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Feedback-induced oscillations in one-dimensional colloidal transport
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We investigate a driven, one-dimensional system of colloidal particles in a periodically corrugated narrow
channel subject to a time-delayed feedback control. Our goal is to identify conditions under which the control
induces oscillatory, time-periodic states. The investigations are based on the Fokker-Planck equation involving
the density distribution of the system. First, by using the numerical continuation technique, we determine the
linear stability of a stationary density. Second, the nonlinear regimes are analyzed by studying numerically the
temporal evolution of the first moment of the density distribution. In this way we construct a bifurcation diagram
revealing the nature of the instability. Apart from the case of a system with periodic boundary conditions, we
also consider a microchannel of finite length. Finally, we study the influence of (repulsive) particle interactions
based on dynamical density functional theory.
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I. INTRODUCTION

The study of transport of particles in complex geome-
tries is a major topic in nonequilibrium statistical physics
with relevance in diverse fields such as biology, condensed
matter, and nanotechnology [1,2]. Exemplary systems are
colloids in optical (or otherwise modulated) potentials [3–6],
(bio-)molecules in microchannels [7], cold atoms in optical
lattices [8], and magnetic particles adsorbed on ferrimagnetic
garnet films [9]. Depending on the details of the (often
one-dimensional) potential, a variety of fascinating effects can
been observed, including ratchet mechanisms [10], giant dif-
fusion [11], and anomalous (subdiffusive) transport [12–15].
For colloids, which are typically of the size of nano- to
micrometers, many of these effects can be monitored by
real-space experiments (see, e.g., Refs. [16–19]).

In the present paper we investigate a one-dimensional col-
loidal system where the force exerted by the (static) modulated
potential is supplemented by a feedback control force, i.e., a
force depending on the state of the system. Feedback control in
the context of Brownian systems is a focus of growing interest,
and the method has already been applied, on a theoretical
level, to Brownian motors [20,21] and flashing or rocking
ratchets [22]. Moreover, a first experimental realization of a
feedback-controlled flashing ratchet already exists [23]. The
overall goal of the feedback control in this context is to
manipulate and/or optimize transport properties such as the
current in a flashing ratchet. Beyond this more applicational
motivation, feedback-controlled transport phenomena are also
of fundamental interest due to the subtle interplay between
state-dependent control protocols, thermodynamics, and in-
formation theory [24,25]. Very recently, a colloidal system
under feedback control was used as experimental realization
of an “information heat engine” [26].

Following an earlier study by two of us [27], we here employ
a feedback control with delay where the control term involves
the difference between an system variable (the control target)
at time t and its value at time t − τ , with τ being the delay
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time. Such a time delay often occurs in experiments due to the
time lag between measurement and feedback. In the general
context of control of nonlinear system [28], time-delayed
feedback control (which was introduced by Pyragas [29])
has been proven to be extremely efficient, e.g., for the
stabilization of chaotic orbits; however, steady states can be
manipulated as well. In [27] we used the delayed feedback
control to manipulate the current of interacting colloids driven
through in a tilted washboard potential. Indeed, it turned out
that the control can optimize the current and even yield a
current reversal, similar to what has been previously seen for
noninteracting systems [30,31].

In the present study we go one step further and ask to
what extent the time-delayed feedback control can induce
dynamic states not seen in the uncontrolled system, which
involves a purely static potential. Specifically, we search
for the existence of spatiotemporal structures characterized
by an oscillatory distribution of particles. That time-delayed
feedback control itself can indeed generate novel dynamics
has recently also been seen in other extended systems [32].
More specifically, we show that the existence and stability of
the oscillatory distribution density strongly depends on the
properties of the periodic energy landscape that describes
the interaction between the particle and the channel walls.
The energy landscape, in its turn, is directly linked to the
properties of the individual particles, such as, for instance,
the (gyration) radius of the particles. As a consequence,
the proposed time-delayed feedback control can be used as
a filter in order to separate particles of different size. The
underlying mechanism is somewhat similar to the well-studied
symmetry-selected sorting of particles in periodic potential
landscapes [33,34].

Our investigations are based on the numerical solution of
the nonlinear Fokker-Planck equation combined with a linear
stability analysis. Thus, the basic dynamic variable is the
time-dependent density field. Similarly to our previous study
[27] our control protocol involves the average particle position
as a control target, a quantity which is, in principle, accessible
by experiments. We investigate both infinite systems, that is,
colloidal particles on a ring (see Ref. [16] for an experiment),
and a finite system to which we refer as microchannel geometry
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[35]. For both geometries, we do indeed find oscillatory states
at appropriate system parameters and finite values of the
control strength and the delay time. The character of these
oscillations, on the other hand, strongly depends on the setup.

In the last part of the paper, we briefly discuss the impact
of repulsive interactions between the particles. This is done
on the basis of dynamical density functional theory (DDFT),
where the microscopic interactions enter via the free energy
functional. Indeed, in the past several years DDFT has been
applied to a variety of driven colloidal systems [36], including
attracting colloidal particles in 1D (time-dependent) ratchet
potentials [37].

The rest of the paper is organized as follows. Section II
contains the formulation of the problem. In Sec. III, we deter-
mine the stability of a nontrivial stationary, spatiallyperiodic
density distribution by linearizing the Fokker-Planck equation
subject to a time-delayed control force. For the nonlinear
regimes, we provide numerical solutions of the (full) Fokker-
Planck equation and construct a bifurcation diagram based
on monitoring the amplitude of the solutions. In Sec. IV, we
discuss the impact of the channel geometry on the oscillation
instability. For that purpose, we consider a microchannel of
finite length L and follow the same procedure as for the infinite
system. The role of interactions between the particles is briefly
discussed in Sec. V.

