in a vertical position relative
to gravity (cathode above anode), we need to recall the
macroscopic phenomenological model for a cell in a vertical
position in the absence of a magnetic field [21]. When the
circuit is closed, current starts flowing through the cell, and
ion concentration boundary layers develop near the electrodes.
At the anode, the concentration is increased above its initial
level due to the transport of anions from the cathode region
and the dissolution of metal ions from the anode. At the
cathode, the ion concentration is decreased as metal ions
are reduced and are deposited out and anions drift away.
These concentration variations lead to density variations
and, therefore, to concentration fronts at the electrodes. In
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FIG. 2. Zoomed images of local growth and flow near a 1 mm ×
0.5 mm artificial spike at 5, 20, 40, and 60 s during ECD with
and without a magnetic field applied. Here, flow is visualized with
tracking particles. The first two rows are without a magnetic field,
and the last two are with a magnetic field applied normal to the plane
of the growth and pointing away from the reader (positive sign).

this configuration, the high density fluid is below the low
density fluid, hence, a stable stratified flow emerges in which
gravitoconvection is suppressed. Stratification remains stable
as long as there is no growth of branches. During this initial
period, ion transport is mainly diffusive and migratory, and
cation depletion at the cathode is uniform. Consequently, in a
very narrow region near the cathode, a local uniform charge
develops, giving rise to local Coulomb forces initially pointing
towards the cathode. After a few seconds, instability develops,
triggering the growth of a deposit at the cathode. Coulomb
forces concentrate at the tips; each porous filament allows fluid
to penetrate its tip and to be ejected from the sides, forming a
vortex ring driven by the electric force. This is the mechanism
by which branches grow. Clearly, the upper zone of the vortices
defines a line in the form of an arch joining two adjacent tips.
These arches define, between adjacent tips, an inner vortex
zone ion depleted and an outer zone in a funnel-like form with
a concentrated solution. The metal ions are carried into the
tip of the branch through this funnel [27]. But, as soon as
branches appear, stratification breaks down because the fluid
concentration surrounding a downward growing branch tip
diminishes, creating a concentration gradient and, thus, a local
convection due to Archimedes forces. Therefore, at the branch
tip, local convection is due to electric and gravitational forces.
Since gravitational forces are normal to the growth, vortex
symmetry and the induced funnel maintain symmetry [28]. To
illustrate previous contentions, in Fig. 2, the first two rows of
images show the local flow and growth, respectively, near a
1 mm × 0.5 mm artificial spike on an otherwise flat cathode
during ECD. Here, flow, visualized with tracking particles,
reveals that the vortex pattern is almost symmetrical and
growth is symmetrical.

Following the macroscopic phenomenological model
above, when a magnetic field is added to ECD, Lorentz
forces are composed with Coulomb and Archimedes forces
and impact on the fluid flow pattern and growth. Symmetry

FIG. 3. Global growth at the cathode and zoomed local growth
near a spike during ECD in the presence and absence of a magnetic
field. Left column: top image shows global growth at the cathode
when the magnetic field, normal to the plane of the growth, points
towards the reader (negative sign); bottom image shows local growth
near the spike under the same conditions. Right column: the same as
in the left column but without a magnetic field.

is broken, and growth and fluid are notoriously affected as
illustrated in the last two rows of Fig. 2: Growth and fluid
trajectories bend to one side. The effect is so strong, to the point
that velocity direction changes according to the Lorentz force
direction, and vortices are strongly attenuated. Obviously,
since Coulomb and Archimedes forces are kept invariant, the
bending is caused solely by the Lorentz forces. The underlying
principle governing this process can be observed in the last
row’s first two images in Fig. 2, and its explanation can be
advanced as follows. The clockwise magnetic field (positive
sign) is composed with the pair of counterclockwise and
clockwise vortices, respectively, in such a way that the left
vortex (negative) is weakened and the right vortex (positive) is
strengthened. This vortex imbalance induces an inclination of
the funnel, now bending towards the right. As a consequence,
particles entering into the funnel inclined to the right give rise
to a branch inclined in the same direction. This is clearly seen in
Fig. 2 in the third and fourth rows and column growths, respec-
tively. We would like to remark that the vortex imbalance pre-
viously described is so large due to the strength of the Lorentz
forces that the left vortex is washed away, although remarkably,
growth is weakly inhibited (last row images in Fig. 2).

