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Effects of nonlinear interfacial kinetics and interfacial thermal resistance in planar solidification
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Large temperature discontinuities were recently measured at a solid-liquid interface during heat transport
processes. These observations suggest that when heat flows between two phases, the interface is not well
characterized by assuming thermal equilibrium. This can be of importance in rapid solidification processes. In this
paper we consider a planar front model that solidifies from its undercooled melt. We use a generalized interfacial
boundary condition that includes nonlinear kinetic effects and allows for a temperature discontinuity. The effects
of the new boundary condition on the solidification rates and the temperature profile are reported as a function
of time. Our analysis shows that the undercooling regime where constant phase-front velocities are observed at
steady states (traveling-wave solutions) are unaffected by the new boundary conditions. These solutions arise
when the Stephan number is larger than 1. On the other hand, the solidification rates and the steady-state velocities
are greatly affected by the assumed conditions at the interface. Incorporation of an interface thermal resistance,
or Kapitza resistance, generates temperature discontinuities at the interface, leads to reduced solidification rates
and the Mullins-Sekerka instability arises at longer wavelengths deformation of the planar front.
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I. INTRODUCTION

When solidification is induced in a liquid cooled below its
freezing point, the solid can grow in the form of dendrites of
characteristic shapes and velocities that are functions of the
supercooled temperature [1,2]. The dendrites show emerging
side branches that are a classical example of self-organizing
microstructure formation. Dendritic growth has important
industrial applications since it determines the final properties
of the solid material.

The earliest theoretical models of crystal growth were due
to Ivantsov [3] and Temkin [4] and neglected the buoyancy-
driven convection in the melt. For a better comparison with
these theories, a series of experiments called the Isolated
Dendritic Growth Experiment (IDGE) were conducted during
flights of the Space Shuttle [5–8]. For practical purposes
(low melting point, transparent), pure succinonitrile (SCN)
was used in many of these crystallization experiments. The
theoretical models have been improved since the original work
of Ivantsov and Temkin to include effects such as the flow
in the melt [9,10] and surface tension anisotropy [11–13].
In these approaches and in more recent numerical crystal
growth studies [14,15], the interface has been described with
local equilibrium principles within each phase and thermal
equilibrium across the phase boundary. This corresponds to
the original description of the interface proposed by Temkin
[4]: a unique interface temperature, continuous across the
phase boundary, that scales linearly with the interface velocity
(hereafter referred as linear kinetics).

This is an example of the standard assumption that the
interfacial temperatures are equal when heat flows through
the interface between a solid and a liquid. On the other
hand, measurements made at liquid-He temperatures revealed
temperature discontinuities [16,17]. The existence of tem-
perature discontinuities was further supported by molecular
simulations [18].

Novel steady-state evaporation studies also contradicted
the linear kinetic description of the interface [19–21]. In one

particular experiment, a sessile water droplet was maintained
at constant size on a Au(111) substrate by injecting water
into the droplet’s base at the same rate as water evaporated
at its liquid-vapor interface [22]. Twelve thermocouples were
embedded in the substrate and used to measure the thermal
transport from the solid to the solid-liquid interface. The
temperature field in the liquid phase was measured with a
microthermocouple mounted on a positioning micrometer. It
was found that a thermal or Kapitza resistance existed at the
water-Au interface and resulted in an interfacial temperature
discontinuity with the solid being as much as 2.15 K greater
than that of the liquid. As a result, of the energy transported
to the solid-liquid interface, only a fraction was transported
perpendicular to this interface. A much larger portion, up
to 87%, was conducted parallel to the solid-liquid interface,
through the adsorbed layer, to the three-phase line. An energy
balance showed that the thermal energy conducted through the
adsorbed layer was equal to the energy distributed along the
liquid-vapor interface by thermocapillary convection where it
was consumed by the phase change process.

These previous studies suggest that the liquid-solid in-
terface is not adequately characterized by assuming thermal
equilibrium to exist at the solid-liquid interface. This may
have important implications in solidification and crystal
growth processes, especially for rapid solidification [23].
Local-equilibrium approximation is expected to break down
for large rates where the system is far from equilibrium.
At present, it is unclear what assumptions should be made
in describing the interface during solidification. Using a
planar solidification model, we consider three possibilities:
(1) temperature equality and linear kinetics, (2) a nonlinear
kinetics relation obtained from statistical rate theory [24–27]
and temperature equality, and (3) nonlinear kinetics and
temperature discontinuity. The nonlinear kinetics employed
allows for a temperature discontinuity and does not contain
any new fitting parameters. An important difference between
this system and the experimental evaporation studies described
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above is that the position of the solid surface moves as the phase
change process occurs.

Planar front solidification has been extensively studied
with boundary conditions at the interface that assumes local
equilibrium in each phase and thermal equilibrium across the
interface [28,29]. Also, the role of temperature discontinuities
in the planar front model has been studied before us. In the
approach used by Fried and Shen [30], a linear kinetic relation
was used and steady state was assumed from the onset. Also,
the work of Galenko et al. [31] included a finite speed for the
heat transfer that gives rise to a hyperbolic equation rather than
a simple diffusion equation for the evolution of the temperature
profile. The purpose of this work is to use a fully nonlinear
kinetic description of the interface that allows for a temperature
discontinuity and to report its effect on the dynamics and the
temperature profile of an initially supercooled system where a
planar front separates a solid and a liquid phase. Combining
numerical and analytical techniques, the state of the system
can be reported at all times.

The paper is divided as follows. Section II reports the equa-
tions governing the system and sets the stage for the interfacial
boundary conditions described in Sec. III. Section IV contains
our results. In Sec. IV A we first give details on our numerical
and analytical procedure and report the effect of the nonlinear
kinetics on the planar front velocity and on the full temperature
profile at short, intermediate, and long times for a system with
zero Kapitza resistance. We then generalize to the case of a
nonzero Kapitza resistance in Sec. IV B and report its effects
on the Mullins-Sekerka instability. Section V is the discussion
and contains concluding remarks; Appendices A and B give
more details on the analytic and numerical methods used.

II. PROBLEM DEFINITION

The governing equations are

∂TS(x,t)

∂t
= DS

∂2TS(x,t)

∂x2
, 0 < x < XI (t), (2.1)

∂TL(x,t)

∂t
= DL

∂2TL(x,t)

∂x2
, XI (t) < x < ∞, (2.2)

where TS(L) and DS(L) are, respectively, the temperature and
the thermal diffusivities in the solid (liquid) phase and XI (t)
is the position of the interface at time t . Boundary conditions
are imposed at the interface and at the system’s boundaries
(x = 0 and x = ∞). We consider a semi-infinite system in
contact with a heat bath at x = ∞ and isolated at x = 0.
Therefore, (

∂TS(x,t)

∂x

)
x=0

= 0, (2.3)

TL(x = ∞,t) = TBulk, (2.4)

where TBulk is the temperature far from the interface. It is
also denoted as the “supercooled” temperature. Initially, the
system’s temperature is uniform and equal to TBulk in both
phases and the interface position is equal to ε:

TS(L)(x,t = 0) = TBulk, (2.5)

XI (t = 0) = ε. (2.6)

When solidification occurs, latent heat is released as the
interface advances and conservation of energy imposes the
following boundary condition at the interface,

ρSẊI (t)λ = ρSCSDS

(
∂TS(x,t)

∂x

)
x=XI (t)

− ρLCLDL

(
∂TL(x,t)

∂x

)
x=XI (t)

, (2.7)

where λ is the latent heat and ρS(L) and CS(L) are, respectively,
the density and the heat capacity of the solid (liquid). The
interface velocity is the time derivative of the interface position
and is denoted by ẊI (t).