II. THEORY

Our model system consists of overdamped colloidal parti-
cles in a one-dimensional channel of length L. The particles
are subject to a spatially periodic, symmetric “washboard”
potential Uwb(z) = U0 cos2(kz), where k defines the wave-
length and U0 is the amplitude. Henceforth, we set kσ = 1,
where σ corresponds to the effective radius of the particle.
For a colloidal particle with spherical symmetry, σ is just the
radius of the sphere while, for a polymer, σ is the radius of
gyration. The washboard potential is tilted by a constant force
Fbias = F0ẑ (with ẑ being the unit vector in the z direction)
corresponding to a linear potential Ubias = −F0z. The tilting
leads to an effective motion of the particles in the direction of
sign(F0) along the z axis. In addition to these static potentials,
we assume that the particles are subject to a time-delayed
feedback control force of the form [27]

Ffb(t,τ ) = −K0{1 − tanh[f̄ (t) − f̄ (t − τ )]}, (1)

where f̄ (t) is a space-averaged coupling function which
depends on the internal dynamical variables of the system.
Specifically, we set

f̄ (t) =
∫ L+z0

z0

f (z)ρ(z,t) dz, (2)

with z0 being the coordinate of the origin of the z axis. Note that
when the feedback term is switched on, the effective constant
driving force is given by γ = F0 − K0.

In Ref. [27], we used a force of type (1) to manipulate
or, more precisely, to revert the net current induced by the
biasing force. Here, we aim to explore to which extent such a
feedback force can induce oscillatory (time-periodic) density
states, which correspond to synchronized oscillations of the
particles along the channel. We note that the control force

in Eq. (1) is of Pyragas type [29], i.e., the difference of the
“control target” at time t and its value at time t − τ is used
as input for the feedback loop, where τ is called “delay time”
and K0 is the control amplitude. We stress that the ansatz for
the feedback force in Eq. (1) is clearly of heuristic nature and
thus cannot be derived from any physical potential.

Collecting all external contributions gives the total external
potential

Uext = Uwb(z) + Ufb(t,τ ) + Ubias(z)

= U0 cos2(z)+K0z(1− tanh[f̄ (t) − f̄ (t − τ )]) − F0z,

(3)

where we assumed that the contribution of the feedback
force is linear in the position coordinate z. In the absence
of interactions between the particles, their Brownian motion
is governed by the following Fokker-Planck equation [38]:

�−1 ∂ρ(z,t)

∂t
= kBT

∂2ρ(z,t)

∂z2
− ∂

∂z
[ρ(z,t)μ̃(z,t ; τ )], (4)

where the drift coefficient μ̃ can be calculated from the external
potential Uext via μ̃ = −U ′

ext, where ′ denotes the derivative
with respect to z. The mobility coefficient in Eq. (4) is related
to the diffusion constant via � = βD0 [where β = 1/(kBT )]
and we set its value to �τBkBT /σ 2 = 1. Time is measured in
units of the Brownian time scale τB = σ 2/(�kBT ), which is
of the order of 10−9 s for typical Brownian particles.

In the following, we choose a positive value for F0 such
that the particles move preferentially to the right when the
control force is being switched off. Also, for the main part
of our investigations, we consider the system to be infinitely
extended (“circular ring”), that is, we apply periodic boundary
conditions over a length L, which is a multiple of a period
of the washboard potential, i.e., L = nπσ , with n = 1,2, . . ..
However, in Sec. IV, we also discuss the effect of finite channel
length.

III. DELAY-INDUCED INSTABILITY

In the absence of control (K0 = 0), the driven system
(F0 > 0) settles into a stationary, nonoscillatory state. The
corresponding distribution ρs(z) can be found analytically [10]

ρs(z) = e−Uext(z)/kBT

∫ L+z

z

dy eUext(y)/kBT /N ,

(5)

N : =
∫ L+z0

z0

dz

∫ L+z

z

dy eUext(y)−Uext(z)/kBT ,

where Uext is the external potential given in Eq. (3) but
with K0 = 0 [or, equivalently, f̄ (t) − f̄ (t − τ ) = 0 since we
assumed stationarity].

In the presence of control, the behavior of the system
depends on the interplay of the parameters of the control
term, on the one hand, and the tilted washboard potential,
on the other hand. For certain parameter combinations, we
still find a stationary state, in which the difference f̄ (t) −
f̄ (t − τ ) disappears. However, as we will demonstrate, for
suitable parameters the stationary distribution may become
unstable, leading to a stable time-periodic distribution ρ(z,t).
To interpret this instability, it is useful to reconsider Eqs. (1)
and (2) from a somewhat different perspective. In particular,
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since the control target f̄ (t) involves a spatial integral over
the entire distribution ρ(z,t), we have effectively introduced
a coupling between the colloidal particles. Moreover, this
coupling is of infinite range (within the periodic system con-
sidered). Thus, the time-delayed feedback control introduces
an effective interaction of mean-field type, and it is this
interaction which may lead to new stationary states, as well as
new dynamic regimes, associated with time-periodic density
oscillations. We note that the particular type of feedback
used here is of purely heuristic nature. This implies that the
Fokker-Planck equation Eq. (4) cannot be directly translated
into a corresponding system of coupled Langevin equations.