To further illustrate the effects of a magnetic force on
growth and flow, Fig. 3 shows a global growth at the cathode
and local growth near a spike in the presence and absence of
a magnetic field. Left column: image at the top shows global
growth at the cathode when the magnetic field, normal to the
plane of the growth, points towards the reader (negative sign);
the bottom image shows local growth near the spike under
the same conditions. Right column: the same as in the left
column but without a magnetic field. Again, in the absence
of a magnetic field, the deposit growth tends to be symmetric
and, when a magnetic field is on, bends.

To summarize, the underlying flow pattern, determining
the growth mechanism in ECD, is substantially altered in the
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presence of a magnetic field. In particular, vortex symmetry
is broken, and this seems to be the principal source of branch
tilt. In passing, it is interesting to note that, in the absence of
magnetic forces, in the first instant after the circuit is closed
and before any growth is observed, the existence of an almost
symmetric pair of vortices near the spike is unveiled. This pair
of vortices is the signature of the sudden appearance of electric
and gravitational forces, the former due to electrode shape.

III. THEORETICAL FRAMEWORK AND NUMERICAL
MODEL

The phenomenological model describes the diffusive, mi-
gratory, and convective motions of ions in a fluid subject to an
electric and external magnetic field. The mathematical model
consists of the Nernst-Plank equations for the concentrations
of the copper ions, the Poisson equation for the electrostatic
potential, and the Navier-Stokes equation for the solvent.
These equations are written as

∂Ci

∂t
= −∇ · ji , (1)

ji = −μiCi∇φ − Di∇Ci + Civ, (2)

∇2φ = −F

ε
(zcC − zaA), (3)

∂v
∂t

+ v · ∇v = − 1

ρ
∇P + ν∇2v + fe

ρ
+ fg

ρ
+ fB

ρ
, (4)

∇ · v = 0, (5)

where F is the Faraday constant, φ is the electrostatic potential,
Ci and ji are the concentration and flux of the ionic species
i, P is the pressure, and v is the velocity. ρ and ν are the
density and viscosity of the medium, respectively; zi, μi , and
Di , respectively, are the charge number, the mobility, and the
diffusion coefficient of the species i; e is the electron charge,
and ε is the permittivity of the medium. fe = eE

∑
i ziCi

represents the electric or Columbic force, fg = ρg is the
buoyant or Archimedes force, and fB = e

∑
i ziCi(vi × B) is

the magnetic or Lorentz force [2,21,29]. Here, we do not
consider the contribution due to the presence of charged
particles moving into a magnetic field and that of paramagnetic
particles [9]. Systems (1)–(5), with appropriate initial and
boundary conditions, are valid in a space-time domain defined
by G = [�(t) × (0,t)], where � is a three-dimensional region
with boundary �(t); this boundary moves according to a
growth law based on a DLA algorithm taken from Refs. [2,4].
This algorithm moves the ions towards the minimum potential
energy. Thus, the electric and Lorentz forces are introduced
in a Metropolis algorithm variation. A random point nearby
the particle is chosen, and the step to this new position is
proportional to exp(−K du), where K is inversely proportional
to temperature and du is the variation in energy between the
new and the present positions. The net effect is to drive the
particle towards the resultant force; du includes the Coulomb
potential energy and the Lorentz term, but the algorithm may,
at least in principle, be used with any other forces [4]. To
calculate the Coulomb term, the algorithm takes the potential
energy between the incoming particle and every position in
the aggregation into account. Considering the aggregation as a

sum of particles, the total charge of the aggregation is the sum
of them multiplied by the individual charges Q. Then,

UCoulomb(ri) = −qiQ
∑

k=1,N

1

|ri − rk| , (6)

where UCoulomb is the contribution to the potential energy of
the Coulomb term. To include the voltage dependence between
electrodes, we use Q = CV , where C is the capacitance
between electrodes. In this model, both electrodes are con-
sidered to be far away from each other, i.e., the electric field
between the electrodes is well known. The Lorentz term can
be introduced using the form of the force between a charged
particle and a magnetic field B applied perpendicular to the
plane of the movement of that particle,