The problem is fully specified when a further boundary
condition fixes the interface temperature. For a temperature
profile that is continuous across the interface, we write it as

TS(x = XI (t),t) = TL(x = XI (t),t) = TI (ẊI (t)). (2.8)

At equilibrium, the temperature is uniform and equal to the
melting temperature (TI = TMelt) and ẊI (t) = 0. Hence, one
of the boundary condition that was used in previous work
was [32],

TI (ẊI (t)) = TMelt. (2.9)

This boundary condition assumes local equilibrium in the
interface region. The system is initially supercooled so that
TBulk < TMelt. The problem is exactly solvable with such a
boundary condition, and it results in an interface motion
that scales as XI (t) ∝ t1/2. Therefore, the interface velocity
scales like ẊI (t) ∝ t−1/2 and vanishes at long times. No
traveling-wave solutions (i.e., steady-state solutions with a
nonzero interface velocity) are found. With such an interfacial
boundary condition, the system tends toward equilibrium at
infinitely long times.

Nonzero steady-state velocity solutions can be obtained
when interfacial kinetics is introduced into the problem
[28,29]. In this case the interface temperature is related to
the interface velocity,

TI (ẊI (t)) = TMelt − aẊI (t), (2.10)

where a is called the molecular attachment coefficient. Energy
conservation arguments show that traveling-wave solutions
are obtained when St > 1 where the Stefan number is a
dimensionless parameter defined as St = CL(TMelt − TBulk)/λ.
Hence, when the supercooling is large enough, equilibrium is
never reached even at infinitely long time.

Our goal is to generalize the interfacial boundary conditions
to include nonlinear kinetics and nonzero Kapitza resistance
and study their effects on the solidification process numerically
and analytically.

III. INTERFACIAL BOUNDARY CONDITIONS

The following dimensionless units are introduced:

T̃ = T/TMelt, x̃ = x/ε, t̃ = tD/ε2, (3.1)

and the above-mentioned governing equations can then be
rewritten in dimensionless units:

∂T̃S(x̃,t̃)

∂t̃
= ∂2T̃S(x̃,t̃)

∂x̃2
, 0 < x̃ < X̃I (t̃), (3.2a)
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∂T̃L(x̃,t̃)

∂t̃
= ∂2T̃L(x̃,t̃)

∂x̃2
, X̃I (t̃) < x̃ < ∞, (3.2b)(

∂T̃S(x̃,t̃)

∂x̃

)
x̃=0

= 0, (3.2c)

T̃L(x̃ = ∞,t̃) = T̃Bulk, (3.2d)

T̃S(L)(x̃,t̃ = 0) = T̃Bulk, (3.2e)

X̃I (t̃ = 0) = 1. (3.2f)

In this work we consider the simplest system possible and
focus on interfacial effects only. Hence, we set CS = CL =
C, ρS = ρL = ρ, and DS = DL = D for simplicity. These
dimensionless units will be used for the remainder of the paper,
unless otherwise specified.

A. Interfacial thermal resistance

As discussed in Ref. [17], nonzero interface resistivities
lead to temperature jumps in the interface region when there
is a nonvanishing heat flux across the interface. This statement
can be recast as

J̃Q = −R̃−1
I (T̃L(X̃I (t̃),t̃) − T̃S(X̃I (t̃),t̃)), (3.3)

where J̃Q is the heat flux through the interface and R̃I is the
interfacial resistivity or Kapitza resistance.

Provided that we have an expression for the heat flux, an
interfacial resistivity can be introduced in the model. Because
many recent experiments reported significant temperature
jumps [19,22,33], one of our goals is to show how the planar
front behavior is modified when the interfacial resistivity
deviates from zero.

We first need an expression for the heat flux through the
interface. We derive it directly from the first law of ther-
modynamics using the above simplifications for the material
properties. As solidification takes place, there is no expansion
or pressure change and therefore, no work is done by the
system. In analogy with the first law, the heat flux is equal to
the energy flux through the interface, J̃E(t):

J̃Q(t) = J̃E(t). (3.4)

Because the boundary is moving, one can show that the
total amount of energy that crosses the boundary in a small
time period δt is −ρẊI (t)EL(TL(XI (t),t))Aδt where EL is
the internal energy in the liquid phase at the appropriate
temperature and A is the area of the plane. For clarity,
the total amount of energy that crosses the boundary was

written with its appropriate units. Heat is released as the
interface is moving and part of this energy comes back to
the liquid phase diffusively. This contributes an amount equal
to −ρCD(∂TL(x,t)/∂x)x=XI (t)Aδt . Hence, in dimensionless
units the heat flux becomes

J̃Q(t) = − ˙̃XI (t̃)ẼL(T̃L(X̃I (t̃),t̃)) −
(

∂T̃L(x̃,t̃)

∂x̃

)
x̃=X̃I (t̃)

= − ˙̃XI (t̃)ẼS(T̃S(X̃I (t̃),t̃)) −
(

∂T̃S(x̃,t̃)

∂x̃

)
x̃=X̃I (t̃)

, (3.5)

where Ẽ = E/CTMelt and

Ẽs = T̃S, ẼL = T̃L + α, (3.6)

and where we introduced a new dimensionless variable:

α = λ/(CTMelt). (3.7)

The second line in Eq. (3.5) is derived similarly, but consid-
ering the energy flow from the solid phase. We then demand
that the two expressions be equal and obtain a Stephan-like
boundary condition. This is a modified version of Eq. (2.7) for
energy conservation that accounts for a temperature jump at
the interface:

˙̃XI (t̃)(α + T̃L(X̃I (t̃),t̃) − T̃S(X̃I (t̃),t̃))

=
(

∂T̃S(x̃,t̃)

∂x̃

)
x̃=X̃I (t̃)

−
(

∂T̃L(x̃,t̃)

∂x̃

)
x̃=X̃I (t̃)

. (3.8)

Note that our expression for the heat flux differs from that
of Fried et al. [30] where the heat flux through the interface is
defined in terms of an entropy flux instead of an internal energy
flux. Their relation is derived by analogy with the second law
of thermodynamics. Hence, we believe that their relation gives
an upper bound for the heat flux, which will be valid for any
kind of solidification process. Our expression is less general,
but is nevertheless exact for our simplified model system where
no work is done.

B. Nonlinear interfacial kinetics

Statistical Rate theory gives an expression for the rate of
phase change as a function of the thermodynamic properties
of both phases in regions infinitesimally close to the interface
[27,34,35]. The expression resulting from SRT has been tested
experimentally in numerous evaporation experiments, but it
can be generally applied to any kind of phase change. In the
context of planar solidification, it can be written with real units
as follows:

ρsẊI (t) = Keq sinh

[
HL(TL(XI (t),t),PL) − HS(TS(XI (t),t),PS)

kB�
+ SS(TS(XI (t),t),PS) − SL(TL(XI (t),t),PL)

kB

]
, (3.9)

where HS(L) and SS(L) are the enthalpies and the entropies of the
solid (liquid) phase, PS(L) is the pressure of the solid (liquid)
phase kB is Boltzmann’s constant, Keq is the unidirectional
equilibrium rate constant, and

� ≡ CSTS + CLTL

CS + CL

is the equilibrium temperature of two phases initially at TS and
TL when only heat exchanges are allowed between them. Note
that this expression allows for a temperature discontinuity at
the interface. It reduces to Eq. (2.10) close to equilibrium
(when the argument in the sinh is small) and when the two
interfacial temperatures are equal. For more details on the
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development of SRT and its use in recent experiments, see the
appropriate literature [27,36–38].