A. Linear stability analysis

We start by applying a linear stability analysis in order to
investigate the impact of the delayed feedback control. To this
end, we rewrite the dimensionless Fokker-Planck equation in
terms of the effective potential Ueff = U0 cos2 z + (K0 − F0)z
as follows:

∂ρ(z,t)

∂t
= ∂2ρ(z,t)

∂z2
+ ∂

∂z

[
ρ(z,t)

∂Ueff

∂z

]

−K0 tanh[f̄ (t) − f̄ (t − τ )]
∂ρ(z,t)

∂z
. (6)

The nontrivial stationary state ρs(z) satisfies

0 = ∂

∂z

[
ρs

∂Ueff

∂z
+ ∂ρs(z)

∂z

]
, (7)

which can be written as an eigenvalue problem,

L̂ρs = λρs, (8)

with the stationary Fokker-Planck operator L̂ = ∂2
z +

(∂zUeff)∂z + ∂2
z Ueff and zero eigenvalue λ = 0.

We are interested in the onset of an oscillatory instability of
ρs . Following the approach developed earlier [39,40], we set

ρ(z,t) = ρs(z) + ε[C(z) cos ωt + S(z) sin ωt], (9)

where ε is the (small) amplitude of the perturbation, ω is the
unknown onset frequency, and the unknown functions C(z)
and S(z) determine the shape of the perturbation. With this
ansatz, Eq. (6) can be linearized in ε to yield

−ωC sin ωt + ωS cos ωt = C ′′ cos ωt + S ′′ sin ωt

+ ∂z[U
′
eff(C cos ωt + S sin ωt)]

−K0ρ
′
s[f̄ (t) − f̄ (t − τ )], (10)

where ′ stands for the derivative with respect to z and the
perturbed mean field is given by

f̄ (t) = 〈C〉 cos ωt + 〈S〉 sin ωt, (11)

with 〈C〉 = ∫ L+z0

z0
f (z)C(z) dz and 〈S〉 = ∫ L+z0

z0
f (z)S(z) dz.

The initial moment of time can always be chosen in such a way
that, for instance, f̄ (t) = cos ωt . This implies two additional
integral conditions on the functions C(z) and S(z)∫ L+z0

z0

f (z)C(z) dz = 1,

∫ L+z0

z0

f (z)S(z) dz = 0. (12)

The difference f̄ (t) − f̄ (t − τ ) then becomes

f̄ (t)−f̄ (t − τ )=cos ωt(1 − cos ωτ ) − sin ωt sin ωτ. (13)

Finally, equating the coefficients of sin ωt and cos ωt in
Eq. (10), we obtain two coupled equations for the unknown
functions C(z) and S(z),

S ′′ = −ωC − ∂z[UeffS] − K0 sin ωτρ ′
s ,

(14)
C ′′ = ωS − ∂z[UeffC] + K0(1 − cos ωτ )ρ ′

s .

In order to find the stability threshold, one needs to solve
Eqs. (14) simultaneously with Eq. (8). To this end, we proceed
as follows. We rewrite Eqs. (8) and (14) as an autonomous
dynamical system of seven first-order equations, including the
equation for z, which takes the form z′ = 1. The total number
of the system parameters is thereby extended by two additional
parameters, namely by the onset frequency ω and the (zero)
eigenvalue λ. The above dynamical system of seven equations
is supplemented with three integral conditions on the functions
ρs(z), C(z), and S(z). These are given by Eqs. (12) and by the
normalization condition on ρs ,∫ L+z0

z0

ρs(z) dz = N, (15)

where N is the normalization parameter. The boundary
conditions for all involved functions are taken to be periodic
in the interval z ∈ [z0,z0 + L]. This boundary value problem
(BVP) of seven equations and three integral conditions is
then solved using the numerical continuation technique in
AUTO [41] (see Appendix A for details).

B. Stability thresholds

Before proceeding, it is important to notice that the linear
stability of the stationary distribution ρs crucially depends
on the choice of the coupling function f (z) [see Eq. (2)].
Thus, the solution of the BVP Eqs. (14) is invariant under
the shift of the coordinate system z → z + δ, with arbitrary
δ, only if the coupling function f (z) is itself periodic with
the period L. Indeed, the integrals

∫ z0+L

z0
f (z)C(z) dz and∫ z0+L

z0
f (z)S(z) dz are shift invariant if f (z) is L periodic.

On the contrary, if the period of f (z) differs from L, or if
f (z) is a nonperiodic function, then the stability threshold
depends on the particular choice of origin of the z axis,
i.e., it depends on z0. Following [27] we use a linear,
nonperiodic coupling function f (z) = z. We note that this
choice is motivated by recent experimental works [see, e.g.,
Refs. [16,23]]. Indeed, using video microscopy, it is possible
to monitor the trajectories of individual colloidal particles
and, therefore, also their center of mass. The center-of-mass
position is precisely the quantity one obtains when inserting
the relation f (z) = z into Eq. (2) for the coupling function
f̄ (t). For further calculations, the origin of the z axis is chosen
in the maximum of the washboard potential U (z), implying
that z0 = 0.

First, we fix τ = 1 and compute the stability threshold in
the plane of parameters (γ,U0), where γ = F0 − K0 = 0, for
three different values of the coupling strength K0 = 7, 10, 12,
as shown in Fig. 1(a). The stationary density, normalized
with N = 1, i.e.,

∫ π

0 ρs(z) dz = N = 1, is unstable in the
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FIG. 1. (Color online) (a) Stability threshold in the plane (γ,U0),
obtained for τ = 1 and different values of K0, as given in the legend.
The stationary state is unstable in the area enclosed by the respective
curves (shaded area for K0 = 7). (b) Stability threshold in the
plane (K0,U0) for zero drive γ = 0 and different delay times as in
the legend. The instability region always lies to the right from the
respective curve (shaded area for τ = 0.1).

regions bounded by the corresponding closed curves. Thus,
for K0 = 7, the instability occurs in the shaded area. As
expected, the area of the instability expands if the coupling
strength K0 is increased.

