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Squeezing instabilities and delamination in elastic bilayers: A linear stability analysis
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A linear stability analysis is presented to understand the instabilities that arise in an elastic bilayer, consisting
of a very thin bottom layer (thickness < 100 nm) that acts as a wetting film and a top layer that acts as an
adhesive film, when placed in contact proximity with an external rigid contactor. Depending on whichever layer
is more compliant, “squeezing modes” of instability with a variety of length scales ranging from �3h to �3h (h:
bilayer thickness) are found to be possible. The least length scales obtained are 0.1h. The squeezing instabilities
are, however, accompanied by delamination of the film-film interface. The instability length scales, the strength of
interactions required, and the delamination decrease as the compliance of the top film increases. Surface tension
effects are found to have a stabilizing influence which increases the instability length scales and decreases the
degree of delamination at the cost of high interaction penalty.
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I. INTRODUCTION

Instabilities in thin films have been the subject of intensive
research activities in the past few decades due to the charac-
teristic patterns they form and their potential for a multitude
of applications in flexible electronics [1–3], optoelectronics
[4–6], sensors [7,8], pressure sensitive adhesives [9–12],
microfluidic devices [13–15], MEMS [16–20], etc. Apart from
these technological applications, they are also model meso-
scopic systems for understanding physical phenomena such
as adhesion-debonding, pattern formation [21–42], wetting-
dewetting [43–51], and friction at soft interfaces [52–54].
Single thin films are mainly found in primarily two different
configurations: wetting and adhesive, where in both cases
the presence of an external surface induces intermolecular
interactions in the film. In wetting film the film is cast on
a substrate and is generally thin such that the underlying
substrate induces van der Waals (VDW) or polar interactions
and is able to deform the free film surface. If VDW interactions
are present (which is generally the case) the film thickness
should be less than 100 nm, to feel such interactions. Adhesive
film, on the other hand, refers to film of finite thickness cast on a
substrate and confined by a contactor. The external contacting
surface induces interactions and whenever the film-contactor
gap distance is less than a critical value the interactions are
strong enough to deform the film surface. Thus, in adhesive
film, there is no limit to film thicknesses which can be even
semi-infinite. However, the film-contactor gap distances are
of importance and are dependent on the nature of interactions
present. Substantial work has already been accomplished in
wetting liquid thin films (mean film thickness h < 100 nm)
like polymer melts cast on bare or precoated substrates, where
it has been found that they dewet or bead when the destabilizing
molecular interactions between the film and the substrate
surpass the stabilizing surface tension forces. In these liquid
films, the characteristic length scale of instability λ scales
nonlinearly with the mean film thickness h (λ ∼ h2 for van
der Waals interactions) and is influenced by both the nature
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and magnitude of interactions present between the film and the
substrate [43–51]. When a soft (shear modulus μ < 10 MPa),
thin elastic film of few microns mean film thickness cast on a
rigid substrate and confined by van der Waals forces operative
due to proximity to an external rigid contactor was used
instead, instabilities formed were due to competition between
the destabilizing interaction forces between the film and the
contactor and the restoring elastic forces present in the bulk
of the elastic film. The engendered instabilities in the confined
elastic films were of small length scales which scaled linearly
with the film thickness as ∼3h. A salient feature of these
instabilities is also that they are independent of the nature and
magnitude of interactions present between the film and the
contactor as well as the surface tension forces [21–42], unlike
the liquid films where both the film-substrate interactions and
the surface tension play a crucial role in determining the
instability length scales.

Much work has been directed since then towards reduc-
ing the instability length scales and producing increasingly
miniaturized patterns which are useful in several technological
applications at micro and nano ranges. Of late, length scales
much smaller than 3h have been realized with elastic films
by methods of using patterned substrates [55] or elastic
bilayers [56–59]. Theoretical studies on elastic films bonded
to patterned substrates [55] suggested that instabilities with
wavelengths up to an order of magnitude smaller than 3h can
be formed if the substrate can be patterned with high asperity
ratios.

Bilayers offer interesting physics because they involve the
dynamics of two coupled interfaces, which lead to two initial
deformation modes—namely, bending or similar mode of
instability in which both the film-air and film-film interfaces
deform completely in-phase, i.e., with a positive amplitude
ratio, and squeezing or dissimilar mode of instability in which
the interfaces deform completely out-of-phase such that the
amplitude ratio of the deformations at the two interfaces is
negative [56–64]. Bilayers can be used to generate a myriad of
patterns of different wavelengths of which miniature patterns
can also be obtained by tuning the physical parameters that
govern the instabilities. In the case of the PDMS-metal bilayer
system [60] it was found that the minimum length scales
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obtainable were ∼3h whereas in viscous-elastic [64] bilayers
in confined and free configuration length scales much less than
the natural length scales that are observed with either the single
elastic film or the viscous film could be attained. In systems of
elastic bilayers a similar scenario was observed where smaller
length scales, up to even 0.5h, were achieved [56–59] by tuning
the thickness ratios as well as the shear moduli ratios of the two
films. The existing theoretical studies on elastic bilayers show
that both the film-contactor and the film-film interface always
develop similar or bending modes of instability since they are
disturbed by the same interfacial energy at the film-contactor
interface. Squeezing mode (completely out-of-phase defor-
mations) is energetically highly unfavorable in these bilayer
configurations as there are no additional forces operative which
oppose this unidirectional pull other than the intrinsic elastic
energies of the films, which can at most bring the perfect
film-film interface back to being planar but never out-of-
phase, as has been confirmed by both linear and nonlinear
analysis [57].

A very pertinent question arises: What happens to the
instabilities in the elastic bilayers if the bottom layer is now
made of a very thin film (thickness much less than 100 nm) and
forced to act as a wetting film (which will trigger interactions
with the substrate)? It is well established that when the film is
very thin, the interactions of the film with the substrate become
important and result in long-wave instabilities [41,43–51].
When the bilayer-contactor gap distance d is less than the
critical gap distance dcrit, the top surface is attracted to
the contactor via VDW interactions and the restoring effect
of the elastic films will still lead to short-waved deformation
of the film-air interface, typical of thicker soft single adhesive
elastic films. The wetting nature of the bottom film, however,
will now trigger VDW interactions between the film and the
substrate, which will try to attract the film-film interface to
the substrate. In case of free elastic wetting films it has
been observed that the film dewets from the substrate at
large length scales. So it would be interesting to study the
predominant length scale of instability in such bilayers and
whether the interplay of these antagonistic energies results in
squeezing mode of instability. Moreover, in several instances
of stiff films cast on compliant elastic substrates it has
been found that during indentation tests [65] or during the
application of in-plane compressive stresses [66–71], the film
undergoes delamination if the film and the substrate are of very
dissimilar elastic stiffnesses. It would be intriguing to see, if
the stiffnesses of the films are made to be very dissimilar in
the elastic bilayer under consideration, whether the squeezing
mode of instability can engender delamination at the film-film
interface—a phenomena which cannot be established by the
concepts of a perfect interface (where there are both stress and
displacement continuities) and bending modes of instability
as done in the previous studies on elastic bilayers [57]. The
present paper utilizes a linear stability formulation to verify
whether the squeezing mode of instability is at all energetically
favorable and the plausible degree of delamination in such
elastic bilayers comprising a very thin bottom layer. It also
uncovers the spectrum of wavelengths that are formed and the
magnitude of the threshold interaction forces that are required
for the inception of such surface instabilities.