Equation (3.9) can be used as is. For many materials,
the temperature and pressure dependence of the enthalpies
and entropies are well known [39]. Here, we simply ex-
pand them about T = TMelt. With these simplifications and
written in dimensionless units, the following expression is
obtained,

˙̃XI (t̃) = β sinh

(
γ

{
2

T̃ I
S + T̃ I

L

− 1

+α−1

[
2
(
T̃ I

L − T̃ I
S

)
T̃ I

S + T̃ I
L

− ln
T̃ I

L

T̃ I
S

]})
= J̃N (t̃), (3.10)

where we introduced two more dimensionless variables,

γ = λ/(kBTMelt), β = Keqε/(ρD), (3.11)

and where J̃N (t̃) is the net dimensionless flux of molecules
undergoing phase change. When the interface temperatures
are the same and equal T̃I , this equation reduces to

˙̃XI (t̃) = β sinh

(
γ

[
1

T̃I

− 1

])
. (3.12)

If T̃I is close and below 1, it reduces to Eq. (2.10) with
a−1 = βγ . Equation (3.10) goes beyond the regime of validity
of Eq. (2.10). It should allow us to describe rapid solidification
processes, when the initial state of the system is far from
equilibrium. Note that ˙̃XI (t̃) = 0 when T̃ I

S = T̃ I
L = 1, as

expected.
As a final comments, we show how Eqs. (3.10) and (3.3)

obey the Onsager reciprocal relations [40]. These relationships
hold in the linear regime, so we proceed by writing T̃ I

S =
1 − �̃I

S and T̃ I
L = 1 − �̃I

L in Eq. (3.10) and expand the result
to first order in �̃I

L to obtain the following expression:

J̃N (t̃) ≈ βγ

(
�̃I

L + �̃I
S

2

)
+ O

(
�̃I

L,S

)2

= βγ

(
1 − T̃ I

L + T̃ I
S

2

)
+ O

(
�̃I

L,S

)2
. (3.13)

Note that 1 − (T̃ I
L + T̃ I

S )/2 = αCTMelt[μL(�) − μS(�)] in
the linear regime where μL/S is the chemical potential in the
liquid or solid phase and where � = (T̃ I

L + T̃ I
S )/2 is the mean

temperature in the two phases. In the linear regime, Eq. (3.10)
does not contain any term proportional to the interfacial
temperature discontinuity. The Onsager relations therefore
require that Eq. (3.3) does not contain any term proportional
to the mean interfacial temperature or the chemical potential
difference. This restriction is satisfied because Eq. (3.3) is
linear in the temperature difference only. Cross-effects in
the expressions for J̃N and J̃Q do not appear in the linear
regime of the model used. These have been studied by others
in the context of the crystallization of helium crystals [41].
We do not include them here because one of our goals is to
apply the nonlinear interfacial kinetic expression provided by
SRT to planar solidification, a theory that does not contain
any cross terms in the linear regime. Also note that, for
a particular osmotic transport example, it was previously

demonstrated how SRT is consistent with the Onsager recip-
rocal relations [42].

We now show how the solidification process is modified
when SRT replaces the linear interfacial kinetics boundary
condition with and without a Kapitza resistance.

IV. RESULTS

A. No interfacial thermal resistance: R̃I = 0

1. Long-time asymptotics

The problem cannot be solved exactly but analytical
predictions for the long-time behavior of the planar front can be
obtained using a procedure developed by Charach et al. [28].
Some details on Charach’s procedure are given in Appendix
A. Here we simply state the main results.

At long-time, the temperature profile in the solid becomes
a constant, and the one in the liquid depends on the Stephan
number. Modifications of Charach’s results when a nonlinear
interfacial kinetics [Eq. (3.12)] is incorporated are now
summarized.

For St < 1, we are in the so-called diffusion limited regime,
the long-time temperature profiles are

T̃S(x̃,t̃) = 1 + O(t̃−1/2),
(4.1)

T̃L(x̃,t̃) = T̃Bulk + 1 − T̃Bulk

erfc(c/2)
erfc(x̃/2t1/2) + O(t̃−1/2),

in dimensionless units. There, erfc is the complimentary error
function, and the constant c is related to the Stephan number
as follows:

St = π1/2 c

2
ec2/4erfc(c/2). (4.2)

In this regime the long-time dynamics of the interface is given
by X̃I (t̃) = ct̃1/2 and ˙̃XI (t̃) = ct̃−1/2/2. No traveling-wave
solutions are found for St < 1, irrespective of the relationship
between growth velocity and interfacial temperature.

For St > 1, called the interfacial kinetics limited regime,

T̃S(x̃,t̃) = T̃ ss
I + O(t̃−1),

T̃L(x̃,t̃) = T̃Bulk + (
T̃ ss

I − T̃Bulk
)
e−Ṽ ss (x̃−Ṽ ss t̃)

+ exponentially small corrections, (4.3)

where

T̃ ss
I = α + T̃Bulk (4.4)

and Ṽ ss are, respectively, the steady-state interface temper-
ature and interface velocity. They are nonlinearly related
through

T̃ ss
I = F (Ṽ ss) ≡ γ

γ + arcsinh(Ṽ ss/β)
. (4.5)

In this regime, traveling-wave solutions are obtained. At
long times, X̃I (t̃) = Ṽ ss t̃ and ˙̃XI (t̃) = Ṽ ss . Nonlinearities in
the interfacial kinetics change the steady-state velocity. For
all supercooling, the interface temperature at long time is
unaffected by the nonlinearities in the interfacial kinetic. It
is either T̃ ss

I = T̃Melt (St < 1) or T̃ ss
I = α + T̃Bulk (St > 1).

The case St = 1 is special and well documented in the
literature [28,43,44]. In this case, heat diffusion and interfacial
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kinetics play an equally important role in the solidification
process. The position and velocity of the interface scales like
X̃I (t̃) ∝ t̃2/3 and ˙̃XI (t̃) ∝ t̃−1/3, also irrespective of the rela-
tionship between growth velocity and interfacial temperature.

2. Numerical analysis

The numerical propagation of the phase front is more easily
performed when the governing equations of the system are
written as

∂T̃

∂t̃
= ∂2T̃

∂x̃2
+ α ˙̃XI (t)[δ(x̃ − X̃I (t)) + δ(x̃ + X̃I (t))],

−∞ < x̃ < ∞. (4.6)

Instead of using a diffusion equation for each phase and
imposing the Stephan condition at the interface [Eq. (2.7)],
we use a single diffusion equation for both phases, but we
introduce a source describing the heat released as the front
is moving. Note that the latent heat enters the definition of
the parameter α, which depends only on material properties.
The resulting temperature profile is guaranteed to satisfy the
Stephan boundary condition, Eq. (2.7). The zero heat flux
boundary condition at x̃ = 0 is satisfied by introducing a
mirror image source that propagates along the negative x̃ axis
and imposing T̃L(x̃ = ±∞,t) = T̃Bulk. In dimensionless units,
X̃I (0) = 1 and T̃ (x̃,0) = T̃Bulk.

The solution to Eq. (4.6) can be easily obtained with Fourier
transform techniques and gives

T̃ (x̃,t) = T̃Bulk + α

∫ t̃

0
dτ̃

e−[x̃−X̃I (τ̃ )]2/4(t̃−τ̃ ) + e−[x̃+X̃I (τ̃ )]2/4(t̃−τ̃ )

[4π (t̃ − τ̃ )]1/2
˙̃XI (τ̃ ), (4.7)

a solution similar to the one explained in Sec. 11.4 of
Ref. [32] with different boundary conditions. Combined with
the nonlinear interfacial boundary condition,

˙̃XI (t̃) = β sinh

[
γ

(
1

T̃I

− 1

)]
, (4.8)

where T̃I = T̃ (x̃ = ±X̃I (t̃),t̃), the complete solution for the
temperature profile and the phase-front position at all times
can be obtained numerically. This is done using an iterative
procedure based on the discrete form of the integral appearing
in Eq. (4.7) and described in Appendix B.