Interestingly, the stability diagram for the case when the
origin of the z axis is chosen in the minimum of the washboard
potential (z0 = π/2) can be obtained from Fig. 1(a) by the
transformation U0 → −U0. For any other choice of z0, the
topology of the stability threshold is much more complex and
generally contains four different bounded regions (not shown).

The effect of the time delay is demonstrated in Fig. 1(b)
for the choice γ = 0. The stationary density is unstable
in the area, which always stretches towards larger values
of the coupling strength K0, as shown by the shaded area
for τ = 0.1. Decreasing τ leads to the suppression of the
instability, which clearly demonstrates that the instability is
induced by the presence of the time delay in the coupling
term.

However, it should be emphasized that having only a
time-delayed coupling does not sufce to induce the instability.
Thus, from Fig. 1(b) it follows that even if τ and K0 are rather
large, e.g., τ = 200 and K0 ≈ 100, the stationary density
is linearly stable for a vanishingly weak or an infinitely
strong washboard potential U0. At fixed K0, only a certain
combination of τ and U0 renders the system unstable with
respect to an oscillatory perturbation. Consequently, the onset
of the synchronized time-periodic state is the effect of the
combined action of the time-delayed coupling and stationary
periodic external modulation in the form of the washboard
potential.

By following the stability threshold in the parameter space,
we additionally obtain the onset frequency ω directly on the
threshold. The latter carries an important information about
the time scale of the newly born oscillatory states, given by
T = 2π/ω. The three-dimensional view of Fig. 1(a), extended
by the onset frequency ω, is shown in Fig. 2. It can be seen that
the smallest temporal period T ∼ 1 corresponds to positive U0,
whereas the period of the time-periodic states born at negative
U0 is up to threefold larger, i.e., T ∼ 6.

FIG. 2. (Color online) Three-dimensional view of Fig. 1(a). The
onset frequency ω as a function of U0 and γ for τ = 1 and three
different K0. The projection onto the (γ,U0) plane recovers Fig. 1(a).

C. Nonlinear regime: Numerical study of the one-body
distribution

The observation of the linear instability with respect to
oscillatory perturbations predicts possible deviations from the
stationary state for a given (“overcritical”) parameter set. In
order to study the full nonlinear dynamics, however, the full
Fokker-Planck equation of the system has to be solved. To
explore these nonlinear effect we solve Eq. (4) numerically.
Specifically, we employ a standard “forward-time centered-
space” (FTCS) finite difference method [42] and integrate
Eq. (4) starting from an inital distribution ρ(z,t = 0).

As initial density distribution we choose the equilibrium
density distribution in a one-dimensional washboard potential
with periodic boundary conditions and the external bias, as
well as the control, being switched off. This implies

ρ(z,t = 0) = ρ0 exp
[
−βU0 cos2

( z

σ

)]
, (16)

where ρ0 ensures the normalization condition
∫ L

0 ρ(z,t =
0)dz = N = 1. We consider a fixed control amplitude, K0 =
7kBT /σ , and focus on parameter values near the stability
threshold [see Fig. 1(a)]. Specifically, we consider the “bal-
anced case” γ = F0 − K0 = 0 and washboard amplitude val-
ues of U0 = 8kBT (linearly stable) and U0 = 7kBT (linearly
unstable), respectively. Beginning with the latter case, we plot
in Fig. 3(a) snapshots of the density distribution ρ(z,t) for
three subsequent times. The initial distribution ρ(z,t = 0) is
periodic in the position coordinate z with a (spatial) period
that is equal to the valley-to-valley distance of the washboard
potential, that is, λwb = πσ . As expected, the values for the
density distribution are increased at the position coordinates
z

valley
i = iπσ (where i = [0,1,2,3, . . .]) corresponding to the

valley positions of the washboard potential. The specific times
t1, t2 are chosen such that the appertaining density distributions
[shown as the dotted green curve and the dashed blue curve
in Fig. 3(a), respectively] have a maximum displacement
from the initial configuration. Inspecting the curves, we
find that after a response time of roughly 5τB , the system
settles indeed into a stable time-periodic density state, i.e.,
ρ(z,t + T ) = ρ(z,t), where the distribution oscillates around
a washboard minimum position with a maximum displacement
of approximately 0.33σ . The appearance of such stable
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FIG. 3. (Color online) Results for a controlled system in the
periodic regime. (a) Density distribution ρ(z,t) as a function of po-
sition for selected times t0/τB = 0 (red curve), t1/τB = 16.9 (dotted
green curve), and t2/τB = 68.6 (dashed blue curve). (b) Average
particle position 〈z〉t as a function of time. The parameters are
U0 = 7kBT , F0 = 7kBT /σ , K0 = 7kBT /σ , τ = τB , and L = 10πσ .

oscillations is consistent with the stability diagram in Fig. 1(a).
We supplement the discussion by plotting in Fig. 3(b) the
particle position averaged over one period of the potential, that
is, 〈z〉t = ∫ λwb

0 ρ(z,t)dz. Clearly, 〈z〉t oscillates as a function of
time with the same frequency ω as the frequency of the density
oscillations. From now on, we therefore use the function 〈z〉t
to obtain the cycle time T = 2π/ω.