II. MATHEMATICAL MODELING

A schematic of the elastic bilayer of lateral length L and
total height h is depicted in Fig. 1. The properties of the
top and the bottom layers of this initially stress-free bilayer
are denoted by superscripts b and a, respectively. Both the
films are considered to be soft and hence are considered to
have shear moduli values (μb and μa) less than 10 MPa. The
individual thicknesses of the incompressible top and bottom
films are hb and ha , respectively, and the bottom layer is
regarded to have a thickness of magnitude �100 nm (the
thickness limit of wetting films). The bottom layer is thus in a
wetting configuration; i.e., it is subjected to interactions with
the underlying substrate. Both the layers are considered to
have the same surface energy γ whose value lies in the range
of 0–100 mJ/m2. The displacement field of the bilayer can
be denoted by um(x1,x2), where x1 and x2 denote the spatial
coordinates in the bilayer where the displacement needs to be
evaluated. The superscript m is used as a dummy index (=a

or b) and indicates the film layer under consideration. The
bilayer is present near an external contactor at a gap distance
d such that the interaction potential (mainly van der Waals
interactions) active between the top surface of the bilayer and
the contactor is strong enough to deform the bilayer whenever
d < dcrit (critical gap distance).

The van der Waals interaction potential that is effective
between the bilayer and the contactor has the following
mathematical form:

U
(
d − ub

2(x1,0)
) = − Ah

12π
[
d − ub

2(x1,0)
]2 , (1)

where d is the air gap and Ah is the Hamaker constant (of the
order of 10−20 J).

For the linear stability analysis, this potential can be
linearized by Taylor expansion about the reference state of
the undeformed film and retention of terms up to quadratic
order leads to the following form:

U
(
ub

2(x1,0)
) = U0 + Fpub

2(x1,0) + 1
2Yub

2(x1,0)2, (2)

where U0 = U , Fp = (∂U/∂ub
2), and Y = (∂Fp/∂ub

2), all
calculated at ub

2(x1,0) = 0.

FIG. 1. Schematic diagram of a soft, incompressible elastic
bilayer of length L and effective thickness h bonded to a rigid
substrate. The film a, directly bonded to the substrate, is of shear
modulus μa and thickness ha (�100 nm), and the top film b has
shear modulus μb and thickness hb.
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In the above equation, the term Fp refers to the interaction
force per unit area and behaves like a pressure term. Y is the
interaction stiffness whose dimensions are that of force per unit
volume and it is of importance in determining the conditions
for the onset of instability as will be seen later. The contactor,
thus, induces a normal traction, of magnitude τ , of the form

τ = −Fp − Yub
2(x1,0) + γ ub

2,11(x1,0). (3)

Here the first two terms represent the attractive force (per
unit area) that the contactor induces because of intermolecular
interactions. The last term denotes the Laplace pressure
(associated with weakly curved surfaces) that is present at
the curved interface of the elastic bilayer and is a measure
of the surface tension forces that need to be overcome in
order to deform the top interface. These interactions at the
bilayer-contactor interface are counteracted by the elastic
stresses in the bulk and the equilibrium stress field that
develops in the film due to these antagonistic forces should
satisfy the following stress-equilibrium condition:

∇ · σm = 0, (4)

where, σm = pmI + μm(∇um + (∇um)T ) is the stress field, I
is the identity tensor, and pm is the pressure distribution across
the film layer m.

In the film interior, the equilibrium displacement also
satisfies the incompressibility condition given by

∇ · um = 0. (5)

The contactor induces the normal traction at the top surface of
the bilayer as given by Eq. (3), and hence at the top interface
the film is assumed to be shear free, or

σb
12(x1,0) = 0. (6)

The normal traction is considered to result in a sinusoidal
surface deformation and the displacement field at the top
interface is assumed to take the form

ub
2(x1,0) = α cos(kx1). (7)

At the film-substrate interface the displacement field needs to
satisfy the rigid boundary condition given by

ua
2(x1,−h) = 0. (8)

It also needs to fulfill the no-slip boundary condition at the
film-substrate interface, and hence,

ua
1(x1,−h) = 0. (9)

At the film-film interface the shear stresses are considered
continuous. Thus,

σb
12(x1,−hb) = σa

12(x1,−hb). (10)

The equality of surface energies of both the layers ensures
continuity of normal stresses at the film-film interface which
leads to

σb
22(x1,−hb) = σa

22(x1,−hb). (11)

The no-slip condition at the film-film interface suggests that
the transverse displacements of the two films also need to be
the same at this interface. Thus,

ub
1(x1,−hb) = ua

1(x1,−hb). (12)

The normal traction at the top surface in general is capable
of deforming the film-film interface in phase with the top-
layer deformation [56–58]. However, in the present study we
have considered that the lower film is of very small thickness
(�100 nm). Hence the lower substrate is anticipated to exert
a traction at the top interface of the bottom layer via VDW
interactions. In addition to the van der Waals interactions,
other types of short-range interactions of higher magnitude
can also be present (like acid-base interactions [72]) which
can also deform the bottom layer. Thus, in the bilayer two
types of interactions are considered to be present, one between
the top surface of film b and the contactor which can be named
as the adhesive interaction [Eq. (1)], which tries to bring the
free surface of the bilayer closer to the contactor, and the other
between the top surface of film a and the substrate, which can
be termed as the wetting interaction and brings the film-film
surface closer to the substrate. Possible interactions arising
from the interplay of other interfaces, even if they are present,
are considered to be of negligible magnitude in comparison
to the aforementioned interactions and are neglected in the
present study. The film-film interface will thus feel the effect
of these two antagonistic interactions and it will be intriguing
to see whether the equilibrium displacement field can satisfy
a squeezing mode of instability given by

ub
2(x1,−hb) = −β cos(kx1). (13)