Figure 1 shows the dimensionless phase-front velocity
and temperature as a function of time for five different
supercooling scenarios. The materials parameters that we
used to obtain α and γ are the ones of succinonitrile and
can be found in Ref. [45]. The velocities are reported as

˙̃XI (t̃)/β. In dimensionless units, the Stephan number can
be written as St = (1 − T̃Bulk)/α. The cases shown are St =
0.5,1.0,3.0,6.1,10.0. As shown previously, St is the parameter
that determines the long-time behavior of the phase front.
The figures show many noticeable effects of the nonlinear
interfacial kinetics. When St > 1, the long-time steady-state
velocity is increased when nonlinear kinetics is introduced.
Also, the time scale at which the system evolves is much
faster when nonlinearities are included. For SCN, when St < 1,
the two cases are almost identical. This may not be true
for other materials. On the other hand, in that supercooling
range, linear or nonlinear interfacial kinetics will always lead
to equilibrium behavior at long times [ ˙̃XI (t̃)/β → 0 and
T̃Bulk → 1]. The final steady-state temperature is not affected
by the nonlinearities in the interfacial kinetics for any St.
As shown in Fig. 1, the long-time asymptotic prediction is
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FIG. 1. (Color online) The dimensionless velocity [ ˙̃XI (t̃)/β] (top panels) and the dimensionless temperature (bottom panels) of the phase
front are shown has a function of dimensionless time when the interfacial kinetics is described by SRT [Eq. (4.8)] (blue, top curve) or by the linear
kinetics relation (magenta, bottom curve). From left to the right, the initial dimensionless temperature is T̃Bulk = 0.965,0.93,0.79,0.572645,0.3.
We used succinonitrile’s material dimensionless parameter (α = 0.07 and γ = 1.34). Accordingly, the Stephan number is St = 0.5,1.0,3,6.1,10.
The noisy parts of the curves are due to errors associated with the numerical scheme. The straight black lines are the long-time steady-state
predictions described in Sec. IV A1. Note the faster dynamics that results from the nonlinear interfacial kinetics.
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FIG. 2. (Color online) The temperature profile for T̃Bulk = 0.3 (both T̃ and x̃ are dimensionless). Top row, from left to right, the temperature
profile is shown for four different increasing times: t̃ = 0.1,0.3,2, and 4. SRT provides the nonlinear interfacial kinetic boundary condition.
Bottom row, the temperature profile is shown for four different increasing times: t̃ = 2,10,40, and 80. The interfacial kinetic boundary is
linearized. In both rows, as the panel goes to the right, steady state is approached.

in excellent agreement with the numerical solution for all
supercoolings.

In Figs. 2 and 4 the temperature profile for the supercooling
T̃Bulk = 0.3 and 0.965 are shown for four different values of t̃ .
There, the temperature profile that results from nonlinear and
linear interfacial kinetic boundary conditions are compared.

Clearly, Fig. 2 shows how the time scales at which the
system evolves is drastically shortened when the nonlinear
boundary condition is used at large supercooling. Hence,
steady state is attained much faster.

Interestingly, Fig. 2 shows that the system has a whole
did not reach steady state, even when t̃ = 4 (or 80 for the
linear case). Indeed, the interface advances with a steady-state
velocity well before that time, as shown in Fig. 1, but close to
the x̃ = 0 boundary, the system is still evolving nonsteadily.
This is explained because the interface moves very quickly
away from that boundary and the interface is unable to provide
any heat to that region of the system after a very short amount
of time. Hence, for small T̃Bulk, heat diffusion quickly becomes
the only mechanism that increases the temperature close to x̃ =
0. This diffusion process is slow compared to the solidification
dynamics. In Fig. 3 the temperature at x̃ = 0 is reported as
a function of time. Its value slowly tends to the interfacial

T
(x

=
0,

t)

0.37

0.35

0.33

0.31

t
~

0 20 40 60 80 100

FIG. 3. (Color online) The temperature at the boundary in the
solid (x̃ = 0) is displayed as a function of time t̃ (T̃ and t̃ are
in dimensionless units) for the case where T̃Bulk = 0.3 (largest
supercooling). At long times, it tends towards the interfacial steady-
state value, T̃Bulk + α = 0.37 in this case.

steady-state temperature at long times. In fact, Fig. 3 shows that
even at t̃ = 100, T̃ (x̃ = 0,t̃) did not quite reach its steady-state
value of 0.37, while at the interface, that temperature is attained
well within t̃ = 3.5 as shown in Fig. 1.

On the other hand, Fig. 4 shows that the nonlinearities in
the interfacial kinetics do not play any role for small St values.
The two curves shown in the figure represent the simulated
temperature profiles with linear and nonlinear interfacial
kinetics and they overlap. For such a small supercooling, the
time evolution of the system is dominated by heat diffusion and
is much slower. The figure shows that the interface temperature
tends to 1 and the temperature profile in the solid flattens out.
On the other hand, for all times shown in Fig. 4, nonzero
temperature gradients in the solid are observed. Also note that
the temperature in the liquid decreases to T̃Bulk = 0.965 at
x̃ → ∞, but very smoothly compared to what is shown in
Fig. 2

In Fig. 5 the steady-state velocity as predicted by the
long-time asymptotic analysis is shown as a function of T̃bulk

using SCN materials properties. The relationship between
the steady-state velocity and the supercooled temperature
is compared for the cases of linear or nonlinear interfacial
kinetics. The points on the figure corresponds to the cases
studied numerically. Recall that, for SCN, when 0.93 <

T̃Bulk < 1, Ṽss = 0 (i.e., St < 1).

B. Finite interfacial thermal resistance: R̃I �= 0

We repeat the methodology presented in the previous
subsection, but we incorporate a nonzero thermal resistance.

1. Long-time asymptotics

The analysis of Charach et al. is repeated with a nonzero
interfacial thermal resistance. The details are described in
Appendix A. Again, the solutions at long times depends on
the initial supercooling described by the Stephan number of
the system.

For St < 1, there is are no temperature jumps at long times.
Hence, the long-time temperature profile remains unchanged
and is given in Sec. IV A1.
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FIG. 4. (Color online) The temperature profile for T̃Bulk = 0.965 (both T̃ and x̃ are dimensionless). From left to right, the temperature
profile is shown for four different increasing times: t̃ = 100,500,1500, and 3000. For the magenta (blue) curve, nonlinear (linear) interfacial
kinetic boundary condition is used. The two curves are hardly distinguishable. In this regime the interface boundary condition has little effect
on the temperature profile. From left to right, steady state is approached.

For St > 1, the temperature jumps survives at long times.
Traveling-wave solutions are again obtained, and the temper-
ature profiles in both phases are

T̃S(x̃,t̃) = T̃ I
S ,

T̃L(x̃,t̃) = T̃Bulk + (
T̃ I

L − T̃Bulk
)
e−Ṽss (x̃−Ṽss t̃)

+ exponentially small corrections, (4.9)

where

T̃ I
S = α + T̃Bulk, T̃ I

L = (1 + R̃I ṼSS)T̃ I
S , (4.10)

and the steady-state velocity is obtained by solving

ṼSS

β
= sinh

(
γ

{
2

T̃ I
S + T̃ I

L

− 1

+α−1

[
2
(
T̃ I

L − T̃ I
S

)
T̃ I

S + T̃ I
L

− ln
T̃ I

L

T̃ I
S

]})
, (4.11)

remembering that T̃ I
L depends on ṼSS . One can show that

for any positive R̃I , the resulting steady-state velocity is
smaller than the one obtained when R̃I = 0. As expected,
a finite thermal resistance slows down the solidification
dynamics.

2. Numerical analysis

When an interfacial thermal resistivity is introduced, the
propagation of the temperature profile is obtained solving

∂T̃

∂t̃
= ∂2T̃

∂x̃2
+ α ˙̃XI (t̃){δ[x̃ − X̃I (t̃)] + δ[x̃ + X̃I (t̃)]}

− R̃I J̃Q(t̃){δ(1)[X̃I (t̃) − x̃] − δ(1)[X̃I (t̃) + x̃]} (4.12)

for ∞ < x̃ < ∞. In Appendix B we show that this new
diffusion equation forces a temperature jumps at x̃ = ±X̃I (t̃)
and guarantees that the modified Stephan boundary condition,
Eq. (3.8), is satisfied.