We now turn to the case U0 = 8kBT . For this parameter,
the perturbating forces, specifically the constant tilting force
Fbias and the feedback force Ff.b., do not lead to an oscillating
state. This is illustrated in Fig. 4. It is seen that the oscillations
at early times are being damped, resulting in a stationary,
nonperiodic density for times t � 400τB . In Fig. 4(a) we
show the results for the stationary density profile as a dashed
blue curve, as well as for two additional profiles, where the
red and dotted green curves represent the initial and one
intermediate state, respectively. As can be seen from Fig. 4(b),
the average particle position 〈z〉t , converges to a constant value
〈z〉stat/σ ≈ 0. In other words, the density displacement related
to the equilibrium position at each potential valley vanishes
and, thus, the profiles for times t2/τB = 400 and t0/τB = 0
coincide.
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FIG. 4. (Color online) Results for a controlled system in the
regime where the final state is stationary. (a) Density distribution
ρ(z,t) as a function of position for selected times t0/τB = 0 (red
curve), t1/τB = 50.4 (dotted green curve), and t2/τB = 400.0 (dashed
blue curve). (b) Average particle position 〈z〉t as a function of
time. The parameters are U0 = 8kBT , F0 = 7kBT /σ , K0 = 7kBT /σ ,
τ = τB , and L = 10πσ .

7 7.2 7.4 7.6 7.8 8 8.2 8.4
U

0
/k

B
T

-0.4

-0.2

0

0.2

0.4

<
z>

m
ax

/m
in

/ σ

limit cycle
stationary

FIG. 5. Local extrema values of the function 〈z〉t as a function
of the washboard amplitude U0. The parameters are F0 = 7kBT /σ ,
K0 = 7kBT /σ , τ = τB , L = 10πσ .

We note that for both values of U0 considered (cf. Figs. 3
and 4), the dynamics at early times is transient. In the
oscillatory case, the transient regime lasts for about tres ≈ 5τB .
For the linear stable case, the transient response time can be
much larger. For example, for the parameter values that we
considered in Fig. 4 the stationary state is not reached for
times less than tres ≈ 400τB .

We have repeated the numerical calculations described
above for a range of parameters U0 and the choice γ = F0 −
K0 = 0. In this way we can construct a bifurcation diagram
characterizing the nature of the instability. As a measure
of the instability, we use the oscillation amplitude of 〈z〉t .
Specifically, we obtain local extrema values 〈z〉max and 〈z〉min

from the function 〈z〉t and average these over several periods.
The results are summarized in Fig. 5. At large values of
U0, we only find one stable attracting fixed point 〈z〉max and
〈z〉min = 0. However, by decreasing the washboard amplitude
U0 the stationary state (characterized by 〈z〉max and 〈z〉min = 0
for all times t greater than the transient time) loses stability
and stable limit cycle oscillations occur (see, e.g., Fig. 3).
This happens in an essentially continuous manner, as Fig. 5
reveals. We thus conclude that, on decreasing U0 below
Uc

0 ≈ 7.95kBT , the system undergoes a supercritical Hopf
bifurcation. For U0 < Uc

0 , all resulting trajectories perform
limit cycle oscillations about the former stationary state 〈z〉max

and 〈z〉min = 0. We note that all neighboring trajectories
approach the limit cycle. Thus, for U0 < Uc

0 , the limit cycle is
stable and the only attractor in the system. Furthermore, due
to the spatially left-right symmetry in the potential, the local
extrema of 〈z〉t appear in symmetrical pairs at ±|〈z〉max|.

D. Cycle time for the oscillating density state

An interesting question is to which extent the density oscil-
lation frequency depends on the different system parameters
such as washboard potential amplitude U0 and time delay
τ . In Fig. 2 we have already shown results for the onset
frequency based on the linear stability analysis. Here we
present corresponding data obtained in the nonlinear regime.
To this end we define the cycle time T as the overall travel time
for a full maximum displacement of the density distribution
(towards and back). As argued before, this time can be obtained
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FIG. 6. Density oscillation cycle time T (a) as a function of
the delay time τ and (b) as a function of the washboard potential
amplitude U0 within the oscillatory regime (see Fig. 1). The
parameters are F0 = 7kBT /σ , K0 = 7kBT /σ , and L = 10πσ . The
rest of the parameters as in the legend.

from the average particle position 〈z〉t by measuring the (time)
distance between two maxima [see Fig. 3(b) for an example].

In Fig. 6(a) we plot the cycle time T as a function of
the delay time τ . Clearly, by increasing the delay time τ the
cycle time T increases as well. To understand this behavior,
it is crucial to recall that the time-delayed feedback force
incorporated here is of Pyragas type, i.e., a control target at
time t and its value at time t − τ is used for the feedback
signal. In our case, the control target is the center-of-mass
position 〈z〉t , which is being shifted as a function of time due
to the constant force F bias. Thus, a larger delay time τ implies
that the system travels longer distances within the time interval
τ . On the other hand, the specific form of the feedback force
F fb is constructed such that it always counteracts F bias (see
Eq. (1) and Refs. [27,31]). Furthermore, the absolute value of
F fb is small for large differences f̄ (t) − f̄ (t − τ ). As a result,
the crossover region where the feedback force F fb changes
from being essentially inactive to compensating the constant
tilting force F bias is accessed more often when the delay time
is smaller. Thus, smaller delay times τ yield decreased cycle
times T up to the limit where τ is too small to induce time-
periodic oscillations in the density any longer [see Fig. 1(b)].

Figure 6(b) shows the dependence of T on the washboard
amplitude U0. It is seen that the cycle time T decreases slightly
as a function of the washboard amplitude U0. It is well known
that the energy barrier plays a decisive role for the particle
escape rate in a potential minimum for hopping processes that
are thermally activated [43]. In our case, the interplay among
the washboard potential, the constant tilting force, and the
control force determines the rate at which particle are crossing
to the next potential minimum. By increasing the washboard
amplitude U0, the energy barrier for a particle escape is
increased, leading to smaller displacements of the average
particle position in a valley. As a result, the cycle time of the
oscillations is decreased.