In the present work the continuity of the transverse
displacements given by Eq. (12) ensures a nonslipping and
nonsliding interface, a reasonable assumption considering only
normal tractions to be present in the bilayer. However, if the
films are of very dissimilar stiffnesses there is a possibility
that the integrity of the interface may be lost and there may
be discontinuity in the normal displacements at the interface
under application of normal traction. Such interfaces are
different from perfect or welded interfaces where both stresses
and displacements are considered to be continuous. In case of
imperfect interfaces stresses are considered to be continuous
via zones of contact while the displacements can be either
continuous or discontinuous and can be accounted for by using
a springlike model [73–83] as given below:

σa
12(x1,−hb) = σb

12(x1,−hb)

= βt

[
ua

1(x1,−hb) − ub
1(x1,−hb)

]
,

σ a
22(x1,−hb) = σb

22(x1,−hb)

= βn

[
ua

2(x1,−hb) − ub
2(x1,−hb)

]
. (14)

The parameters βt and βn are independent springlike constants
or interface imperfection factors and represent the condition
of the interface. A completely slipping interface has βt = 0. If
βt = ∞ and βn = ∞, it refers to an interface that is perfectly
bonded or welded, which is the case considered in the earlier
work on elastic bilayers [56,57]. If, on the other hand, βt = ∞
and 0 < βn < ∞, it means the interface is loose or imperfect
and it is precisely the possibility that we are analyzing in the
present study. The value of βn, thus, quantifies the degree of
delamination of the film-film interface present, if any, and a
very small value of βn would suggest a large degree of interface
delamination.
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In general, different wavelengths are possible at the top
surface of the film a and the film b and that eliminates clear
distinction between bending and squeezing modes. Since such
varying wavelengths cannot be handled by the analytics of the
linear stability analysis, both films are constrained to deform
with similar wavelengths and a clear distinction between
bending and squeezing modes is possible and essential. In
the absence of prior knowledge of the interface parameters βn

and βt , the particular condition for the normal displacement at
the film-film interface given by Eq. (13) is essential to carry
out the linear stability study of elastic bilayers in which the
interactions from the substrate too play a crucial role and may
deform the film-film interface antagonistic to or out-of-phase
from the film-air interface deformations.

In the case of the incompressible films considered, homo-
geneous deformation leads to zero displacement fields and
the uniform pressure field pm(x1,x2) that develops in the
films is equal to the parameter −Fp of Eq. (3) [23,41]. If
we consider the inhomogeneous displacement and pressure
fields that develop in the two layers to be sinusoidal and of the
following form:

um
1 (x1,x2) = ũm

1 (x2) sin(kx1), um
2 (x1,x2) = ũm

2 (x2) cos(kx1),

pm(x1,x2) = p̃m(x2) cos(kx1), (15)

then the equilibrium conditions to be satisfied [Eqs. (4) and (5)]
simplify to

μm

(
−k2ũm

1 (x2) + d2ũm
1 (x2)

dx2
2

)
− kp̃m(x2) = 0,

μm

(
−k2ũm

2 (x2) + d2ũm
2 (x2)

dx2
2

)
+ dp̃m(x2)

dx2
= 0,

−kũm
1 (x2) + dũm

2 (x2)

dx2
= 0.

(16)

Elimination of the pressure term in the above equations lead
to the following biharmonic equation in each film:

d4ũm
2 (x2)

dx4
2

− 2k2 d2ũm
2 (x2)

dx2
2

+ k4ũm
2 (x2) = 0. (17)

The general solution of Eq. (17) for film a yields

ũa
1(x1,x2) = −β

k
{[B + k(A + Bx2)]ekx2

+ [D − k(C + Dx2)]e−kx2} sin(kx1),

ũa
2(x1,x2) = β[(A + Bx2)ekx2 + (C + Dx2)e−kx2 ] cos(kx1),

p̃a(x1,x2) = −2μaβ(Bx2e
kx2 + Dx2e

−kx2 ) cos(kx1), (18)

while that for film b gives

ũb
1(x1,x2) = −α

k
{[Q + k(P + Qx2)]ekx2

+ [S − k(R + Sx2)]e−kx2} sin(kx1),

ũb
2(x1,x2) = α[(P + Qx2)ekx2 + (R + Sx2)e−kx2 ] cos(kx1),

p̃b(x1,x2) = −2μbα(Qx2e
kx2 + Sx2e

−kx2 ) cos(kx1). (19)

The eight unknowns A,B,C,D,P,Q,R, and S in Eqs. (18)
and (19) can be evaluated using the eight boundary conditions
of Eqs. (6)–(13) to obtain the specific displacement and
pressure fields in the bilayer. If different wave numbers k1

and k2 were considered at the film-air and film-film interface,
respectively, then Eqs. (15)–(17) and (19) for film b will
be in terms of k1 and Eqs. (15)–(18) for film a will be in
terms of k2. The boundary conditions at the film-film interface
involving stress and displacement continuity conditions [given
by Eqs. (10)–(12)] will now involve different wave numbers
and will not permit cancellation of terms containing sinusoidal
variation in x1. This will prevent further simplification and will
result in the unknowns A,B,C,D,P,Q,R, and S in Eqs. (18)
and (19) as functions of x1 in addition to x2. This contradicts
the variable separable assumption of Eq. (15) and the analysis
will be incorrect henceforth. Hence, for the linear analysis,
we considered both the interfaces to deform at similar length
scales as stated earlier.

From the values of the evaluated unknowns, one can
evaluate the normal stresses that develop at the surface due
to inhomogeneous deformations and pressure field and equate
it to the traction that the contactor induces at the top surface
via the equation

σb
22(x1,0) = −Yub

2(x1,0) + γ ub
2,11(x1,0). (20)

A. Linear stability analysis

To carry forward the analysis, we define here some
nondimensional parameters as

M = μa

μb
, H = hb

h
, q = kh, F = β

α
. (21)

Introduction of these nondimensional parameters in the stress
balance equation at the bilayer-air interface [Eq. (20)] leads
to the following nondimensional form of the characteristic
equation:

−hY

μb
= S ′(M,H,q,F ) + q2 γ

μbh
= S ′′(M,H,q,F,G). (22)

The functional forms of S ′′(M,H,q,F,G) and S ′(M,H,q,F )
are provided in the Appendix. The parameter γ /μbh is the
ratio of surface tension forces to the elastic forces and can be
written as

γ

μbh
= γ

μaha
M(1 − H ) = GM(1 − H ),

(23)
where G = γ

μaha
.