ULorentz = −qi(v × B) · r. (7)

In this model, the only parameters are V, B, and K;
their units are volts, teslas, and J−1 (inverse joules). For
our simulations, K is fixed, thus, not taking into account
temperature variation. Using the identity ∇ × (∇ × 	) =
∇(∇ · 	) − ∇2	, the systems (1)–(5) are written in transport-
vorticity form in terms of the vorticity (� = ∇ × v) and
stream function (v = ∇ × 	). The three-dimensional model
is treated as a set of two two-dimensional models (as in
Refs. [15,30,31]): one in the z-x plane (the plane of the growth)
and one in the z-y plane (the plane normal to the plane of the
growth). These models take the cell position relative to gravity
into account. Here, we focus on the z-x model in accordance
with previous experimental papers. The computational model
solves systems (1)–(5), written in transport-vorticity form for
(equal spacing in both directions) using finite differences and
deterministic relaxation techniques. This solution is obtained
through the system of difference equations similar to those
presented in Refs. [15,20,31]. The resulting solution is then
used to advance the interface with the DLA model previously
discussed.

IV. RESULTS AND DISCUSSION

Below, we present numerical results with the aim of mim-
icking early stages in the experimental results shown in Figs. 2
and 3 and for supporting the macroscopic phenomenological
model introduced earlier. The relative importance of Coulomb
and Lorentz forces in the ECD process is studied varying the
magnitude and orientation of the magnetic field while keeping
constant Coulomb forces.

Figure 4 presents the simulated stream function contours
and electric field (arrows) in a zoomed zone near a fixed
spike in the first instants of the experiment. Figure 4(a),
revealing the existence of a symmetric pair of vortices near the
spike driven by Coulomb and Archimedes forces, corresponds
to a null magnetic field. Figure 4(b), revealing a broken
symmetry in the vortex pair, corresponds to the case where
a magnetic field points towards the reader (negative sign).
The counterclockwise magnetic field is composed with the
pair of counterclockwise and clockwise vortices in such a
way that the left vortex is strengthened and the right vortex
is weakened. Figure 4(c) shows the inverse situation in which
the right vortex is strengthened and the left vortex is weakened
when the magnetic field is pointing away from the reader
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FIG. 4. Simulated stream function contours and electric field lines
in a zoomed zone near the spike for (a) a null magnetic field, (b) a
negative magnetic field, and (c) a positive magnetic field.

(positive sign). Clearly, the vortex pair strengthens to the left
or right according to the magnetic force applied, following a
similar pattern as that shown in the experiments. Although
the electric field remains almost invariant under magnetic
forces, concentration contour and the funnel-like form (just
half of it shown) symmetry is again broken. In the range of
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FIG. 5. (a) Variation in the x velocity component along the
x axis when magnetic field B is zero, positive, and negative,
respectively; (b) the same for the variation in the y velocity
component.

parameters used in this simulation and at the beginning of the
simulation, trajectories are less affected by the Lorentz forces
than in the experiments described in Fig. 2; however, in the
simulation, after a few seconds, vortices tend to disappear.
Again, Lorentz forces are the sole cause of this phenomenon.
Figure 5 presents the variation in the velocity components near
the spike along a line parallel to the x axis when the magnetic
force is null, positive, or negative, respectively. Figure 5 (top)
shows the variation in the x velocity component along the x

axis when the magnetic field B is zero, positive, and negative,
respectively. Figure 5 (bottom) shows a similar graph for the
variation in the y velocity component along the x axis. The
x velocity component, when the magnetic field is null, shows
the typical symmetry (with the sign changed) signature of the
existence of a symmetric pair of vortices near the spike. The
y velocity component is also almost symmetrical, although
there is a sharp increase and decrease in the velocity in the
center zone near the spike. In the presence of a magnetic
field, both velocity components became positive or negative
everywhere, according to the sign of the magnetic force,
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FIG. 6. Simulated stream function contours and arrows: electric
field of an ECD experiment under a negative magnetic field (pointing
to the reader) with a DLA growth law.

and their intensities were significantly reduced. This behavior
follows a trend similar to that observed in the experiments.
Having presented the three cases above, it is now possible
to analyze the relative importance of Coulomb and Lorentz
forces (Archimedes forces remain invariant). Clearly, when the
magnetic field is null, the Coulomb force is at its maximum,
and when a magnetic field is gradually applied, the relative
importance of the Coulomb force decreases up to a point in
which the Lorentz force becomes dominant as experimentally
observed.