IV. MICROCHANNEL GEOMETRY

So far we have considered infinite systems (i.e., systems
with periodic boundaries). In this section we explore to which
extent the emergence of an oscillation instability also depends
on the channel geometry. To this end, we now consider a
system that consists of a microchannel of finite length L with
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FIG. 7. (Color online) Results for the microchannel; (a) density
distribution ρ(z,t) as a function of position for selected times t0/τB =
0 (red curve), t1/τB = 64.3 (dotted green curve), and t2/τB = 93.0
(dashed blue curve), and (b) shows the first moment of ρ(z,t) as
a function of time. The parameters are U0 = 8kBT , F0 = 7kBT /σ ,
K0 = 7kBT /σ , τ = τB , and zwall = ±20σ .

hard walls at the ends. A similar finite system (yet with particle
interactions) has also been considered in our earlier study on
a feedback-controlled colloidal system [27]. Here we instead
focus on the nature of the oscillations and the corresponding
instability as opposed to the corresponding phenomenon in
the system with periodic boundaries. We choose as initial
distribution the equilibrium density distribution for a single
particle subject to the washboard potential plus a wall potential,
βUwall = 10(z/zwall)20, which confines the particle position
to values |z| � zwall = 20σ . Such a smooth wall potential is
typically used to model situations where the diameter of the
particles forming the wall is much smaller than that of the fluid
particles [44]. Thus, the initial distribution is given by

ρ(z,t = 0) = ρ0 exp

[
−βU0 cos2

( z

σ

)
− 10

(
z

zwall

)20
]

.

(17)

Again, we focus on the “balanced case” γ = F0 − K0 =
0 with a fixed control amplitude value of K0 = 7kBT /σ .
We recall that in the case of the infinite system (periodic
boundaries) a washboard amplitude value of U0 = 8kBT is
already sufficient to suppress oscillatory states, yielding a
stationary state for times larger than the transient response
time. We choose this specific value for U0 as a starting
point for the microchannel study. In Fig. 7(a) we show
snapshots of the density distribution at three different times,
t0 = 0τB , t1 = 64.3τB , and t2 = 93.0τB . We note that the
initial density distribution ρ(z,t = 0) (shown as a red curve)
is symmetric with respect to the position z = 0. After a
transient response time of roughly 20τB we find stable time-
periodic density oscillations where the distribution oscillates
between two states characterized by a low and a high average
particle position, respectively. Therefore, this state fulfills
the periodicity condition ρ(z,t + T ) = ρ(z,t) with T = 2π/ω

being the cycle time of the oscillations. The snapshots at times
t1 and t2 = t1 + T [shown as a dotted green and a dashed
blue curve in Fig. 7(a), respectively] reveal that, indeed, both
density profiles appear to be identical, at least to the naked
eye. We support this conclusion by plotting in Fig. 7(b) the
average particle position 〈z〉t = ∫ L

0 zρ(z,t)dz as a function
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FIG. 8. Density oscillation cycle time T for the microchannel as
(a) function of the delay time τ and (b) function of the washboard
potential amplitude U0. The parameters are F0 = 7kBT /σ , K0 =
7kBT /σ , and zwall = ±20σ . The rest of the parameters as in the
legend.

of time. Here, the function 〈z〉t is averaged over the entire
channel length L in contrast to the circular ring geometry
(periodic boundaries) where the obtained results are periodic
with respect to each valley position. Similarly as in Sec. III C,
the function 〈z〉t oscillates as a function of time with the same
frequency ω as the frequency of the density oscillations, as
can be seen from the time stamps t1 and t2 = t1 + T , which
we have included as vertical lines. However, we stress that the
cycle times here are much longer than for the circular ring
geometry. Furthermore, the periodic states have the spatial
period equal to the largest spatial period used in the system,
which is the system length itself as imposed by the wall
potential. As a result, the time-periodic solution oscillates back
and forth between z = ±zwall. We also note that the finding of
density oscillations for U0 = 8kBT , γ = 0, and τ = τB is in
contrast to what we found in Sec. III C where no (periodic)
instabilities occur for this specific parameter set.

By further increasing the washboard amplitude to the
value of U0 = 9kBT , on the other hand, we find that the
oscillatory behavior at early times is being damped, resulting
in a stationary, nonperiodic density for times t � 20τB . We
conclude that the results of the linear stabilty analysis (cf.
Fig. 1) can approximately be used as a reference to find states
that are linearly unstable for the microchannel system. We
argue that this is because the channel is so large (L = 44σ ) that
the system is mostly determined by the bulk properties. The
instability region for the finite channel seems to be qualitatively
similar but increased in size compared to the results for the
circular ring geometry.

In Fig. 8(a) we show results for the cycle time T as a
function of the delay time τ for a fixed value of K0 = 7kBT /σ

and the choice γ = F0 − K0 = 0. Holding the washboard
potential amplitude fixed to the value of U0 = 5kBT , we
do not find oscillatory density states below τ = 0.3τB . By
increasing τ , we find a qualitatively similar behavior as in
the periodic system (see Sec. III D) for the cycle time T .
Specifically, we find a monotonic increase on T as a function
of τ . On the other hand, quantitatively comparing the results
for the cycle time T to the periodic system reveals that the
values increase by approximately one order of magnitude.
This is clearly a consequence of the substantial differences
in the oscillations that we observe for the microchannel: The
underlying nonlinear terms in the dynamical equations [see
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FIG. 9. Local extrema values of the function 〈z〉t as a function of
the washboard amplitude U0. The shaded area marks the region where
the system exhibits hysteresis. The parameters are F0 = 7kBT /σ ,
K0 = 7kBT /σ , τ = τB , zwall = ±20σ .