The bilayer can be visualized as a system of springs in
series configuration with individual spring stiffnesses μa/ha

and μb/hb. Thus, the parameter Keff , the net effective elastic
stiffness of the system, is given by the following expression:

Keff =
μa

ha

μb

hb

μa

ha + μb

hb

. (24)

The nondimensional ratio −Y/Keff is hence a measure of the
relative strength of the interaction stiffness at the top surface
to the effective elastic stiffness offered by the bilayer, and its
form is given as

− Y

Keff
= H (M − 1) + 1

M
S ′′(M,H,q,F,G). (25)
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The purpose of the linear stability analysis is to find the
critical value of the interaction stiffness ratio (−Yc/Keff)
above which the interaction stiffness is strong enough to
engender instabilities in the bilayer. Mathematically, this
means obtaining the nontrivial values of the critical wave
number q (=qc = kch) for which the characteristic equation
Eq. (22) or (25) has a minimum for any particular set of values
of H , M , F , and G.

The parameter H ranges from 0 to 1 while M lies in the
range of 0 to ∞. A nondimensional parameter Ms [=M/

(1 + M)] is introduced so that M can now be mapped from 0 <

M < ∞ to 0 < Ms < 1. To uncover the critical wavelengths
of instability (λc = 2π/kc) for an elastic bilayer, the contour
plots of λc scaled with h are considered in the H -Ms plane for
particular values of F and G. The lower limits of the parameter
G (∼0.0) can be obtained when the surface tension is small
(∼0.0). The parameter G can have high values (∼10) when
the bottom layer has very small thickness (�100 nm), high
surface energy (∼100 mJ/m2), and very small shear modulus
values (∼0.1 MPa) such that the shear moduli of both soft
elastic films are less than 10 MPa. Here we have considered
three different values of G (G ∼ 0.0,0.1,10.0) to study the
effect of the parameter G on the instability length scales.
Intermediate values of G between 0.1 and 10 and higher values
of G are found to exhibit trends similar to that of G = 10 and
hence are not presented in this paper. Three sample values
of the amplitude ratio F are considered (F = 0.1,1.0,5.0) to
understand the effect of the destabilizing forces arising due to
interactions with the bottom substrate.

B. Asymptotic cases

The assembly of the bilayer is composed of a single elastic
adhesive film on top of a wetting elastic film and the asymptotic
limit of either of these two cases can be obtained from the
characteristic equation [Eq. (22)].

Limit of a single elastic film in adhesive contact. The limit
of a single elastic film in adhesive contact can be obtained from
the characteristic equation Eq. (22) when H → 1.0, F = 0.0,
where the bilayer translates to the case of only the top film
b being present in adhesive contact and yields the following
single film equation:

−hbY

μb
= 2q

1 + cosh(2q) + 2q2

sinh(2q) − 2q
. (26)

The right-hand side of Eq. (26) is a function of only
the parameter q and hence the critical wavelength formed
by minimizing this equation (∼3h) is universal in nature
(independent of material properties of the film like the shear
modulus or the surface tension and also independent of the
nature of the force field present) as has been found in both
experiments and simulations [21–42].

The elastic adhesive film can behave like a wetting film
in adhesive contact if we consider the wetting limit q → 0
[43–50] in Eq. (26):

−hY

μ
= 3

2

[
[1 + cosh(2q) + 2q2]

q2

]
. (27)

It can be seen that Eq. (27) has functional variation in only
q and exhibits a minimum at λc/h = 2π/qc = 5.23 which

may be short waved compared to the free wetting limit of
h2; however, it is much longer waved than the single elastic
adhesive limit of 3h.

III. RESULTS AND DISCUSSION

A. Variation in instability length scales

It would be interesting to study the predominant instability
length scales that are exhibited by a general bilayer undergoing
the squeezing mode of instability. The results of the linear
stability analysis discuss these issues in the present section.
The critical instability length scales with negligible surface
tension effects (G ∼ 0) and small amplitude ratios (F = 0.1)
are shown in Fig. 2(a). Depending on the films’ elastic
stiffnesses (μ/h) and the length scales exhibited here, four
distinct regions of instability can be identified in the parametric
space of H -Ms :

Region I. Ms � 0.5,H < 0.5. Here, ha > hb and μa < μb

and therefore μb/hb > μa/ha .
Region II. Ms � 0.5,H > 0.5. Here, ha < hb and μa < μb.

In this region elastic stiffnesses can be comparable or different
depending on the values of H and Ms .

Region III. Ms � 0.5,H > 0.5. This is the region where
ha < hb and μa > μb, and therefore μb/hb < μa/ha .

Region IV. Ms � 0.5,H < 0.5. Here, ha > hb and μa >

μb. The elastic stiffnesses in this region can be comparable
or different depending on the values of H and Ms (as in
region II).

Throughout region I the instability length scales obtained
are greater than the natural length scale of ∼3h of single
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FIG. 3. Variation of interaction stiffness ratio −Yc/Keff with λ/h

in various regions of Figs. 2(a), 2(b), and 2(c) for F = 0.1. (a) Region
I (H = 0.05, Ms = 0.2). For G ∼ 0, the two minima (λc, −Yc/Keff )
are (0.26h, 386.8) and (5.42h, 167.19); for G = 0.1, (0.41h, 418.58)
and (5.43h, 167.312); and for G = 10, (5.85h, 178.54). (b) Region
II (H = 0.9, Ms = 0.2). For G ∼ 0, (λc, −Yc/Keff ) are (3.33h,
7.78); for G = 0.1, (3.34h, 7.79); and for G = 10, (4.11h, 8.7). (c)
Region III (H = 0.9, Ms = 0.9). For G ∼ 0, (λc, −Yc/Keff ) are (2.6h,
6.58); for G = 0.1, (2.88h, 7.01); and for G = 10, (7.51h, 17.12).
(d) Region IV (H = 0.05, Ms = 0.9). For G ∼ 0, (λc, −Yc/Keff ) are
(0.15h, 20.02) and (4.13h, 160.93); for G = 0.1, (0.52h, 58.16) and
(4.15h, 161.23); and for G = 10, (5.03h, 185.65).