The temperature profile is given by

T̃ (x̃, t) = T̃Bulk + α

∫ t̃

0
dτ̃

e−[x̃−X̃I (τ̃ )]2/4(t̃−τ̃ ) + e−[x̃+X̃I (τ̃ )]2/4(t̃−τ̃ )

[4π (t̃ − τ̃ )]1/2
˙̃XI (τ̃ )

− R̃I

∫ t̃

0
dτ̃

e−[x̃−X̃I (τ̃ )]2/4(t̃−τ̃ )[x̃ − X̃I (τ̃ )] − e−[x̃+X̃I (τ̃ )]2/4(t̃−τ̃ )[x̃ + X̃I (τ̃ )]

4π1/2(t̃ − τ̃ )3/2
JQ(τ̃ ), (4.13)

and is coupled to Eq. (3.10) that describes ˙̃XI (t̃) and Eq. (3.5)
for JQ(t̃). Because JQ(t̃) depends on the gradients at the
interface, these have to be propagated simultaneously with
the temperature at the interface. The details of the numerical
solution are described in Appendix B.

Figure 6 displays the dimensionless phase-front velocity
and the interfacial temperatures as a function of time for
two different supercooling scenarios. The material parameters
are the same as above, nonlinear interfacial kinetic is used,
but R̃I = 0.05. The velocities are reported as ˙̃XI (t̃)/β. The
cases shown have the following Stephan number St = 0.5,6.1.
When St > 1, the long-time steady-state velocity is decreased
by the interfacial resistance and the time scale at which the
system evolves is longer with interfacial resistance. The final
steady-state temperature in the solid is not affected by the
interfacial resistance, but a finite temperature jump persists
at long times for St > 1. These conclusions are in perfect

agreement with the long-time asymptotic prediction, also
shown on the figure. For St < 1, the interface velocity tends to
zero at long time, albeit slightly more slowly when interfacial
resistivities are introduced. For the temperature, we see that
a small temperature jump arises at transient times and slowly
tends to zero at long times, as predicted by the long-time
analysis. In Fig. 7 the full temperature profile for the same
supercooling scenarios as in Fig. 6 is shown for selected values
of time. A temperature jump is clearly observed for St = 6.1.
There, the jump quickly arises from the uniformly supercooled
initial state. It reaches a maximum and eventually decreases
slightly to its steady-state value, which agrees with the
long-time asymptotic prediction. For the small supercooling
scenario, St = 0.5, the temperature discontinuities remains
small at all times and exactly vanishes at long times. This
is expected because, in this limit, heat diffusion dominates and
washes away any emerging temperature discontinuity. Note
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FIG. 5. (Color online) The steady-state interface velocity Ṽss is
reported as a function of T̃Bulk (both Ṽss and T̃Bulk are dimensionless)
for the linear propagating solidification front with nonlinear (top
curve, blue) and linear (bottom curve, magenta) interfacial kinetics
as predicted by the long-time asymptotic analysis. The points are
obtained from the numerical simulation. We have used the materials
parameters of SCN. Note that we do not show the range 0.93 <

T̃Bulk < 1.0, where Ṽss = 0.

that, relative to the interface position, heat flows from the
liquid to the solid. From this observation and Eq. (3.3), we
expect the temperature in the solid to be lower than the one in
the liquid, in agreement with Fig. 7.

Finally, Fig. 8 shows the dependence on supercooling of the
steady-state interfacial velocity with and without an interfacial
temperature resistance. As expected, the temperature resis-
tance slows down the solidification process. The steady-state
value of the resulting temperature jump is also reported in
Fig. 8 as a function of supercooling. These relations directly
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FIG. 6. (Color online) The dimensionless velocity ( ˙̃XI (t̃)/β)
(top panels) and the dimensionless temperature (bottom panels) of
the phase front are shown has a function of dimensionless time
with nonlinear interfacial kinetics. For the velocities (top panels),
the magenta bottom curve was obtained with a thermal resistivity
while the blue top curve was obtained without. Starting from the
left, the initial dimensionless temperature is T̃Bulk = 0.965,0.572645.
The straight black lines are the long-time steady-state predictions
described in Sec. IV B1. For the temperature (bottom panels), the
blue curve (second from the bottom) is the interface temperature with
no thermal resistivity. The magenta curve (first from the bottom)
is the temperature in the solid and the yellow curve (third and last
from the bottom) is the temperature in the liquid when there is a
thermal resistivity. The straight lines are the long-time steady-state
temperature predictions described in Sec. IV B1.

arise from the long-time asymptotic analysis and are in perfect
agreement with the case reported in Fig. 6 with St = 6.1 where
the interface motion was propagated numerically.

C. Stability of the planar front

The planar solidification front with constant surface tension
has been shown to be unstable for sufficiently long wavelength
deformation of the interface. This is the well-known Mullins-
Sekerka instability [46,47]. The original stability analysis was
performed using a local equilibrium description of the interface
[Eq. (2.9)]. Here we show how a Kapitza resistance modifies
the Mullins-Sekerka instability.

The analysis starts by considering the following small
deformation of the planar interface, which is located at

x̃ = X̃I (t̃) + δ(t̃) sin (kz̃), (4.14)

and associated interfacial velocity

ṼI (z̃,t̃) = ˙̃XI (t̃) + δ̇(t̃) sin (kz̃), (4.15)

where z̃ is a direction perpendicular to the interface, k is the
wave number of the deformation, and δ(t̃) is a small, time-
dependent amplitude. For simplicity, we use linear interfacial
kinetics [i.e., Eq. (3.13)] combined with the Gibbs-Thomson
boundary condition for the temperature decrease of a curved
interface,

T̃L(X̃I (t̃) + δ(t̃) sin (kz̃),t̃) + T̃ (X̃I (t̃) + δ(t̃) sin (kz̃),t̃)
2

= 1 − �δ(t̃)k2 sin (kz̃) − 1

βγ
ṼI (z̃,t̃), (4.16)

where all parameters have been defined previously except �,
which is the surface tension of the interface. Corrections to
these profiles due to the deformation of the interface at St > 1
are written as

T̃S(x̃,z̃,t̃) = T̃
(0)
S (x̃,t̃) + δ(t̃)B̃S sin (kz̃)eωS (x̃−ṼSS t̃),

(4.17)
T̃L(x̃,z̃,t̃) = T̃

(0)
L (x̃,t̃) + δ(t̃)B̃L sin (kz̃)e−ωL(x̃−ṼSS t̃),

where the steady-state planar interface [δ(t̃) = 0] temperature
profiles, T̃

(0)
S and T̃

(0)
L , are given by Eq. (4.9). In this last

equation, we introduced the following quantities:

ωS = Ṽss

2

⎡
⎣1 +

√
1 +

(
k

Ṽ

)2
⎤
⎦ ,

(4.18)

ωL = Ṽss

2

⎡
⎣

√
1 +

(
k

Ṽ

)2

− 1

⎤
⎦ .