Eqs. (3) and (4)] drive the density propagations over the whole
system size, which is given by the channel length L. Thus, it
is clear that the cycle time must be significantly longer than
in the periodic system, where the oscillations occur around a
valley position with displacements that are smaller than πσ

(the spatial period of the washboard potential). We note that
for the τ values that we considered (up to τ = 10τB), we do
not find any upper boundary for the linear stability threshold.
This behavior seems to be similar to the periodic system,
where we showed that the oscillatory density state cannot be
transformed into a stationary state by increasing the value of
τ [cf. Fig. 1(b)].

In order to investigate the dependence of the cycle time T

on the washboard amplitude U0, we hold the delay time fixed
to the value of τ = τB and increase (decrease) U0 in steps
of �U0 = 1kBT towards the linear stability threshold. We
do not find oscillatory density states above Uc

0 ≈ 8.63kBT .
Furthermore, we observe a monotonic increase of T as a
function of U0, which contrasts with the periodic system where
we found monotonic decrease. Again, this is a consequence
of the substantially different oscillation mode that we observe
for the microchannel.

As explained above, any oscillatory perturbation applied
to the system travels over the whole system length. Thus, an
increased value of U0 now means that the propagation of the
perturbation is hindered, which results in an increased cycle
time T that corresponds to the travel time over a distance of
approximately twice the system length L (see Sec. III D).

For completeness, we show in Fig. 9 the bifurcation diagram
for the microchannel calculated in the same fashion as in
Sec. III C. We find only stationary states for washboard
amplitudes U0 > Uc

0 . Contrary to the infinite system, however,
the average particle position 〈z〉t in this stationary state is
principally a nonzero constant as t → ∞. For simplicity, all
stationary states in Fig. 9 have been shifted to zero. On increase
of U0 all density oscillations suddenly drop off at U0 = Uc

0
with a jump in the (oscillation) amplitude from the value
|〈z〉max| to zero; i.e., a subcritical Hopf bifurcation occurs.
As the parameter U0 is reversed, a stationary solution can be
found below the Hopf bifurcation point for values ranging to
Um

0 ≈ 7.75kBT . Thus, the system system exhibits hysteresis
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within the parameter region Um
0 < U0 < Uc

0 (shown as the
shaded area in Fig. 9).

V. INFLUENCE OF REPULSIVE PARTICLE
INTERACTIONS

In many real colloidal systems, interactions between the
particles cannot be neglected. In this last paragraph, we
briefly consider the case of purely repulsive interactions.
Contrary to Ref. [27], which involved finite systems, we here
consider a system with periodic boundaries (see Sec. III for
the corresponding noninteracting case). To this end, we utilize
the recently developed DDFT. The DDFT key equation is given
by [45–47]

�−1 ∂ρ(z,t)

∂t
= ∇

[
ρ(z,t)∇ δF[ρ(z,t)]

δρ(z,t)

]
. (18)

The mobility coefficient in Eq. (18) is the same as in the
Fokker-Planck approach [see Eq. (4)], i.e., we can set its
value to �τBkBT /σ 2 = 1. The chemical potential μ(z,t)
obtained from the Helmholtz free energy functional F has
three contributions,

μ(z,t)= δF[ρ(z,t)]

δρ(z,t)
=μid(z,t) + μint(z,t)+μext(z,t). (19)

The first contribution is the ideal gas term μid =
kBT ln �ρ(z,t) (� denotes the thermal de Broglie wave-
length), the second contribution μint accounts for particle
interactions, and the third contribution is the external potential
μext = Uext, which in our case includes the contributions
from the tilted washboard potential and the control force
[see Eq. (3)]. In the following, the colloidal interactions
are treated within a mean-field approach, that is, μint(z) =∫

dz′ρ(z′,t)U rep(|z − z′|). We employ the Gaussian core
model (GCM), where the interaction potential is given by
U rep(|z − z′|) = ε0 exp[−(z − z′)2/σ 2]. The GCM represents
a typical coarse-grained potential which describes a wide
class of soft macroparticles with effective (gyration) radius
σ [48,49]. We choose positive repulsion strengths ε0 > 0, such
that the interaction is purely repulsive. Also, we focus in this
section on the circular ring geometry (periodic boundaries)
and consider the case of N = 2.

We note that, even in the noninteracting case, the results
from the linear stability analysis (see Sec. III A) cannot
be used as a basis for comparison. The reason is that the
calculations in Sec. III A were done with N = 1. Rather, the
washboard amplitude U0 must be increased significantly to find
a stable stationary state. For example, for the “balanced case,”
γ = F0 − K0 = 0 (and ε0 = 0), we find oscillatory density
states for a broad spectrum of values for U0 ranging up to
U0 ≈ 14kBT (recall that U0 = 8kBT is sufficient to suppress
oscillatory states for N = 1 and the rest of the parameters
being the same).

In Fig. 10 we show results for the average particle
position 〈z〉t for U0 = 15kBT (and N = 2). In the case of
the noninteracting system ε0 = 0 (shown as a solid curve
in Fig. 10) the function 〈z〉t is indeed being damped as a
function of time, reflecting a stationary state for times larger
than the transient response time, which is here of the order of
tres ≈ 2000τB .
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FIG. 10. Results for the average particle position 〈z〉t as a function
of time for different repulsion strengths: ε0 = 0kBT (solid curve),
ε0 = 12kBT (dashed curve), and ε0 = 15kBT (dotted curve). The
parameters are U0 = 15kBT , F0 = 7kBT /σ , K0 = 7kBT /σ , τ = τB ,
L = 10πσ , and N = 2.