elastic adhesive film and can also be greater than the single
wetting adhesive limit of 5.23h [as given by Eq. (27)]. The
interaction stiffness landscape for this region presented in
Fig. 3(a) suggests that two distinct minima are possible here—a
short-wave minimum and a long-wave minimum, of which
the global minimum corresponds to the longer wavelength.
For example, for the parametric values of G ∼ 0, F = 0.1,
H = 0.05, and Ms = 0.2, the two minima are at λc = 0.26h

and λc = 5.42h (−Yc/Keff = 386.8 and 167.19, respectively).
In the previous studies on interacting elastic thin films, it

was found that the prevalent wavelength was dictated by the
more compliant of the two films [24,35,57]. In this particular
region, the top film is elastically much stiffer than the bottom
film (i.e., μb/hb > μa/ha), rendering the bottom film to be the
compliant film. This is illustrated by considering some of the
values of [(H , Ms);

μb/hb

μa/ha ] in this region, which are [(0.1, 0.1);
81], [(0.2, 0.1); 36], [(0.3, 0.1); 21], [(0.4, 0.1); 13.5], [(0.1,
0.2); 36], [(0.1, 0.3); 21], [(0.1, 0.4); 13.5], where the elastic
stiffness of film b compared to that of film a, given by the third
quantity in the parentheses, is always greater than 1. Hence, it
can be understood that in this region the long-wave instability
that prevails in the bilayer is mainly due to the influence of the
predominantly compliant wetting bottom film.

This effect of the dominance of the compliant film can
also be checked from the fact that for a particular value of
H if Ms is decreased, the compliance of film a increases

and this results in longer instability length scales. This can be
observed from Fig. 2(a), where for H = 0.1 as Ms is decreased
from 0.3 to 0.2, the λc increases from 4.97h to 5.41h. Similar
observations can be made when Ms is kept constant and H

is decreased, because in this direction also the compliance of
film a increases. For example, in Fig. 2(a) for Ms = 0.1, as H

is decreased from 0.3 to 0.2, λc increases from 5.49h to 6.05h.
As H → 0.0, the bilayer system goes through a transition

from an existent stiff top layer to a nonexistent top layer. This is
reflected in the values of λc which approach a limiting value of
5.23h as H → 0.0, which is the case of a single bottom wetting
film in adhesive contact [see Eq. (27)]. For example in Fig. 2(a),
for Ms = 0.1, when H = 0.1 the λc = 6.26h and it decreases
to the limit of 5.23h as H → 0.0. Similar observations were
made in elastic-metal bilayers consisting of a very thin, stiff
metal layer cast on a very compliant elastic film, where it was
found that if the top film thickness was very small, the length
scales of instabilities formed were ∼3h and as the top layer
thickness increased, the instabilities became very long waved
[60]. The only difference from the current scenario is that in the
elastic-metal bilayers, the bottom layer was not considered to
be �100 nm, which would have triggered interactions with the
substrate and engendered length scales of the order of 5.23h

whenever the top layer was made to be very thin.
The inclusion of the surface energy parameter G in general

is anticipated to have a stabilizing effect which will try to flatten
out the film and consequently will increase the instability
length scales. This very effect is visualized from Fig. 3(a)
which shows the influence of G in the region I of Fig. 2(a).
Fig. 3(a) shows that a slight increase in the value of surface
energy G has negligible effect on the wavelengths but when G

increases considerably, the nature of the interaction stiffness
curve changes from having double minima at small G to
having a single critical wavelength of instability, which is
longer waved at large G (at H = 0.05, Ms = 0.2, F = 0.1, [G,
λc]: [0,5.42h], [0.1,5.43h], [10,5.85h]). If we concentrate on
region I, it can be seen that the contour plots of Fig. 2(a) (with
G ∼ 0) and Fig. 2(b) (with G = 0.1) are almost identical,
with slight change in the values of the critical wavelength
λc. Figure 2(c) (with G = 10), however, shows that the
instabilities have become much longer waved comparatively.

When H > 0.5 and Ms � 0.5, i.e., in region II of Fig. 2(a),
only one bifurcation mode is possible as can be observed from
Fig. 3(b). For example, when H = 0.9 and Ms = 0.2, for very
small values of G and F , the critical wavelength is short waved
compared to those observed in region I. In this region, however,
the shear modulus of the top film is greater than that of the
bottom film throughout this domain. Thus the elastic stiffness,
which is a ratio of the shear modulus of the film to the film
thickness, of the top film decreases and its compliance becomes
comparable to or greater than that of the bottom film as H

increases (for example, for Ms = 0.2, [H , μb/hb

μa/ha ] vary as [0.6,
2.67], [0.8, 1], [0.95, 0.21]). From Fig. 2(a) it can be seen
that as H increases (for any particular value of Ms), this effect
is reflected in the formation of progressively shorter waved
instabilities in this region [for example, if Ms = 0.2, (H , λc) =
(0.6, 3.52h) and (0.95, 3.17h)]. When the values of F → 0, the
wavelengths approach the natural length scales of 3h whenever
H → 1 [from Eq. (26)].
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In this region too the stabilizing effect of increasing the
surface tension parameter G is felt in the form of the increasing
instability length scales as can be observed from Figs. 2(a),
2(b), and 2(c) and Fig. 3(b) [for F = 0.1, H = 0.9, and Ms =
0.2, (G, λc) = (0.0, 3.33h), (0.1, 3.34h), and (10.0, 4.11h)].

In region III of Fig. 2(a) there is only one dominant length
scale of instability, as in region II, which is now short waved
as depicted in Fig. 3(c). Here, the top film is highly compliant
and its compliance increases as H or Ms increases and hence
the adhesive nature of the more compliant top film engenders
much smaller length scale instabilities when compared to
regions I and II as evident from Fig. 2(a). In the absence
of any significant surface tension and at very small values of
the amplitude ratio, increasing H to the limiting value of 1
results in the critical instability length scales approaching the
natural wavelength 3h of a single elastic adhesive film. An
increase in Ms in this region by fixing the value of H results in
a very compliant top film (compared to that of the bottom film),
which now becomes the dictating film, and is seen to engender
progressively shorter length scales, even less than the single
elastic adhesive limit of 3h. For example for F = 0.1, G ∼ 0,
and H = 0.6 of Fig. 2(a), the values of (Ms , λc) are (0.6,
2.39h) and (0.9, 1.82h).

As the surface tension parameter G is increased, the
resulting instabilities are long waved as expected and the effect
is very dramatic for high values of surface tension, as can be
seen from Figs. 2(a), 2(b), and 2(c) and Fig. 3(c). For example,
for H = 0.9, Ms = 0.9, and F = 0.1, the values of [G, λc] are
[0, 2.60h], [0.1, 2.88h], and [10, 7.51h]. The surface tension
effect comes through the parameter GM(1 − H ) as shown in
Eq. (23), which translates to the dimensional form γ /μbh. As
Ms increases, the shear modulus of the top film (μb) decreases
and the value of γ /μbh escalates. It can thus be seen that the
long-wave behavior brought in by G is accentuated as one
moves to higher values of Ms in region III.