These guarantee that the corrected temperature profile satisfy
the diffusion equation [the first two lines of Eq. (3.2)] and that
the corrections tend to zero away from the interface. These
profiles are inserted in Eq. (4.16), which includes the surface
tension effects, and in Eqs. (3.5) and (3.8) for the temperature
jump and the conservation of energy. The result is expanded
to first order in δ(t̃), and solutions for B̃S and B̃L and δ(t̃)
are obtained in terms of the steady-state variables T̃ I

S , T̃ I
L ,

and ṼSS given in Sec. IV B1 or equivalently, in terms of the
material properties. The important point is that δ(t̃) is given as
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FIG. 7. (Color online) The temperature profile for T̃Bulk = 0.965 (St = 0.5) (top) and T̃Bulk = 0.5726 (St = 6.1) (bottom) with R̃I = 0.05
(Both T̃ and x̃ are dimensionless). From left to right, the temperature profile is shown for four different increasing times written on each panel.
Nonlinear interfacial kinetics is used. A temperature jump is observed at all times for T̃Bulk = 0.5726. For T̃Bulk = 0.965, the temperature jump
at the interface is smaller than the line thickness.

the solution of the following ordinary differential equation in
time:

δ̇(t̃) = �δ(t̃). (4.19)

An exact expression for � can be obtained, but it is more
instructive to report it in various limits. In all cases we
have used the limit k � Ṽss (which may not be valid for
rapid solidification) to compare with Refs. [46,47] which use
that approximation. Then we report the result for small and
large R̃I ,

� =
{

βγ k(βγ (1−α−T̃Bulk)−2�k2)
2k+βγα

when R̃I → 0

− 2βγ�k3

2k+βγ (2−2T̃Bulk−α)
when R̃I → ∞ .
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FIG. 8. (Color online) Top panel: The steady-state interface
velocity Ṽss is reported as a function of T̃Bulk (both Ṽss and T̃Bulk

are dimensionless) for the propagating solidification with nonlinear
kinetics with a thermal resistance of R̃I = 0.05 (blue, bottom curve)
and no thermal resistance (magenta, top curve) as predicted by the
long-time asymptotic analysis. Bottom panel: The dependence of the
temperature jump T̃ I

L − T̃ I
S on T̃Bulk as predicted by the long-time

asymptotics is reported with R̃I = 0.05.

The following conclusions can be drawn. When R̃I = 0, the
standard Mullins-Sekerka instability is observed. Any sinu-
soidal deformation of the interface that has a large wavelength
such that 1/k > [βγ (1 − α − T̃Bulk)/(2�)]1/2 will tend to
grow (� is positive). Remember that we restrict ourselves
to cases where St > 1 and hence (1 − α − T̃Bulk) > 0. As the
Kapitza resistance increases, that wavelength becomes larger.
In other words, the interfacial thermal resistance makes the
interface more stable to large wavelength deformation. When
R̃I → ∞, all deformations are stable, but the k = 0 one (� is
positive except at k = 0 where it vanishes). Clearly, R̃I will
always be finite so the planar interface will always be unstable,
but the instability arises at longer wavelengths with a finite R̃I .

V. DISCUSSION

In this paper we report the effects of nonlinear interfacial
kinetics and nonzero Kapitza resistance on the dynamics of
the planar front during solidification from an undercooled
melt. Our results show that both modifications to the boundary
conditions at the interface lead to differences in transient times
and steady-state velocities. The nonlinear interfacial kinetics
increase the solidification rate while the thermal resistance
decreases it. It is in that sense that the two effects compete.

The parameter that establishes whether a traveling wave
solution (a planar front advancing with a nonzero steady-state
velocity) will be obtained or not at long times is the Stephan
number. The newly included interfacial effects do not modify
this analysis. Traveling-wave solutions are still obtained when
St > 1. On the other hand, the transient behavior of the phase
front is modified by the new interfacial conditions and, when
St > 1, so is the steady-state velocity.

The main results of our work are as follows. For St > 1,
the steady-state temperature in the solid phase is constant and
equal to T̃Bulk + α, irrespective of the interfacial dynamics or
the Kapitza resistance. The steady-state temperature in the
liquid phase decays exponentially away from the interface,
but its value close to the interface is larger if R̃I > 0, in which
case the steady-state velocity of the front is smaller. Faster
dynamics is observed with nonlinear interfacial dynamics and
no Kapitza resistance. A stability analysis shows how the
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Kapitza resistance shifts the unstable deformation of the planar
interface towards larger wavelengths.

The materials parameters of SCN were used in our case
study. In this case, the new interfacial boundary conditions
showed very little effects when St < 1. This may not be
the case for other materials. In fact, if the argument of
the hyperbolic sine in Eqs. (3.9) is larger than one, the
transient-time behavior of the front will be highly affected
by the nonlinear kinetics, even if St < 1. On the other hand, in
this regime, the final state will always tend to equilibrium
at long times (zero phase front velocity and an interface
temperature that tends towards TMelt). The same can be said for
the interfacial resistance. If its value is large enough. The time
scale of the solidification could be significantly reduced even
if St < 1. In this case the system would tend to equilibrium
more slowly.

This work is especially relevant to rapid solidification
experiments, where the effects discussed are expected to be
larger. We are fully aware that the planar front geometry is
idealistic (as shown by the Mullins-Sekerka stability analysis).
On the other hand, the nonlinear dependence between the
steady-state velocity and the supercooled bulk temperature
that arises with nonlinear interfacial kinetics should also be
observed in a real system in the appropriate regime. Similarly,
interfacial resistances will slow down the solidification when
they are important, irrespective of the system’s geometry. We
studied these new effects using the planar geometry because
of its simplicity. In the future our goal is to include them
in isolated dendritic growth models. There, comparison with
rapid solidification experiments will be easier.

Throughout our analysis, we have used equal densities,
heat capacities, and thermal diffusivities in the liquid and
solid phases. This was done for mathematical simplicity.
Nevertheless, for SCN, this turns out to be a decent ap-
proximation. Further, we took the material properties to be
independent of temperature. We are well aware that this is
an oversimplification and that temperature dependence of the
densities, heat capacities, and diffusivities probably need to
be taken into account in highly supercooled systems. We
are not aware of any estimate for the value of the Kapitza
resistance of pure substance, the previous measurements of the
Kapitza resistance have been for two-component solid-liquid
systems [22].

We did not consider any effect of buoyancy driven convec-
tion here. In other words, we assumed zero gravity. For rapid
solidification experiments carried on earth, buoyancy driven
convection necessarily arises. On the other hand, dendritic
growth studies show that the convection only plays an im-
portant role at small Stephan number, when the solidification
is slow. Because this work is primarily interested with rapid
solidification, even on earth, buoyancy-driven convection can
be neglected.

Using our notation, Fried and Shen [30] claimed that
traveling-wave solutions can be found in the limit β → ∞
when R̃I �= 0. Understanding that this scenario is hypothetical
(β is related to the unidirectional equilibrium constant, which
must be finite), this statement can still be misleading. No
matter how large β becomes, our work shows that a nonzero
steady-state velocity always arises when St > 1 and is given
by Eq. (3.10). A nonzero R̃I simply bounds the value of the

steady-state velocity, which may be what is meant in Ref. [30].
Physically, this means that when β is very large, an equally
large amount of heat will cross the boundary at any given
time in the absence of a thermal resistance and Ṽss will scale
linearly with β. With a finite interfacial resistance, part of the
energy that crosses the phase boundary is lost and a maximum
velocity is reached at large β.

Finally, we want to make a distinction between our work and
the one of Galenko et al. [31], which is also relevant to rapid
solidification processes. There, the heat transfer is bounded by
a finite speed. This results in a nonzero Kapitza resistance at the
interface and modifies the evolution of the temperature profiles
in the bulk (an hyperbolic equation replaces the usual diffusion
equation). Our work singles out the interfacial effects. In other
words, this means that we are considering systems where
the heat transfer is bounded by a large speed in both bulk
phases (there, the heat transfer remains diffusive), but a much
smaller speed in the region of the interface while Galenko
et al. assumed that this upperbound for the heat transfer is
the same throughout the system. Our method is supported by
recent experiment, where temperature jumps are observed at
an interface and where the standard diffusion equation holds
in the bulk [22].
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APPENDIX A: LONG-TIME ASYMPTOTICS

The Charach et al. argument starts by rewriting the
temperature diffusion equation in a coordinate system where
the interface is fixed. This is done with the change of variable
y = x̃/X̃I (t̃). In these units, the diffusion equation reads

X̃I (t̃)2 ∂T̃S(L)

∂t̃
= ∂2T̃S(L)

∂y2
+ yX̃I (t̃) ˙̃XI (t̃)

∂T̃S(L)

∂y
, (A1)

valid in the solid for 0 < y < 1 and in the liquid for 1 < y <

∞. At the system’s boundary, the following conditions apply:(
∂T̃S(y,t̃)

∂y

)
y=0

= 0, T̃S(1,t̃) = T̃ I
S (t̃),

(A2)
T̃L(1,t̃) = T̃ I

L (t̃), T̃L(∞,t̃) = T̃Bulk.