To pursue this analysis further, we need to introduce the
simulation of the effect of a magnetic field in ECD with
inclined fixed spikes (with an angle of inclination mimicking
real experiments). This angle is zero if there is no magnetic
field or a positive or negative magnetic field according to
the sign of a nonzero magnetic field. The experiments with
particles described in Fig. 2 show that the magnetic field is
strong enough to very rapidly wash the vortex pair around the
spike. Unfortunately, it was not possible to experimentally
record the initial stages of the process. However, in the
simulations, it is possible to predict the genesis of vortex
evolution and disappearance due to the magnetic force using
a small time step. For this, we initiate the simulation with
a null magnetic field and a symmetric vortex pair as in the
case of ECD with the null magnetic field shown in Fig. 5. As
we increase the magnetic field and depending on its sign, the
left or right vortex starts growing, and, after several steps (not
shown here), one of the vortices disappears and the other grows
until it occupies the whole cell. Immediately above the spike,
velocity seems to follow the negative or positive direction
observed in the experiments. As expected, cation acceleration
near the deposit follows the direction of the magnetic field and
governs fluid flow. This orientation determines the orientation
of the deposit to the right or to the left, depending on the field
magnetic sign as theoretically demonstrated in Ref. [8].

To enhance realism, Fig. 6 presents a simulation of an
ECD experiment under a magnetic field with a growth law
based on the DLA algorithm previously discussed. Here,
every 100 time steps, the DLA algorithm is activated, and

the deposit is allowed to grow. We used a small time step
for numerical stability, which allowed more realistic deposits.
We observe how the stream function shows a pronounced
asymmetry due to the magnetic field. In the same fashion, the
electric field (with arrows) is weaker in the zone between the
deposit and the cathode. This allows some kind of relaxation
and stabilization of the numerical model, resulting from a
significant deposit structure modification due to the growth
law. As in previous examples, the stream function reveals
its asymmetry. Concentration contour lines and the funnel-
like form are notoriously inclined to the left, accordingly
determining growth. Also, the electric field is weaker in the
zone between the growth and the cathode due to the screening
produced by the growing branches. The use of a DLA model
allows deposits to grow in the direction of minimum energy,
which more realistically reflects the presence of an external
magnetic field.

V. CONCLUSION

We presented experimental measurements and a two-
dimensional theoretical model of electrochemical deposition
in thin-layer cells under a uniform magnetic field. The theo-
retical model described the diffusive, migratory, electro-, and
magnetoconvective ion transports and their deposition in thin
cells through the Nernst-Planck equations for ion transport, the
Poisson equation for the electric field, and the Navier-Stokes
equations for the laminar fluid flow. A DLA model was used to
simulate the growth of the deposits. Experiments in ECD, in the
absence of magnetic forces, revealed that a branch grew normal
to the cathode by allowing fluid to penetrate its tip and to be
ejected from the sides through a pair of symmetric vortices
attached to the tip. When the magnetic field was turned on, a
branch grew inclined, relative to the cathode, tilting to the left
or the right, according to the magnetic field sign. Experiments
conducted around an enlarged spike for different magnetic
forces showed that particle trajectories for the null magnetic
field consisted of an almost symmetric pair of vortices near
the spike. When a magnetic force was applied, trajectories
were dramatically affected, to the point that vortex symmetry
broke down, one vortex becoming weaker than the other, until
disappearing, washed away by the other. Since Coulomb and
Archimedes forces were kept invariant, the bending was caused
exclusively by Lorentz forces. Moreover, experiments showed
that branch tilting did not affect the fanning and splitting of
the tips. Theory predicted the existence of an electrically and
gravitationally driven symmetric pair of vortices at the tips
that interacted with magnetic forces closely resembling the
driving mechanism of branch growth observed in experiments.
To summarize, the underlying flow pattern, determining the
growth mechanism in ECD, was substantially altered in the
presence of a magnetic field. In particular, vortex symmetry
was broken, and this seemed to be the principal source of
branch tilt.
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