In region IV of Fig. 2(a), when the surface tension is
negligible, two wavelengths of instability are possible of which
the shorter instability wavelength prevails as can be seen from
Fig. 3(d). The formation of shorter instabilities in region IV
can be attributed to the fact that the top film is less stiffer
in region IV when compared to region I (μb/hb = 36μa/ha

when Ms = 0.2, H = 0.1 in region I and μb/hb = 0.47μa/ha

when Ms = 0.95, H = 0.1 in region IV) and the short-wave
instabilities as dictated by the more compliant top film prevail.
However, as H → 0 the top film b is stiffer than the bottom film
a in both regions I and IV, and the instability wavelengths attain
a limiting value of 5.23h (limit of the single wetting elastic
adhesive film). This transition happens suddenly as H → 0
and cannot be seen distinctly in Fig. 2(a). An earlier work on
elastic bilayers with “bending” modes of instability (without
surface tension effects) had also theoretically predicted that at
high values of Ms , with decrease in H there are two instability
wavelengths possible and the smaller instability wavelength is
predominant [57]. Length scales as small as ∼0.5h were also
possible at sufficiently large values of Ms and small values of
H . However, a qualitative and quantitative difference exists in
both the results as both the films considered in the earlier study
were of finite thickness and hence the films always deformed
in a bending mode unlike the present work where the films
deform in a squeezing mode.

Whenever the surface tension increases to high values,
there is a shift from double minima in the interaction stiffness
curves to a single minimum which is longer waved as evident
from Fig. 3(d). The effect of surface tension is particularly
amplified in region IV where the percentage change in λc is
the highest. This is because H is smallest and Ms is largest
in this region and it is now understood that the surface energy
effect is ∝ GMs(1 − H )/(1 − Ms) and this value is highest
in region IV. Hence, in region IV as the surface energy
contribution G increases, there is a shift from the shorter
wavelengths in Fig. 2(a) to longer wavelengths in Fig. 2(c) (for
example, for H = 0.05, Ms = 0.9, and F = 0.1, the values of
[G, λc] are [0,0.15h], [0.1,0.52h], and [10,5.03h]).

The amplitude ratio F extends a very pronounced effect
on the critical instability length scales in region I as we move
from Fig. 2(a) where F is very small (F = 0.1 and G ∼ 0.0) to
Fig. 2(g) where F = 5.0 and G ∼ 0.0. Here it is observed that
as F increases, in a small region where H → 0 and Ms → 0,
the instabilities still remain long waved as dictated by the
more compliant bottom film as seen earlier for smaller values
of F . However, for higher values of H and Ms in this region
it can be observed that short-wave instabilities are favored,
due to the top film overpowering the influence exerted by the
more compliant bottom film. In the other regions II, III, and
IV, where the top film already has a dominating influence,
an increase in the value of F requires an increase in the
destabilizing influence (as can be verified later from −Yc/Keff

values produced) and is seen to result in further reduction in
the length scales [refer to Figs. 2(a), 2(d), and 2(g)].

For other values of G > 0, it is seen from Figs. 2(e), 2(f),
2(h), and 2(i) that F has a similar effect in bringing down
the instability length scales. The exact amplitude ratio F that
the film-film interface exhibits is not a controllable parameter
and can be understood completely only if a nonlinear study
is carried out, which is beyond the scope of the present work.
However, a suggestive study is done by varying F to get an
insight into the instability length scales that may form due to
very strong interactions from the substrate.

B. Variation in critical interaction penalty

The effective elastic stiffness (Keff) that the bilayer offers
in resistance to the destabilizing interactions is very high in
region I and it decreases as H or Ms increases and reaches
lowest values in the limit H → 1 and Ms → 1. For example,
(H , Ms , Keff) take the values of (0.11, 0.25, 0.96μa/ha),
(0.11, 0.9, 0.47μa/ha), (0.9, 0.25, 0.25μa/ha), and (0.9, 0.9,
0.01μa/ha) in regions I, IV, II, and III, respectively. The factor
−Yc/Keff is a measure of the critical force required at the
top interface to destabilize the bilayer by overcoming this
effective elastic stiffness and is shown in Fig. 4. When the
bilayer has negligible surface tension and the amplitude ratio
is also small, the effect of H and Ms on the interaction stiffness
ratio (−Yc/Keff) present at the bilayer-air interface is shown
in Fig. 4(a). It is seen that −Yc/Keff is highest in region I,
followed by regions IV, II, and III. The true critical interaction
stiffness required for destabilization is much higher in region I
due to the high Keff values brought in by a very thin and stiff top
layer in this region. As we move from region I to region IV by
increasing Ms for any particular value of H or to region II by
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FIG. 4. Contour plots of the critical interaction penalty ra-
tio −Yc/Keff in the H -Ms plane for various F and G values.
(a) F = 0.1,G ∼ 0.0; (b) F = 0.1,G = 0.1; (c) F = 0.1,G = 10.0;
(d) F = 1.0,G ∼ 0.0; (e) F = 1.0,G = 0.1; (f) F = 1.0,G = 10.0;
(g) F = 5.0,G ∼ 0.0; (h) F = 5.0,G = 0.1; (i) F = 5.0,G = 10.0.

increasing H for any particular value of Ms , the compliance of
film b increases and this results in smaller interaction penalty
requirement compared to the region I. For example, for the
parameter values of F = 0.1, G ∼ 0, the (H , Ms ; −Yc) values
are (0.11, 0.25; 72μa/ha), (0.11, 0.9; 5.78μa/ha), and (0.9,
0.25; 1.85μa/ha) in regions I, IV, and II, respectively.

Within region III, both the critical interaction stiffness ratios
depicted and the actual interaction penalties required are much
less as the compliance of the top film is highest in this region
and it undergoes deformation very easily [for example, for
F = 0.1, G ∼ 0 in Fig. 4(a), the values of (H , Ms ; −Yc) in
region III are (0.9, 0.9; 0.083μa/ha)].

Since the surface energy has a stabilizing effect in case
of adhesive films, it is reflected even in the net interaction
stiffness ratio plots Figs. 4(b) and 4(c); i.e., as G increases,
much higher interaction penalty is required for the bilayer
to overcome these additional stabilizing effects and lose its
planarity. For example, for F = 0.1 and the same set of
parameters of H , Ms considered in the beginning of this
section, the interaction penalty (−Yc) values for G = (0.1; 10)
are (72.12μa/ha; 81.91μa/ha), (1.85μa/ha; 2.14μa/ha),
(0.09μa/ha; 0.21μa/ha), and (12.85μa/ha; 47.84μa/ha) in
regions I, II, III, and IV, respectively.