The exact form for T̃ I
S (t̃) and T̃ I

L (t̃) is left unspecified at this
point.

In the solid, the temperature profile postulated in
Ref. [28] is

T̃S(y,t̃) = A2(t̃)(y2 − 1) + T̃ I
S (t̃) (A3)

and satisfies both solid boundary conditions. Note that Eq. (A1)
can only be satisfied approximately with this form of T̃S . On
the other hand, Charach et al. obtained a differential equation
for A2(t̃) by integrating Eq. (A1) over the solid domain. The
result is

Ȧ2(t̃) = ˙̃T
I

S(t̃) −
[

˙̃XI (t̃)

X̃I (t̃)
+ 3

X̃I (t̃)2

]
A2(t̃). (A4)
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For the liquid, Eq. (A1) is further rewritten in terms of the
variable μ = (y − 1)X̃I (t̃) ˙̃XI (t̃):

∂T̃L(μ,t̃)

∂t̃
= ˙̃XI (t̃)2

{
∂T̃L(μ,t̃)

∂μ2

+
[

1 − μ
¨̃XI (t̃)
˙̃XI (t̃)3

]
∂T̃L(μ,t̃)

∂μ

}
. (A5)

The claim is that, at long times, the time dependence of the
profile is dominated by μ so that the left-hand side of the last
equation can be set to zero. Within this approximation, the
long-time temperature profile in the liquid is

T̃L(μ,t̃) = T̃Bulk + T̃ I
L (t̃) − T̃Bulk

Erfc[�(t)]
Erfc{�(t)

× [1 + g(t̃)(x − 1)X̃I (t̃) ˙̃XI (t̃)]}, (A6)

where g(t̃) = − ¨̃XI (t̃)/ ˙̃XI (t̃)3, � = [2g(t)]−1/2 and Erfc is the
complimentary error function. Charach’s argument is based
on conservation of energy. There is no heat flux on the
boundary at x̃ = 0 and because the other boundary is at
infinity, the total energy of the system is conserved so we can
write∫ X̃I (t)

0
dx̃[T̃S(x̃,t̃) − T̃Bulk] +

∫ ∞

X̃I (t)
dx̃ [T̃S(x̃,t̃) − T̃Bulk]

= α[X̃I (t) − 1]. (A7)

The approximate profiles in the solid and liquid are inserted in
this conservation of energy equation to give

−2

3
A2(t̃) + T̃ I

S (t̃) − T̃Bulk + T̃ I
L (t̃) − T̃Bulk

g(t)X̃I (t̃) ˙̃XI (t̃)
[W (�(t̃)) − 1]

= α[1 − X̃I (t̃)−1], (A8)

where W (�(t̃)) = π1/2�e�2
Erfc(�). We now follow

Charach’s method and show how asymptotic expressions for
X̃I (t̃), ˙̃XI (t̃), T̃ I

S (t̃), and T̃ I
L (t̃) are obtained at long times. The

only difference here versus the work done in Ref. [28] is that
we allow for nonlinear interfacial kinetics and a temperature
discontinuity.

1. Traveling wave solutions, St > 1

We assume that the long-time interface position follows

X̃I (t̃) = ṼSS t̃
η, (A9)

with 1/2 < η � 1. Other cases will come next. Here, g(t̃) =
(1 − η)η−2Ṽ −2

SS t̃1−2η, and hence, g(t̃) → 0 and �(t̃) → ∞
when t̃ → ∞ unless η = 1. Using asymptotic expressions for
the complementary error function, the long-time temperature
profile in the liquid is now written as

T̃L(y,t̃) = T̃Bulk + [
T̃ I

L (t̃) − T̃Bulk
]

× exp[−(y − 1)X̃I (t̃) ˙̃XI (t̃)

− (y − 1)2g(t)X̃I (t̃)2 ˙̃XI (t̃)2]. (A10)

Further, when η = 1, we get the so-called traveling wave
solution, and the second term in the exponential vanishes:

T̃L(y,t̃) = T̃Bulk + [
T̃ I

L (t̃) − T̃Bulk
]

exp[−(y − 1)ṼSS t̃].
(A11)

Taking η = 1 henceforth, we examine what it predicts for
the steady-state velocity, ṼSS , the interfacial temperatures, and
assess its range of validity. The long-time expression for the
temperature jump gives

T̃ I
L (t̃) − T̃ I

S (t̃) = −RI

[
−ṼSST̃

I
S (t̃) − 2A2(t̃)

ṼSS t̃

]
. (A12)

The fact that the last term on the right-hand side vanishes
at long times, combined with a kinetic expression of the
form ṼSS = F (T̃ I

L (t̃),T̃ I
S (t̃)), linear or not, shows that any of

the interface temperatures is a function of ṼSS only. Hence,
Eq. (A4) becomes

Ȧ2(t̃) = −1

t̃
A2(t̃) (A13)

and A2(t̃) = A/t̃ with A a constant. At long times, the
temperature profile in the solid is

T̃S(y,t̃) = T̃ I
S (t̃). (A14)

The long-time limit of Eq. (A8) simplifies to

T̃ I
S (t̃) = α + T̃Bulk, (A15)

and hence,

T̃ I
L (t̃) = (1 + RI ṼSS)(α + T̃Bulk). (A16)

Hence, the steady-state velocity is obtained by solving this
last expression simultaneously with the interfacial kinetics
expression. In the main text, we discuss how these last
equations imply that traveling-wave solutions are obtained
when St > 1.

2. St < 1

Here, we consider the case where X̃I (t̃) = ct̃1/2 and show
that it gives a solution for St < 1. First, the temperature jump
expression now becomes

T̃ I
L (t̃) − T̃ I

S (t̃) = RI t̃
−1/2

[
c

2
T̃ I

S (t̃) − 2

c
A2(t̃)

]
. (A17)

Combining this with

Ȧ2(t̃) = −t̃−1 c

4

∂T̃ I
S (t̃)

∂ ˙̃XI (t̃)
− t̃−1 c2 + 6

2c2
A2(t̃), (A18)

and assuming that the derivative on the first term of the right-
hand side of the last equation is nonzero for small ˙̃XI (t̃), we
obtain that T̃ I

L (t̃) = T̃ I
S (t̃) = 1 and A2(t̃) ∝ t̃−1/2 at long times.

In this case, Eq. (A8) simplifies to

St = π1/2 c

2
ec2/4Erfc(c/2), (A19)

where we used St = (1 − T̃Bulk)/α. The right-hand side of that
equation lies between 0 and 1 for all c. Hence, a long-time
solution of the type X̃I (t̃) = ct̃1/2 is obtained when St < 1.
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APPENDIX B: DISCRETIZING THE INTEGRAL

The temperature profile at all times is given by

T̃ (x̃,t) = T̃Bulk + α

∫ t̃

0
dτ̃

e−[x̃−X̃I (τ̃ )]2/4(t̃−τ̃ ) + e−[x̃+X̃I (τ̃ )]2/4(t̃−τ̃ )

[4π (t̃ − τ̃ )]1/2
˙̃XI (τ̃ )

−RI

∫ t̃

0
dτ̃

e−[x̃−X̃I (τ̃ )]2/4(t̃−τ̃ )[x̃ − X̃I (τ̃ )] − e−[x̃+X̃I (τ̃ )]2/4(t̃−τ̃ )[x̃ + X̃I (τ̃ )]

4π1/2(t̃ − τ̃ )3/2
JQ(τ̃ ). (B1)