On increase of the repulsion strength ε0, the extrema of the
function 〈z〉t increase (see the dashed curve and the dotted
curve in Fig. 10, respectively). This is consistent with our
earlier finding [27] that repulsive interactions support the
particles in crossing the barrier, yielding an increase of the
long-time diffusion coefficient. Moreover, for ε0 = 15kBT ,
we find stable (time-periodic) density oscillations with cycle
time T = 2.315τB . Thus, repulsive interparticle interactions
can be successfully used to stabilize the oscillatory density
state. We note, however, that for the present system, increasing
the average density (via the particle number N ) has a consid-
erably greater impact on the linear stability of the system.

VI. CONCLUDING REMARKS

In the present work, we have investigated the dynamics
of colloidal particles subject to a one-dimensional, tilted
washboard potential under time-delayed feedback control.
The major goal was to identify conditions under which the
control can induce oscillatory states. The latter are absent in
the uncontrolled system. Our investigations are based on the
(nonlinear) Fokker-Planck equation, combined with a linear
stability analysis.

We have investigated infinite systems (i.e., systems with
periodic boundaries) and microchannels of finite length L

(bounded by repulsive walls). For the first case, we have
obtained, based on linear stability analysis, a full state diagram.
This diagram predicts that oscillations (of the density field) do
indeed occur for finite values of the delay time and control
strengths comparable to the strengths of the conservative
forces. Investigating the time dependence of the same system
via numerical solution of the Fokker-Planck equation, we
found full consistency with the results of the linear stability
analysis for all model parameters considered. In addition,
the numerical solution provides results for the (likewise
oscillating) moments of the density distribution. In particular,
from the oscillations of the first moment (i.e., the current)
we could identify the cycle time. The latter was found to
monotonically decrease with the delay time.

In the finite system (which we have investigated via
the full Fokker-Planck equation alone), we also found
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oscillations. However, the spatial extension of these oscilla-
tions corresponds to the wall-to-wall separation rather than to
the width of one valley, as in the infinite-system case. Despite
these differences, the parameter region where the finite system
exhibits feedback-induced oscillations is rather similar to that
found in the infinite case. We attribute this to the fact that
the finite system under consideration was still so large (L �
λwb = πσ ) that boundary effects are not dominant. Finally,
we have briefly considered the case that the colloidal particles
interact. This was done on the basis of the recently developed
DDFT [45–47], a generalized continuity equation where the
particle interactions enter via a free energy functional. Using
a purely repulsive (GCM) pair potential, we have shown that
such interactions can stabilize oscillatory states. However, to
see this effect, the strength of repulsion must be of the order
of the washboard amplitude (and both must be significantly
larger than kBT ). Taken together, we have shown that colloidal
particles in modulated potentials under time-delayed feedback
control can display highly nontrivial dynamics, particularly
oscillations. One way to understand these differences to the
uncontrolled case is that our feedback control term, which
relies on the average particle position and, thus, involves all
particles, introduces effectively time-dependent interactions
between the particles.

We note that feedback-induced spatiotemporal effects have
been recently also been found in other extended systems such
as optical resonators, where the delayed feedback generates
spontaneous motion of cavity solutions [32] and, more gen-
erally, systems describable by the Swift-Hohenberg equation
[50]. A particularly interesting feature of the present colloidal
system is that it is, in principle, accessible by experiments
[16–18]. Indeed, colloidal particles are typically so large that
their position (and, consequently, the first moment of the
density distribution) can be easily monitored by real-space
methods such as video microscopy. We therefore hope that
our results will stimulate future experiments. Moreover, from
the theoretical side one could extend the present analysis to
mixtures consisting of several species with multiple time delay
constants. This could be a promising route for the development
of a novel particle sorting effect in narrow channels.
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APPENDIX: NUMERICAL CONTINUATION OF
SOLUTIONS OF THE LINEARIZED

FOKKER-PLANCK EQUATION

It is known that in order to continue any given solution of the
boundary value problem (BVP) mentioned in Sec. III A with
7 equations, 7 boundary conditions, and 3 integral conditions,
one requires (7 + 3 − 7 + 1 = 4) continuation parameters. We
always include the pair (ω,λ) into the set of continuation
parameters. Consequently, we are left only with two additional
continuation parameters. These can be chosen in the arbitrary
fashion out of the set (U0,K0,F0,τ,N ). For example, the
solution of the BVP can be continued in the plane of (U0,K0),
with all other parameters fixed. The result of such continuation
is a line in the space (U0,K0). Generally, any continuation
yields a co-dimension 1 manifold in the space of system
parameters, which represents the stability threshold. The onset
frequency ω is then an output parameter, which is given
by a certain function of the position on the threshold. The
accuracy of all continuation runs is controlled by checking
that the absolute value of the eigenvalue λ is of the order of
10−10 . . . 10−12.

Generally, it is not easy to find a particular combination
of the system parameters directly on the stability threshold
and, additionally, to correctly guess the corresponding value
of ω. In order to find a starting point for our continuations,
we employ the following strategy. First, we switch off the
integral conditions Eqs. (12) and continue an analytically
known solution at vanishing driving force (F0 = 0), that is,

ρs(z) ∼ e−U (z), C(z) = 0, S(z) = 0, (A1)

with an arbitrary guess of τ and ω in parameter ω, until the
point 〈S〉 = 0 is found. Second, we continue this solution in
parameter K0, until the point on the stability threshold is found,
i.e., 〈S〉 = 0 and 〈C〉 = 1. Note that the condition 〈S〉 = 0
remains unaffected, when continuing in the parameter K0.
Finally, we switch the integral conditions Eqs. (12) back on
and proceed with the continuation in any of the parameters
(U0,K0,F0,τ,N ), as described above.
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