When F increases, there is an increase in amplitude of
deformation at the lower surface of the top film, brought
about by an increase in interactions arising due to the bottom
substrate. This engenders a high critical interaction penalty
requirement in all the regions to overcome these additional
interactions and cause deformation of the top interface of the
upper film as evident from Figs. 4(a), 4(d), and 4(g).

An increase in surface tension parameter G or a requirement
of high F results in high interaction penalties as discussed
above, and when both F and G are very high simultaneously,
the penalties required escalate as can be observed from
Figs. 4(e), 4(f), 4(h), and 4(i).

C. Variation in interfacial displacement jump

The no-slip boundary condition of Eq. (12) at the film-film
interface only ensures continuity of the transverse displace-
ments and the interface imperfection factor βt in Eq. (14)
is infinite under such conditions. There is nevertheless a
possibility of delamination of the interfaces which would
result in a positive, nonzero finite value of the interface
imperfection factor βn as mentioned in the previous sections.
From Fig. 5 it is observed that the film-film interface shows
normal displacement jumps, leading to delamination of the
interface. The interface delamination magnitude is considered
to be 
u2 = ua

2(x1,−hb) − ub
2(x1,−hb) and it is scaled

with α cos(kcx1) (the equilibrium displacement profile of the
bilayer-air interface). The displacement jumps shown here
correspond to the critical conditions of instability presented
in Figs. 2 and 4. From Fig. 5(a) for F = 0.1 and G ∼ 0, it is
evident that in region I large displacement jumps are present
and this can be understood considering that in this region the
top film is much thinner and of much higher stiffness compared
to the bottom film. Thus, the top film cannot deform coherently
with the bottom film, though it is under the influence of
strong interaction forces from the contactor. The only possible
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FIG. 5. Contour plots of the jumps in the normal displacements
at the film-film interface 
u2/α cos(kcx1) in the H -Ms plane for
various F and G values. (a) F = 0.1,G ∼ 0.0; (b) F = 0.1,G = 0.1;
(c) F = 0.1,G = 10.0; (d) F = 1.0,G ∼ 0.0; (e) F = 1.0,G = 0.1;
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0.1; (i) F = 5.0,G = 10.0.
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mode of relieving these excess stresses would therefore be to
delaminate, as is evident from the excessive jump in normal
displacement at the film-film interface in region I. The mag-
nitude of the jumps increase with an increase in the stiffness
of the top film, i.e., as either H or Ms decreases. For example,
for F = 0.1, G ∼ 0, the values of (H , Ms ; 
u2/α cos(kcx1))
in Fig. 5(a) are (0.4, 0.4; 1.497), (0.1, 0.4; 8.805), and (0.4,
0.1; 2.822). This is similar to the observations made in a
previous work on dissimilar elastic films undergoing in-plane
compressive stresses, where it was seen that as the compliance
of the underlying layer increased the films delaminated more
easily [68].

The top film is more compliant in regions II, III, and
IV than in region I and this results in relatively smaller
displacement jumps as can be seen from Fig. 5(a). Moreover,
as one moves to higher values of H and Ms , the parameter

u2/α cos(kcx1) decreases and reaches its lowest limiting
value of F when H → 1 and Ms → 1. This suggests that
the top surface of the bottom film has a zero displacement
in this limit which is because the bottom layer is very stiff
and behaves as a part of the rigid substrate, making it difficult
to undergo any deformation. The displacement profile of the
top film at the film-film interface is −Fα cos(kcx1) whereas
that of the bottom film is found to be (
u2 − F )α cos(kcx1).
It is evident from Fig. 5 that 
u2 is always positive and
greater than F and thus, it can be concluded that both the
films are always completely out of phase at the film-film
interface, exhibiting varicose instabilities/blister formation.
This can also be inferred from the values of βn which are
very small (0.01 < βn < 10) in region I suggesting that there
is a significant jump in normal displacement at the film-film
interface in region I. As either H or Ms increases, the values
of βn increase, reaching magnitudes of the order of 106

when Ms → 1 (i.e., when the top film is very compliant),
suggesting very less delamination at the film-film interface in
such regions.

As the surface tension increases, it tries to stabilize the
bilayer and results in a decrease in the normal displacement
jumps, in general, as can be observed from Figs. 5(a), 5(b),
and 5(c), which also results in higher values of the interface
imperfection factor. However, in region IV an increase in
G helps the bilayer to achieve long-wave instabilities and
the bilayer now behaves the same way as in region I,
resulting in the same degree of delamination (as that in
region I).

For any particular value of the surface tension parameter G,
an increase in F would mean higher amplitude of deformations
at the film-film interface, which generally requires stronger
interactions from the substrate and if the bottom layer is
very compliant as in region I, stronger interactions would
deform it with higher amplitudes. Since the film-film interface
deforms in varicose mode, such higher amplitude instabilities
in both the films at the film-film interface lead to a higher
degree of delamination [for example, refer to Figs. 5(a), 5(d),
and 5(g)] and engenders very small values of the interface
imperfection factor (βn). When the bottom layer becomes very
stiff (as in region III), it is difficult for it to deform even when
the interactions from the substrate are very strong and the
delamination magnitude is limited to the value of F in the
limit H → 1, Ms → 1.

IV. CONCLUSIONS

Previous studies have shown that elastic bilayers in contact
proximity with an external contactor do display patterns with
miniature length scales <3h (single adhesive elastic film limit).
In the experiments the focus was on determining the instability
length scales at the surface [58,59] and it is difficult to conclude
from these whether the two interfaces of the bilayer deform
in-phase (bending mode) or out-of-phase (squeezing mode).
The corresponding theoretical work, however, has suggested
that it is energetically unfavorable for the film-film interface
to deform out-of-phase [57]. In this paper it is shown that if
the bilayer is comprised of a bottom layer which is very thin
(�100 nm) such that the interactions of the film-film interface
with the substrate become important, the squeezing mode of
instability is feasible and a myriad of instability length scales
ranging from 0.1h to 10h, which are much lower than 3h, the
single elastic adhesive limit, and much higher than 5.23h, the
single wetting adhesive limit, are formed.