We now show how these integrals are performed numerically. When there are no temperature jumps, the second term on the
right-hand side is omitted. We assume that ˙̃XI (τ̃ ) and JQ(τ̃ ) are constant over a short time interval �t̃ . When this is done, the
time integral is partitioned into N segments, and the temperate profile is written as

T̃ (x̃,t) − T̃Bulk =
N−1∑
n=0

{
α ˙̃XI (n�t̃)

[
IA

1,n(x) + IB
1,n(x)

] − RIJQ(n�t̃)
[
IA

2,n(x) − IB
2,n(x)

]}
, (B2)

where N�t̃ = t̃ and where

IA
1,n =

∫ (N−n)�t̃

(N−n−1)�t̃

du
exp {−[Sn(x) + u ˙̃XI (n�t̃)]2/4u}

(4πu)1/2
, (B3a)

IB
1,n =

∫ (N−n)�t̃

(N−n−1)�t̃

du
exp {−[Zn(x) + u ˙̃XI (n�t̃)]2/4u}

(4πu)1/2
, (B3b)

IA
2,n =

∫ (N−n)�t̃

(N−n−1)�t̃

du
exp {−[Sn(x) + u ˙̃XI (n�t̃)]2/4u}

4π1/2u3/2
[Sn(x) + u ˙̃XI (n�t̃)] = − ∂IA

1,n

∂Sn(x)
, (B3c)

IB
2,n =

∫ (N−n)�t̃

(N−n−1)�t̃

du
exp {−[Zn(x) − u ˙̃XI (n�t̃)]2/4u}

4π1/2u3/2
[Zn(x) − u ˙̃XI (n�t̃)] = − ∂IB

1,n

∂Zn(x)
, (B3d)

where we introduced the following functions:

Sn(x) = x − X̃I (n�t̃) − (N − n)�t̃ ˙̃XI (n�t̃) (B4a)

and

Zn(x) = x + X̃I (n�t̃) + (N − n)�t̃ ˙̃XI (n�t̃). (B4b)

The interfacial kinetics is described in terms of temperature at the interface. Hence, we let x → X̃I (N�t̃) in the last equations.
At this position, one can show that Sn � 0 (the equality is for n = N − 1)and Zn > 0. The integration is performed and IA

1,n and
IB

1,n are rewritten:

IA
1,n = 1

2 ˙̃XI (n�t̃)

(
e−Sn

˙̃XI (n�t̃)

[
Erf

(
Sn − (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)
− Erf

(
Sn − (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)]

+ Erf

(
Sn + (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)
− Erf

(
Sn + (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

))
, (B5)

IB
1,n = 1

2 ˙̃XI (n�t̃)

(
eZn

˙̃XI (n�t̃)

[
Erf

(
Zn + (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)
− Erf

(
Zn + (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)]

+ Erf

(
Zn − (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)
− Erf

(
Zn − (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

))
. (B6)

Note that the limit n → N − 1 is well defined in both cases. IA
2,n and IB

2,n can now be rewritten as follows:

IA
2,n = 1

2
e−Sn

˙̃XI (n�t̃)

[
Erf

(
Sn − (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)
− Erf

(
Sn − (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)]
, (B7)
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valid for n < N − 1 and

IB
2,n = 1

2
eZn

˙̃XI (n�t̃)

[
Erf

(
Zn + (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)
− Erf

(
Zn + (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)]
, (B8)

valid for all n. When n = N − 1, IA
2,n gives a different answer if the limit x̃ → X̃I (N�t̃) is taken from the liquid side (x̃ →

X̃I (N�t̃)+) or from the solid side (x̃ → X̃I (N�t̃)−) because Sn changes sign. The results are

IA
2,N−1(liquid) = 1

2

(
1 + Erf

(
�t̃1/2 ˙̃XI ((N − 1))

2

))
(B9)

and

IA
2,N−1(solid) = 1

2

(
−1 + Erf

(
�t̃1/2 ˙̃XI ((N − 1))

2

))
, (B10)

which enforces that T I
L − T I

S = −RIJQ(N�t̃).
Because JQ(n�t̃) depends on the interface velocity, the interface temperature, and the interface temperature gradients, the

latter have to be propagated as well. Using the same procedure, the temperature gradients anywhere in the system can be written as

∇T̃ (x̃,t) =
N−1∑
n=0

{ − α ˙̃XI (n�t̃)
[
IA

2,n(x) + IB
2,n(x)

] − RIJQ(n�t̃)
[
IA

3,n(x) − IB
3,n(x)

]}
, (B11)

where IA
2,n and IB

2,n are defined above and where

IA
3,n(x) = − ∂2IA

1,n

∂Sn(x)2
(B12)

and

IB
3,n(x) = − ∂2IB

1,n

∂Zn(x)2
. (B13)

When we set, x → X̃I (N�t̃), the expressions we derived above for IA
2,n and IA

2,n are unchanged. For IA
3,n and IB

3,n, one has to
be more careful. Because these terms arise from the derivative of temperature in the vicinity of a temperature jump, the gradient
exactly at x = X̃I (N�t̃) diverges. What we need is the gradient in the solid and liquid close to the interface, so these divergences
are dropped. We obtain

IA
3,n =

˙̃XI (n�t̃)

2
e−Sn

˙̃XI (n�t̃)

[
Erf

(
Sn − (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)
− Erf

(
Sn − (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)]
, (B14)

for n � N − 1 and

IB
3,n =

˙̃XI (n�t̃)

2
e−Zn

˙̃XI (n�t̃)

[
Erf

(
Zn − (N − n)�t̃ ˙̃XI (n�t̃)

2((N − n)�t̃)1/2

)
− Erf

(
Zn − (N − n − 1)�t̃ ˙̃XI (n�t̃)

2((N − n − 1)�t̃)1/2

)]
, (B15)

valid for all n. Similar to IA
2,N−1, IA

3,N behaves differently if x → X̃I (N�t̃)±. The result is

IA
3,N−1(liquid) = −

˙̃XI ((N − 1)�t̃)
2

(
1 + Erf

(
�t̃1/2 ˙̃XI ((N − 1))

2

))
(B16)

and

IA
3,N−1(solid) = −

˙̃XI ((N − 1)�t̃)
2

(
−1 + Erf

(
�t̃1/2 ˙̃XI ((N − 1))

2

))
. (B17)

Hence, these terms also contribute to the discontinuity in the temperature gradient at the interface. From the expression for IA
2,N−1

and IB
3,N−1, we see that the Stephan boundary condition with a temperature jump, Eq. (3.8), is recovered.

The following iterative procedure is implemented to simu-
late the propagation front:

(1) At t̃ = 0, the interfacial temperature is T̃Bulk and all tem-
perature gradients vanish. ˙̃XI (0) is obtained from Eq. (3.10)
with T̃ I

S = T̃ I
L = T̃Bulk.

(2) From ˙̃XI (0) and the vanishing temperature gradients,
J̃Q(0) is calculated using Eq. (3.5).

(3) Time is changed to t̃ = �t̃ and the interface posi-
tion is changed to X̃I (�t̃) = X̃I (0) + �t̃ ˙̃XI (0) where �t̃ is
small.

051605-13



BENOIT PALMIERI, C. A. WARD, AND MARCUS DEJMEK PHYSICAL REVIEW E 86, 051605 (2012)

(4) Equations (B2) and (B11) with N = 1 are used to
get the temperature and temperature gradients for all x̃

at t̃ = �t̃ , including at x̃ = X̃±
I (�t̃) (± means that we

are either on the liquid or solid side of the interface,
respectively).

(5) The new interfacial temperatures and temperature gra-
dients are used to get ˙̃XI (�t̃) and J̃Q(�t̃) at t̃ = �t̃ .

(6) Steps 3, 4, and 5 are repeated for t̃ = �t̃, . . . ,M�t̃

where the predetermined final time is t̃Final = M�t̃ .
If R̃I = 0, neither the temperature gradients nor J̃Q need

to be calculated.
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