(1) In region I, where the elastic stiffness (shear modulus to
thickness ratio) of the top film is very high, the instability
length scales are largely governed by the more compliant
bottom film and are very long waved (∼10h). From region
I if one moves either to region II by increasing the thickness of
the top layer or to region IV by decreasing the shear modulus
of the top layer, the elastic stiffness of the top film decreases to
become comparable to or less than that of the bottom layer, and
there is a shift in the wavelengths towards shorter length scales.
The effect is more dramatic in region IV where the length
scales are the lowest, becoming as small as 0.1h at very low
values of the surface tension, whereas the lowest length scales
achieved in region II are restricted to the single elastic adhesive
limit of 3h. The stiffness of the top film is lowest in region III
and as H → 1, the bottom layer becomes nonexistent and the
instabilities formed are of length scales ∼3h. Whenever the
top film is much thicker and has very small shear modulus
compared to the bottom film, as in region III, the interaction
penalty requirements are the lowest. In the regions where the
top film is very stiff in comparison to the bottom film, the
interaction penalty requirement from the contactor to deform
the top film increases tremendously and thus is found to be
highest in region I.

(2) It is observed that the interface becomes imperfect
and there are jumps in the normal displacements at the
film-film interface, and the deformations that occur at the
film-film interface are varicose in nature and may result in
delamination/blistering. The degree of delamination increases
as the compliance of the top film decreases and the delam-
ination magnitudes are highest in region I. This confirms
earlier findings of dissimilar elastic films undergoing in-plane
compressive stresses that the degree of delamination increases
as the stiffness of the top film increases [70]. When the bottom
film is excessively stiff compared to that of the top film, it
does not undergo any deformation and the magnitude of the
delamination is the lowest (reaching a limiting value of F ).
This degree of delamination is also quantified by the interface
imperfection constant βn which is a property of the interface
given by the values of H , Ms , G, and F and ranges from 0.01
in region I where the delamination magnitudes are the highest
to 106 in region IV where the delamination magnitudes are the
lowest.
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(3) Increasing the surface tension increases the stability of
the bilayer and results in longer length scales of instability
throughout the parametric space considered. In the limit
of a very thin top layer, it makes the bilayer behave the
same for every shear modulus ratio as is evident from the
length scales and the displacement jumps obtained in these
regions. Also, any increase in surface tension makes the
film difficult to deform against these stabilizing effects, and
thus the interaction penalty required to deform the bilayer
increases significantly when the surface tension increases to
very high values. The stabilizing effect of the surface tension,
in general, tries to suppress the degree of delamination of the
interfaces and the value of the interface imperfection factor βn

escalates.
(4) The deformations at the bottom surface of the top

film, characterized by the parameter F , are resultant of the
interactions present at the bottom substrate, and stronger
interactions would result in higher values of F . It is seen that
as the value of F increases, the interaction penalty required
to deform the top surface of the bilayer increases since it has
to surpass the strong interactions from the bottom substrate as
well and results in much shorter waved instabilities. Since the
film-film interface deforms in varicose mode, high-amplitude
instabilities at the film-film interface are found to result in

a higher degree of delamination characterized by the smaller
values of the interface imperfection factor βn.

The smallest wavelengths obtained by this elastic bilayer
route through squeezing instabilities are 0.1h, which is smaller
than the smallest length scales reported to date, i.e., 3h that
was reported with single elastic film [21–42], 0.5h that was
reported with an elastic bilayer undergoing bending modes
of instability at the two interfaces [56,57], and 0.3h that was
obtained with a single elastic film cast on patterned substrates
[55]. From a fabrication point of view, the smallest patterns
can be obtained when the surface energies are very low and
the top film is considered to be much thinner and of very
small shear modulus than the bottom film (corresponding to
the material properties of region IV as discussed in this paper).
For other thickness and shear moduli ratios, the length scales
can be miniaturized if very strong interactions are present
between the bottom film and the substrate, but this has the
disadvantage of increasing the delamination magnitude at the
film-film interface.
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APPENIDX

S ′(M,H,q,F ) = {(H − 1)Hq[8Fe(5H+2)q{M[2H 3q3 + 2H 2(1 − 2q)q2 + H (2q2 − 4q + 1)q + 2q2 + 1]

− 2(H − 1)q[H 2q2 − H (q − 1)q + 1]} − 8Fe(3H+2)q{M[2H 3q3 − 2H 2(2q + 1)q2

+H (2q2 + 4q + 1)q − 2q2 − 1] − 2(H − 1)q[H 2q2 − H (q + 1)q + 1]}
− 4F (M − 1)e(H+4)q (Hq − 1) − 4F (M + 1)e5Hq(Hq − 1) + 4F (M − 1)e7Hq(Hq + 1)

+ 4F (M + 1)e(3H+4)q (Hq + 1) + 2e2(H+2)q + {M[G(H − 1)q + 4H 2q2 + 2]

+ 2G(H − 1)HM2q2 + 4Hq} + 2e6Hq{M[G(q − Hq) + 4H 2q2 + 2]

+ 2G(H − 1)HM2q2 − 4Hq} + 8e4Hq+2q (M{−q2[G(H − 1)2 − 4H 2 + 4H − 2]

− 2(H − 1)2Hq4[G(H − 1) − 2H ] + 1} + G(H − 1)HM2q2[2(H − 1)2q2 + 1]q)[G(H − 1)Mq − 2]

− 4(H − 1)Hq2(H 2q2 − Hq2 + 1)] − 2e6Hq+2q (M[2(H − 1)2q2 + 1] − 2(H − 1)

+ 2e2(H+1)q{M[2(H − 1)2q2 + 1] + 2(H − 1)q}[G(H − 1)Mq + 2] − (M − 1)e8Hq[G(H − 1)Mq − 2]

− (M + 1)e4(H+1)q [G(H − 1)Mq − 2] + (M − 1)e4q[G(H − 1)Mq + 2]

+ (M + 1)e4Hq[G(H − 1)Mq + 2])}/[[H (M − 1) + 1](8qe4Hq+2q [2H 3(M − 1)q2 − 4H 2(M − 1)q2

+H (M − 1)(2q2 + 1) + 1] − 2e6Hq+2q{M[2(H − 1)2q2 + 1] − 2(H − 1)q}
+ 2e2(H+1)q{M[2(H − 1)2q2 + 1] + 2(H − 1)q} − (M − 1)e8Hq + (M + 1)e4Hq − (M + 1)e4(H+1)q

+e6Hq(4HMq − 2) + e2(H+2)q(4HMq + 2) + (M − 1)e4q)] (A1)

S ′′(M,H,kh,F,G) = S ′(M,H,q,F ) + Gq2M(1 − H ) (A2)
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